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6 Query Optimization



ÅRemember: query processor
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ÅHeart of the Query Processor is the Query 
Optimizer

ïTranslation of a query into a relational algebra 
expression leads to a first naïve query plan

ïThe query optimizer transforms it into an efficient 
plan

ÅChoice of physical operators

ÅOperator sequence and grouping

ïThe chosen plan is annotated and 
handed over to the evaluation 
engine
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6.1 Introduction



ÅQuery optimizer rewrites the naïve (canonical) 

query plan into a more efficient evaluation plan 
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6.1 Introduction
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ÅBottom -up vs. top -down approaches
ïEither optimize individual queries and generalize the 

algorithms (bottom-up)

ïOr choose general algorithms for classes of queries to be 
applied to each individual query (top-down)

ïMost DBMS are built using a top -down approach

ÅHeuristics vs. cost-based optimization
ïGeneral heuristics allow to improve performance of most 

queries

ïCosts estimated from statistics allow for a good 
optimization of each specific query 

ïMost DBMS use a hybrid approach of heuristics and 
cost estimations
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6.1 Basic Considerations



ÅBasic mapping from (declarative) query 

languages into a suitable internal format

ïReplace language keywords by respective operators 

while keeping the relations, attributes, conditions,é 

ïRemember: mapping SQL into relational algebra

ÅSELECT attribute1,é,attributen
Č pattribute1,é,attributen

ÅFROM relation1,é,relationk
Č (relation1 ³é³relationk)

ÅWHERE condition1AND/OR é AND/OR conditionm
Č scondition1AND/OR é AND/OR conditionm
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6.1 Preparing the Query



ÅDecompose query into query blocks

ïExactly one SELECT and FROM clause 

ïAt most one WHERE, GROUP BY and HAVING clause

ÅNo nesting allowed

ïNested subqueries are usually optimized independently 

ÅQuery normalization

ïWHERE clause in conjunctive normal form

ÅAdvantage: 

ïQuery expressions can be processed in parallel 
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6.1 Preparing the Query



ÅAll evaluation plans are usually tree -shaped 
sequences of the relational algebra operators

ïRelations are leaf nodes 

ïOperators are internal nodes 
with one or more children

ïSELECT attribute1,é,attributen
FROM relation1,é,relationk
WHERE condition1AND/OR é 

AND/OR conditionm

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 9

6.1 Operator Trees
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ÅThe algebraic representation of each operator 

abstracts from the actual algorithm used for 

evaluation

ÅEach operator takes all input relation(s) , 

calculates the respective result , and puts the 

result into a temporary table

ïIntermediate results may be large (e.g., Cartesian 

product)

ïMaterialization is often expensive
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6.1 Operator Execution



ÅIf the query is composed of several operators, 

results can also be pipelined between operators 

ïFor example, the result of a join can be directly 

pipelined into a selection

ÅEvery record produced by the join is immediately checked 

for the selection condition(s)

ÅThus, selection is applied on-the -fly 

ÅAdvantages

ïNo creation of temporary tables necessary

ïNo expensive writing to/reading from disk
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6.1 Pipelining
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6.1 Pipelining
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ÅWithin a pipeline, only tuples are passed among 
operations

ïEach operation has a buffer for storing tuples

ÅPipelines can be executed in two ways

ïDemand -Driven (Pull)

ÅTop-Down

ÅOperations actively demand next tuple from their inputs

ïProducer -Driven (Push)

ÅEach operation has an input buffer

ÅBuffer is filled eagerly by previous operations using all 
available inputs
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6.1 Pipelining



ÅInterfaces for demand -driven pipelines

ÅThe sequence of operators given by the evaluation 

plan has to be coordinated in the execution

ÅRelational operators support a uniform iterator

interface hiding the implementation details 

ïOPEN allocates buffer space for inputs/outputs and passes 

on parameters (e.g., selection conditions)

ïGET_NEXT repetitively calls operator specific code and 

can be used to control progression rates for operators

ïCLOSE deallocatesall state information
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6.1 Pipelining ðIterator Interfaces



ÅPipelining restricts available operations 

ÅPipelining usually works well for

ïSelection, projection 

ïIndex nested loop joins

ÅPipelining usually does not work well for

ïSorting

ïHash joins and merge joins

ÅSometimes, materialization will be more efficient than 
pipelining

ïHard to estimate

ïe.g., materializing sorts to allow for merge joins
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6.1 Pipelining



ÅRelational algebra usually allows for alternative, 

yet equivalent evaluation plans

ïRespective execution costs may strongly differ

ÅMemory space, response time, etc.

ÅIdea: Find the best plan, 

before actually executing 

the query  
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6.1 Algebraic Query Optimization



ÅBasically there are two possible cases:

ïStatic plans , where the best plan is known a-priori 

for a certain kind of query 

ÅThe respective operator sequence and access paths are 

saved and always used for queries of a kind

ÅPre-optimized statements can be immediately evaluated

ïDynamic plans , where the best plan must be found 

at runtime for some query

ÅUsed if querying behavior is very heterogeneous
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6.1 Static vs. Dynamic Plans
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6.2 Optimization Example

matNr firstName lastName sex

1005 Clark Kent m

2832 Lois Lane f

4512 Lex Luther m

5119 Charles Xavier m

6676 Erik Magnus m

8024 Jean Gray f

9876 Bruce Banner m

11875 Peter Parker m

12546 Raven Darkholme f

crsNr title

100 Intro. to being a Superhero

101 Secret Identities2

102 How to take over the world

matNr crsNr result

9876 100 3.7

2832 102 5.0

1005 101 4.0

1005 100 1.3

6676 102 1.3

5119 101 1.7

students courses

exams

4 Byte 30 Byte 30 Byte 1 Byte

30 Byte4 Byte

4 Byte4 Byte 8 Byte



ÅSQL Statement

αSELECTlastName, result, title FROMstudentss, exams
e, coursesc WHEREe.result<=1.3 AND 
s.matNr=e.matNrAND e.crsNr=c.crsNrά

ÅCanonicalRelational Algebra Expression

ïExpression directly mapped from the SQL query

ïȰʌlastName, result, titleʎresult ρȢσ ᷈ exams.crsNr= courses.crsNr

s᷈tudents.matNr= exams.matNrstudents× exams× coursesȰ
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6.2 Optimization Example

lastName result title

Magnus 1.3 How to take over the world

Kent 1.3 Intro. to being a Superhero



ÅCreate Canonical Operator Tree
ïOperator tree visualized the order of 

primitive functions
ï(Note: Illustration is not really 

canonical tree as selection is already 
separated)
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6.2 Optimization Example

ʌlastName, result, title

ʎresult ρȢσ

ʎ students.matNr= exams.matNr

ʎ exams.crsNr= courses.crsNr

students exams

courses

ʌlastName, result, title

ʎresult ρȢσ ᷈ exams.crsNr= courses.crsNr s᷈tudents.matNr= exams.matNr

(students× exams× courses)

×

×
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6.2 Optimization Example

ʌlastName, result, title

ʎresult ρȢσ

ʎ students.matNr= exams.matNr

ʎ exams.crsNr= courses.crsNr

students exams

courses

×

×

9 * 65B = 585B 6 * 16B = 96B

3 * 34B= 102B

54 * 81B = 4,374B

162 * 115B = 18,630B

18 * 115B = 2,070B

6 * 115B = 690B

2 * 115B = 230B

2 * 68B = 136B

How much spaceis needed for the intermediate results?

ςφȟρσφὄ



ÅRemember: task of query optimization

ïTransform canonical operator tree into more 
efficient final operator tree for evaluation

ïCanonical and final tree have equal semantics , but 
different operators / execution orders

ïCommon Heuristics and/or DB statistics are used 
to transform canonical tree step by step

ÅHeuristic query optimization

ÅCost -based query optimization
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6.2 Optimization Example
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6.2 Optimization Example

ʌlastName, result, title

students exams

courses

6 * 16B = 96B

3 * 34B= 102B

Example:  Final Operator Tree

ẚstudents.matNr= exams.matNr

ẚexams.crsNr= courses.crsNr

ʎresult ρȢσʌlastName, matNr

ʌlastName, result, crsNo

9 * 65B = 585B

9 * 34B = 306B 2 * 16B = 32B

2 * 50B = 100B

2 * 42B = 84B

2 * 76B = 152B

2 * 68B = 136B

ψρπὄ

(comparedto 26,136B)



ÅAll transformations are based on a set of 

relational algebra equivalences

ïAlgebra allows for symbolic calculations

ïTransformation rules rewrite an operator tree into 

another equivalent tree, step by step

ïResult of a query is never affected by 

transformations
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6.3 Algebraic Query Rewriting



ÅSelections

1. Cascading ʎ
ï ʎc1᷈ Ã2᷈ ȣ ᷈ cn

2  ḳ ʎc1
(ʎc2

ȣʎcn
2 ȣ

2. Commutativity of ʎ
ï ʎc1

(ʎc2
2  ḳʎc2

(ʎc1
(R)) 
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6.3 Algebraic Query Rewriting



ÅProjections

3. Cascading ʌ
ï Only the last projection in a cascade takes effect

ï ʌ list1
(ʌ list2

ȣʌ listn
2 ȣ  ḳʌ list1

(R)

ï list1 Ṗlist2Ṗlist3Ṗȣ Ṗlistn

4. Commuting ʌwithʎ
ï Only possible if projected attributes a1, é an occur 

in selection condition c

ï ʌa1, a2ȟ ȣ Án
(ʎc(R)) ḳ ʎc(ʌa1, a2ȟ ȣ Án

(R))
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6.3 Algebraic Query Rewriting



ÅJoins and Cartesian products

5. Commutativity of × (and ẚ)

ï R × Sḳ 3 × R

ï 2 ẚ 3ḳ 3 ẚ 2

6. Associativity of × (or ẚ)

ï R × (S× T)ḳ 2 × S) × T

ï 2 ẚ 3ẚ 4ḳ 2 ẚ 3ẚ 4

Å Both together allow for arbitrary order of joins
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6.3 Algebraic Query Rewriting



7. Constructing ẚ from ʎc and ×

ï 2 ẚc3 ḳ ʎc(R × S)

8. Commuting ʎc with ẚ (or ×)

ï Condition c is concatenation of clauses involving 

either attributes from R,or from Sconnected with ᷈

Å c1 contains clauses from c with attributes in R and S

Å c2 contains only clauses from c with attributes in R

Å c3 contains only clauses from c with attributes in S

ï ʎc 2 ẚ 3ḳ ʎc1 (ʎc2  (2  ẚ ʎc3  (S))

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 28EN 16.2

6.3 Algebraic Query Rewriting



9. Commuting ʌlist with ẚc (or ×)

ï Attribute list list contains only attributes from R, S

Å list1 contains all attributes from list with attributes in R

Å list2 contains all attributes from list with attributes in S

Å c involves only attributes in list

Å ʌlist 2 ẚc S)ḳ ʌlist1 2  ẚcʌlist2 (S)

ï If c also involves attributes not in list

Å Additional projection necessary

Å list1 and list2 extended with those attributes not in list

Å ʌlist 2 ẚc S)ḳ ʌlist (ʌlist1 2  ẚcʌlist2 (S))
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6.3 Algebraic Query Rewriting



ÅSet operations
10.Commutativity of ᷾  and᷊
ï R ᷾ 3 ḳ 3 ᷾ R and R ᷊ 3 ḳ 3 ᷊ R

11.Associativityof ᷾ and᷊
ï R (᷾S᷾4  ḳ(R S᷾) T᷾
ï R (᷊S᷊4  ḳ(R S᷊) T᷊

12. Commuting ʎwith set operations
ï ɡ {ɴ᷾ȟ ᷊ȟ -}:      ʎc (R ɡS)ḳ ʎc (R) ɡʎc (S))

13. Commuting ʌwith ᷾
ï ʌlist (R ɡS)ḳ ʌlist (R) ɡʌlist (S))
ï ʌdoes not commute with ᷊ and -
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6.3 Algebraic Query Rewriting



ÅAll transformations can be applied to 

the canonical evaluation plan 

ïHowever, there is no best operator 

sequence that is always optimal

ïEfficiency depends on the current data instance, the 

actual implementation of base operations, the 

existence of access paths and indexes, etc.

ÅIdea: assign average costs to operators and 

estimate costs for each query plan 
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6.4 Cost -based Optimization



ÅBy weighting specific statistics, cost-optimizers 
make assumptions about a systemõs 
bottleneck

ïFocusing on expected block hits for operators 
assumes that the bottleneck is I/O -bound

ÅTypical for database systems relying secondary storage

ÅBlock hits for reading indexes are often ignored

ïFocusing on CPU statistics assumes 
that bottleneck is CPU -bound

ÅE.g., main memory databases
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6.4 Database Statistics



ÅFor each node in the operator tree 

ïThe cost of performing the corresponding 

operation must be estimated

ÅConsider input size, available indexes, I/O and processing 

costs

ÅConsider whether pipelining applies or result 

materialization must be used

ïThe size of the result must be estimated

ÅImportant to estimate expected input for parent node

ÅDistinguish sorted/unsorted results
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6.4 Database Statistics



ÅEstimation of costs starts with simple 
parameters

ïDatabase buffer size

ïCardinality of the input base relations

ÅNumber of records 

ÅNumber of distinct domain values

ïRelation size 

ÅNumber of pages on disk 

ïAvailable access paths

ÅIndex cardinalities (#keys), sizes (#pages), heights, ranges

ÅMaintained in the DBMSõs system catalog
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6.4 Database Statistics



ÅImportant factor for finding good plans is to keep 
intermediate results of operators small

ïSELECT attribute_list
FROM relation_list
WHERE condition1AND é AND conditionn
ïMaximum number of result records?

ÅProduct of cardinalities of all relations (incl. duplicates)

ïConditions in WHERE clause eliminate result records

ÅSelectivity of the conditions

ÅReduction factors help to estimate real result size

ïProjections do not reduce record number (unless 
duplicates are removed)
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6.4 Estimating Result Sizes



real size å maximum size * 
P(reduction factor condition i)

ïAssumption : All reductionsare statistically
independent

ÅSomewhat unrealistic, buté?!

ÅHow to estimatereduction factors ?

ïDependson the kind of the condition

Åcolumn= value

Åcolumn1 = column2

Åcolumn{>, <, ², ¢} value

ÅcolumnIN {list of values}
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6.4 Estimating Result Sizes

i



ÅCondition: column = value

ïSimple assumptionin earlyqueryoptimizers. If column

was not indexed, reductionfactor of 0.1 (System R)

ÅToday, statisticsaboutthe distinct values andhistograms

cando a lot better

ïIf the column is indexed by some index I, the 

reduction factor can be approximated by 

1/#keys(I)
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6.4 Estimating Result Sizes



ÅCondition: column 1 = column 2

ïIf there are indexes I1 and I2 on columns 1 and 2, the 
reduction factor can be estimated by

1/max(#keys( I1), #keys( I2))

ÅThe formula assumes that for each key in the smaller index 
there is a matching partner in the larger index

ïIf only one column has an index I, the estimation can 
be simplified to 1/#keys(I)

ïIf neither column has an index, statistics 
about the distinct domain values can be 
used as above
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6.4 Estimating Result Sizes



ÅCondition: column {>, <, ², ¢} value

ïIf there is an index I, the reduction factor can be 

approximated by (high( I)-value)/(high( I)-low( I))

ïIf there is no index or the column is not of an 

arithmetic type, usually a factor around 0.5-‐is 

assumed

ÅThe assumption is that value is somewhere in the middle of 

the domain value range

ïFor range queries (value < column < value) ,

result sizes can be estimated as 

disjunctions of both conditions
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6.4 Estimating Result Sizes



ÅCondition: column IN {list of values}

ïHere, if there is an index I, the reduction factor is 

chosen as #list values*(1/#keys( I))

ÅAnalogously to column = value

ÅGenerally, the factor should be 0.5

ÅConditions of the kind column IN (subquery) 

are handled similarly

ïRatio of the estimated subquery result 

size to the number of distinct values in 

column in the outer relation
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6.4 Estimating Result Sizes



ÅThe number of DB block accesses using an index
for a simple selection column = value (assuming 
uniform value distribution) depends on 
ïthe type of index and 

ïthe result size selected from the indexed column
ÅIf there is a primary index , then both, result size and number of 

blocks accessed, is about 1

ÅIf there is a cluster index , the expected number of blocks 
accessed for a selection is 
#blocks å #result size/
(#records -in-relation/#blocks -in-relation) 

ÅFor a secondary index, the expected number 
of blocks accessed is #blocks å #result size
ïéif eachblock is lookedup individually

ÅIf no index is given, #blocks å #blocks-in-relation

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 41

6.4 Estimating Block Accesses



ÅThe number of DB block accesses using an 

indexfor a simple selection column {>, <, ², ¢} 

value (assuming uniform value distribution) again 

depends on 

ïthe type of index and the result size selected from 

the indexed column

ÅIf there is a primary or cluster index , then number of 

blocks accessed is #blocks å #blocks-in-relation / 2

ÅFor a secondary index the expected number of blocks 

accessed is #blocks å #records-in-relation / 2

ÅIf no index is given, #blocks å #blocks-in-relation
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6.4 Estimating Block Accesses



ÅThe number of DB block accesses using an index
for a selection column = column basicallydepends
on the selectivityof the join
ïOrdering joinsdifferentlymayleadto planswith

vastlydifferingcosts

ïNext lecture: join order optimization

ïWorst caseis a full Cartesian product betweentwo
relationsR ³S whereeachtuple of R hasto be joined
with eachtuple of S
Å#blocks å #blocksR * #records S
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6.4 Estimating Block Accesses



ÅExample Database: IMDB Data

ïInternet Movie Database

ïContains (among others)

Å1,181,300 movies of 7 types

Å2,226,551 persons

Å15,387,808 associations actors-movies
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6.4 Estimated Sizes



ÅFilter Movies:title.production_year = x

ïSystem R heuristic: 0.1

ïDistinct values in index: 0.0075

ïSample Queries

ÅYear=2000 :0.0235

ÅYear=1970 : 0.0077

ÅYear=1940 : 0.0017

ÅData is skewed! Histograms should provide better results!
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6.4 Estimated Sizes



ÅFilter Actor Assignments: name.id= cast_info.person_id

ïDistinct values: Reduction Factor 8.46 E-7

ïSample Queries
ÅReduction Factor8.46 E-7

ÅEstimate Number of Block Accesses:
title.production_year <1920

ïAssume 16 records per block -> 73,832 blocks 

ïNo Index: 73,832 blocks

ïSecondary Index: 484,333 blocks 
(estimated reduction factor 0.59)
ÅUsage of index seems not a good idea hereé

ÅHowever, real result size is just 56,502 records

ïNow a good idea?
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6.4 Estimated Sizes



ÅIf several indexes match the conditions in the 

WHERE clause, each offers an alternative 

access path

ïThe selectivity of an access path is the number of 

DB pages on disk that must be retrieved to evaluate a 

selection, relative to the whole relation 

ÅUsually worst: relation scans

ïChoosing the right access path 

determines the I/O-bound 

efficiency of the query evaluation       
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6.4 Choosing the Access Path


