Relational Database Systems 2
8. Join Order Optimization

Wolf-Tilo Balke
Jan-Christoph Kalo
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
8 Join Order Optimization

8.1 Basic join order optimization
8.2 Join cost and size estimations
8.3 Left-deep join trees
8.4 Dynamic programming
8.5 Greedy strategy
8.6 Randomized algorithms
• Joins are **commutative** and **associative**
 - \(R \Join S \equiv S \Join R \)
 - \(R \Join (S \Join T) \equiv (S \Join R) \Join T \)

• This allows to evaluate individual joins in any order
 - Results in **join trees**
 • Different join trees may show very different evaluation performance
 - Join trees have different **shapes**
 - Within a shape, there are different relation **assignments** possible

• Example: \(R \Join S \Join T \Join U \)
8.1 Shapes of Join Trees

- Number of possible join trees grows rapidly with number of join relations
 - For n relations, there are $T(n)$ different tree shapes

 - $T(1) = 1$
 - $T(n) = \sum_{i=1}^{n-1} T(i)T(n-i)$

 - “Any number of $1 \leq i \leq n-1$ relations may be in the left subtree and ordered in $T(i)$ shapes while the remaining $n-i$ relations form the right subtree and can be arranged in $T(n-i)$ shapes.”
8.1 Shapes of Join Trees

• This number sequence is called **Catalan Numbers**

 – Named after Belgian mathematician Eugène Charles Catalan (1814–1894)

 – Can be rewritten as

\[
T(n) = C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}
\]
8.1 Shapes of Join Trees

Example: Shapes for $n=4$

Example: The 22 first Catalan Numbers:

- 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020

- Grows quite quickly…..
8.1 Sequence of Relations

• For each shape, the **relations** can be assigned in \(n! \) ways to the tree nodes

 – Example: Left-deep tree shape for \(n=3 \)

• There are \(T(n)*n! \) different join trees for \(n \) relations!

<table>
<thead>
<tr>
<th>(n)</th>
<th>(1*2! = 2)</th>
<th>(6 : 42*6! = 30,240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(2*3! = 12)</td>
<td>(9 : 1,430*12! = 518E6)</td>
</tr>
<tr>
<td>(n)</td>
<td>(5*4! = 120)</td>
<td>(12 : 58,786*12! = 28E12)</td>
</tr>
<tr>
<td>(n)</td>
<td>(14*5! = 1,680)</td>
<td>(15 : 2,674,440*15! = 3.49E18)</td>
</tr>
</tbody>
</table>
Finding the “most efficient” join tree and join implementation is a challenging problem

- Number of possible join trees grows extremely with number of join relations
 - Problem was shown to be NP-hard in the general case
 - $O(n!)$, with n as number of join relations
 - Estimating cost of all trees is not feasible for larger joins

- Some join implementations are asymmetric
 - Performance varies greatly depending on relation order

Query optimizer has to find a good plan in sensible time
8.1 Basic Join Order Optimization

• Naming convention
 – Left: **Build Relation**
 – Right: **Probe Relation**

• Desirable Join Cases
 – Attention: Role (inner/outer relation) of build and probe depends on chosen algorithm
 – **Block Nested Loop Join**
 • Build relation is in **inner loop**, probe relation is in **outer loop**
 • Build relation **significantly** smaller than probe
 – **“Single Pass Join”**
 • Best case
 • **Nested Loop Join** where build relation fits completely **into main memory**
 – **Index Join**
 • Build relation is in **outer loop**, probe relation is in **inner loop**
 • Index on probe relation
 • Build relation small
8.1 Basic Join Order Optimization

- Optimizer has 3 choices
 - Consider all possible join trees
 - Usually not possible
 - Consider a subset of all trees
 - i.e. restrict to trees of certain shapes
 - Use heuristics to pick a certain shape
8.2 Join Metrics

• For optimizing joins, **metrics** are necessary
 – **Estimated Join Result Size**
 • “What is the expected size of the result set?”
 • Needed by the query optimizer for global query optimization
 • May be used within the cost metric
 • Is the same for all different join orders
 – **Estimated Join Cost**
 • Represents the actual costs for performing the join
 • May consider CPU, I/O, buffer statistics, etc. and
 varies with join algorithm implementation
8.2 Join Metrics – Size

• **Size Estimation:**

 – A join selects tuples fulfilling a join condition from a Cartesian product: \(R \bowtie_c S \equiv \sigma_c (R \times S) \)

 \[
 \begin{align*}
 &\quad |R \bowtie_c S| \leq |R \times S| \\
 &\quad |R \bowtie_c S| \leq |R|^*|S| \\
 &\quad |R \bowtie_c S| = rf_\sigma^*|R|^*|S| \\
 \end{align*}
 \]

 – \(rf_\sigma \) the reduction factor of the selection with the join condition wrt. the Cartesian product (fraction of remaining tuples after selection)

 – We need to estimate the reduction factor of the selection!
8.2 Join Metrics – Size

- Remember lecture 6.4: reduction factors for selections
 - Simplified: Two useful cases for joins
 - $\text{rel}_1.\text{col}_1 = \text{rel}_2.\text{col}_2$ (natural join, equijoin) shows a reduction factor: $1/\max(\#dV(\text{rel}_1, \text{col}_1), \#dV(\text{rel}_2, \text{col}_2))$
 - Assuming that every tuple in the smaller relation has a match in the larger relation
 - $\#dV(R, A)$ is number of distinct values of attribute A in relation R
 - $\text{rel}_1.\text{col}_1 \theta \text{rel}_2.\text{col}_2$, $\theta \in \{\leq, <, =, >, \geq, \neq\}$ (theta join) shows a reduction factor of about 0.5
 - Assuming that each value in rel_1 is joined with about half the values in rel_2
8.2 Join Metrics – Size

• **Observations:** $R \bowtie S$ on common attribute A

 – Natural join: $R.A = S.A$

 – Join size depends heavily on the relation of values of A
in R and S

 • R and S may have **disjoint** A values

 – $rf_\sigma = 0 \Rightarrow |R \bowtie S| = 0$

 • A might be **key** of S and **foreign key** of R

 – Each tuple of R joins with exactly one tuple of S

 – $\Rightarrow |R \bowtie S| = |R|$

 • Most tuples of R and S could have **equal** values for A

 – $rf_\sigma \approx 1 \Rightarrow |R \bowtie S| \approx |R|*|S|$
8.2 Join Metrics – Size

- Idealized case with keys and foreign keys
 - Usually, tuples of one relation match a tuple in the other
 - Attribute A is key of S and foreign key of R
 $\Rightarrow rf_\sigma = 1 / |d(V(R, A))|
 - Attribute A is key of R and foreign key of S
 $\Rightarrow rf_\sigma = 1 / |d(V(S, A))|
 - You don’t know which relation contains key and which foreign key
 $\Rightarrow rf_\sigma = 1 / \max(|d(V(R, A)), |d(V(S, A))|)$
 - $|R \bowtie S| = |R|*|S| / \max(|d(V(R, A)), |d(V(S, A))|)$
8.2 Join Metrics – Size

• Join Result Sizes
 – For a single equality join condition on A:
 • $|R \bowtie S| = \frac{|R| \cdot |S|}{\max(\#dV(R, A), \#dV(S, A))}$
 – For multiple equality join conditions on A_1, \ldots, A_n:
 • Multiply reduction factors
 • $|R \bowtie S| = \frac{|R| \cdot |S|}{\prod_i (\max(\#dV(R, A_i), \#dV(S, A_i)))}$
 – For multiple join relations R_1, \ldots, R_n
 • Cascade formula for two relations
 • i.e. $|R_1 \bowtie \ldots \bowtie R_n| = |\ldots| |R_1 \bowtie R_2| \bowtie \ldots| \bowtie R_n|$
 • Order of relations does not matter for total size estimation
– Estimation accuracy can be improved using more sophisticated statistics
 • Histograms
 • Dynamic sampling
 • Simulating common queries
 • Correlation Statistics
 • Incorporating previous query results
– Are more complex statistics worth it?
 • Keeping statistics is expensive in databases with high change rate
 • Which statistics to create?
 – Adapting statistics to queries?
Execution Cost Estimation:

- For selecting a good join tree, we have to minimize the actual costs for computing the result.

- Easiest cost metric: **size of intermediate results**
 - Creating intermediate results is costly (writing to disk), costs increase with size of relations.
 - Final result is **not** an intermediate result.
 - Example:
 - Costs \((R \bowtie S)\) = 0
 - Costs \(((R \bowtie S) \bowtie T)\) = \(|R \bowtie S|\)
 - Metric does not consider real I/O, memory and CPU costs.
 - Metric ignores actual join algorithm implementation.
• **Cost metric:** **block accesses**

 – Block accesses are the major performance bottlenecks

 – Depends on the used join implementation

 – **Costs for writing the result**

 • $\text{Costs}_{\text{Result}}(R \bowtie S) = |R \bowtie S| / \text{blockingFactor}_{\text{Result}}$

 • Use size estimation for $|R \bowtie S|$

 – **Block Nested Loop**

 • $\text{Costs}_{\text{BNL}}(R \bowtie S) = b_R + (b_R \times b_S) + \text{Costs}_{\text{Result}}(R \bowtie S)$

 • b_R is number of blocks in R

 • b_S is number of blocks in S
8.2 Join Cost Metrics – Access Costs

- **Block Access Costs: Index Loop Join**

 \[\text{Costs}_{\text{IXL}}(R \bowtie S) = b_R + (|R| \times (C_{\text{ix}} + 1)) + \text{Costs}_{\text{Result}}(R \bowtie S) \]

- **Costs depend on index retrieval cost** \(C_{\text{ix}} \)

 - **IndexAccessCosts** vary on the type of index

 - Assume 0 for in-memory index
 - Increasing costs per index level for disk residing indexes
8.2 Join Cost Metrics – Access Costs

• Retrieval costs for some different indexes

 • With S_σ, the selection cardinality of S: Estimated number of records in S fulfilling the join condition for a given record from R; see lecture 6.4

 – **Cluster index**

 • $C_{ix} = \text{indexAccessCost} + \frac{S_\sigma}{\text{blockingFactor}_{\text{Index}}}$

 – **Secondary Index:**

 • $C_{ix} = \text{indexAccessCost} + S_\sigma$

 – **Hash Index:**

 • $C_{ix} \geq 1$; Average costs for retrieving a record, depending of hash size and key collision
8.2 Join Cost Metrics – Access Costs

• **Block access costs:** **Sort-Merge-Join**

 – Assume that relations are already sorted on the join attribute:

 \[
 \text{Costs}_\text{SMJ} (R \bowtie S) = b_R + b_S + \text{Costs}_\text{Result} (R \bowtie S)
 \]

 • Very efficient when already sorted
 • If not, additional costs for sorting have to be considered
8.3 Left-deep Join Trees

• A simple heuristic for reducing the search space size is using **left-deep join trees**
 – Introduced by System R optimizer
 – Considers **only one tree shape**: left-deep tree
 • In left-deep trees, all right children are leaves
8.3 Left-deep Join Trees

• Left-deep join trees cooperate well with most join algorithms as they aim for decreasing the build relation
 – Usually, left-deep join tree yield good performance
 – Optimized buffer usage

• Left-deep plans allow output of each operator to be pipelined into the next operator
 – No need to store results in a temporary relation
 – Careful: not for sort-merge joins
8.3 Left-deep Join Trees

- The number of possible left-deep join trees is **significantly smaller** than the number of all join trees.

<table>
<thead>
<tr>
<th>n</th>
<th>All join trees</th>
<th>Left-deep trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>30,240</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td>518E6</td>
<td>362,880</td>
</tr>
<tr>
<td>12</td>
<td>28E12</td>
<td>479E6</td>
</tr>
</tbody>
</table>

- But...
 - **Still** a considerable amount (impractical for >15 joins)
 - Parallel execution of joins is **not possible**!
8.4 Finding the Best Tree

• Exploring all possible join orders is not possible
 – Employ techniques for reducing search space which still deliver **best solution**
 • Dynamic Programming
 • Branch and Bound
 – Employ **approximate techniques** that deliver a sufficiently good solution
 • Greedy Strategies
 • Randomized Strategies
 • Genetic Algorithms
8.4 Dynamic Programming

- **Dynamic programming** techniques are frequently used to explore the search space more efficiently
 - Break the problem into smaller sub-problems
 - Solve these sub-problems optimally recursively and remember the best solutions
 - Memorization
 - Use these optimal solutions to construct an optimal solution for the original problem
• For finding a join plan, DP is often implemented with a **cost table**
 – Table stores lowest costs for joins of subsets of all relations
 • Only good sub-solutions are remembered
 • Use an adequate cost function for joins
 – In the following we assume intermediate result sizes as costs
 – Storing the table uses up buffer space!
The table contains columns for:

- The **relation subset** described by the row
- The **estimated size** of the join result
- The estimated **lowest costs** for performing the join
 - i.e. estimated intermediate result size, estimated IO cost, estimated CPU cost, etc.
- The **expression** (i.e. tree shape and assignment) which produced the lowest costs

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{R,S,T,U}</td>
<td>2,500</td>
<td>25,750</td>
<td>(U \bowtie (S \bowtie T)) \bowtie R</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Table is build **inductively** on the subsets of relations

• **Claim:**

 – Table always contains **join expressions with lowest costs** for given **relation subsets**
8.4 Dynamic Programming

- **Basics:**
 - For each **single relation subset** \{R_a\}, table contains one row with size of \(R_a \), with size \(|R_a| \), costs 0 and expression \(R_a \)
 - For each **relation subset of size two** \{\(R_a, R_b \)\}, the table contains one row
 - Estimated size as described in previous section
 - Costs 0 (\(\Rightarrow \) no temp files!)
 - Either expression \((R_a \bowtie R_b) \) or \((R_b \bowtie R_a) \); use heuristic to choose which expression is better: usually, order smaller relation to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{(R_1)}</td>
<td>2000</td>
<td>0</td>
<td>(R_1)</td>
</tr>
<tr>
<td>{(R_2)}</td>
<td>1000</td>
<td>0</td>
<td>(R_2)</td>
</tr>
<tr>
<td>{(R_1, R_2)}</td>
<td>500</td>
<td>0</td>
<td>(R_2 \bowtie R_1)</td>
</tr>
</tbody>
</table>
• Induction:
 – For each relation subset of size \(n \) \(Rs=\{R_a, R_b, \ldots, R_z\} \), create a table row
 – Find two subsets \(Rs_1 \cup Rs_2 = Rs \) within the table such that \(\text{Cost}(Rs_1 \bowtie Rs_2) \) are minimal
 • For deep-left trees, only subsets with \(|Rs_1|=n-1\) and \(|Rs_2|=1\) need to be considered
8.4 Dynamic Programming

Fill row with
- Rs as subset identifier
- Estimated size $|\text{Rs}_1 \bowtie \text{Rs}_2|$
- Estimated costs $\text{Cost}(\text{Rs}_1 \bowtie \text{Rs}_2)$
- Concatenation of the expressions of Rs_1 and Rs_2

- For deep-left join trees, always place expression of Rs_1 to the left
- otherwise, place expression with smaller result size to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>${R_1}$</td>
<td>2000</td>
<td>0</td>
<td>R_1</td>
</tr>
<tr>
<td>${R_2}$</td>
<td>1000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_3}$</td>
<td>3000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_1, R_2}$</td>
<td>500</td>
<td>0</td>
<td>$R_2 \bowtie R_1$</td>
</tr>
<tr>
<td>${R_1, R_3}$</td>
<td>1200</td>
<td>0</td>
<td>$R_1 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_2, R_3}$</td>
<td>1800</td>
<td>0</td>
<td>$R_2 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_1, R_2, R_3}$</td>
<td>200</td>
<td>500</td>
<td>$(R_2 \bowtie R_1) \bowtie R_3$</td>
</tr>
</tbody>
</table>

Here:
$\text{Rs}_1 = \{R_1, R_2\}$
$\text{Rs}_2 = \{R_3\}$
8.4 Dynamic Programming

• Find optimal join order restricted to left-deep join trees
• 4 Relations
 – **R** with attributes *a* and *b*
 – **S** with attributes *b* and *c*
 – **T** with attributes *c* and *d*
 – **U** with attributes *d* and *a*
 – Each relation has size of 1000
 – Following Table: \(\#dV(\text{Relation, attribute}) \)
 • Number of distinct values for attributes and relations

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

• Start with subsets of size one
 – Use intermediate result set size as cost metric

• Fill table with subsets of size two
 – Still no costs because of intermediate result cost metric
 – Heuristic: Smaller relation to the left side of join

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Fill table with subsets of size three
 - Use previous table entries and combine a subset result of size two with a result of size one
 - Always select pairs smallest size
 - Single relation to the right side due to left-deep join tree restriction
 - For \(\{R, S, T\} \) consider:
 - \((R \bowtie S) \bowtie T\) : Costs 5,000
 - \((R \bowtie T) \bowtie S\) : Costs 1,000,000
 - \((S \bowtie T) \bowtie R\) : Costs 2,000

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
<tr>
<td>{R, S, T}</td>
<td>10,000</td>
<td>2,000</td>
<td>(S \bowtie T) \bowtie R</td>
</tr>
<tr>
<td>{R, S, U}</td>
<td>50,000</td>
<td>5,000</td>
<td>(R \bowtie S) \bowtie U</td>
</tr>
<tr>
<td>{R, T, U}</td>
<td>10,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie R</td>
</tr>
<tr>
<td>{S, T, U}</td>
<td>2,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie S</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Subsets of size four
 - Subsets of size **four** can be found by combining a **triple** and a **single** relation
 - Again, single to the right
 - For \{R, S, T, U\} consider:
 - \((S \bowtie T) \bowtie R \bowtie U : 12,000\)
 - \((R \bowtie S) \bowtie U \bowtie T : 55,000\)
 - \((T \bowtie U) \bowtie R \bowtie S : 11,000\)
 - \((T \bowtie U) \bowtie S \bowtie R : 3,000\)

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
<tr>
<td>{R, S, T}</td>
<td>10,000</td>
<td>2,000</td>
<td>(S \bowtie T) \bowtie R</td>
</tr>
<tr>
<td>{R, S, U}</td>
<td>50,000</td>
<td>5,000</td>
<td>(R \bowtie S) \bowtie U</td>
</tr>
<tr>
<td>{R, T, U}</td>
<td>10,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie R</td>
</tr>
<tr>
<td>{S, T, U}</td>
<td>2,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie S</td>
</tr>
<tr>
<td>{R, S, T, U}</td>
<td>100</td>
<td>3,000</td>
<td>((T \bowtie U) \bowtie S) \bowtie R</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

• Adapting DP to arbitrary join orders
 – Previously, a larger relation set of size \(n \) was computed by finding the optimal solution for size \(n-1 \) and joining another relation
 • The new relation is always placed to the right side of the join to form a **deep-left tree**, e.g., \(((T \bowtie U) \bowtie S) \bowtie R\)
 • Significantly reduced search space per step
If any shape of join tree is possible, for computing a solution for subset of size n, all combinations of smaller subsets have to be considered.

- e.g., for $n=5$ consider
 - All subsets of size 4 with all valid subsets of size 1
 - All subsets of size 3 with all valid subsets of size 2
 - All subsets of size 2 with all valid subsets of size 3
 - All subsets of size 1 with all valid subsets of size 4
8.4 Dynamic Programming

• Based on the previous example:
 – For \{R, S, T, U\} consider:
 • Triple with Single
 – \{S, T, R\} ⋈ \{U\}
 – \{R, S, U\} ⋈ \{T\}
 – \{T, U, R\} ⋈ \{S\}
 – \{T, U, S\} ⋈ \{R\}
 • Pair with Pair
 – \{T, U\} ⋈ \{R, S\}
 – \{R, T\} ⋈ \{S, U\}
 – \{S, T\} ⋈ \{R, U\}
 • Single with Triple
 – \{U\} ⋈ \{S, T, R\}
 – \{T\} ⋈ \{R, S, U\}
 – \{S\} ⋈ \{T, U, R\}
 – \{R\} ⋈ \{T, U, S\}
 – Optimal solution for join order is not a deep-left tree, but \textbf{R ⋈ ((T ⋈ U) ⋈ S)}
 • Same intermediate result costs, but lower estimated execution costs as \texttt{build} and \texttt{probe} relations are ordered better (smaller to the left)
• Summary Dynamic Programming
 – Guarantees “best” join order
 – Search effort still exponential, but strongly limited compared to exhaustive search
 • Complexity $O(2^n)$
 • Useful up to 10-15 joins only
 – Additional space consumption for storing the cost table
8.5 Greedy Strategy

• For larger joins dynamic programming will be too expensive…
 – Remember: $O(2^n)$

• Idea: Use a **Heuristic Greedy Algorithm**
 – Quickly construct only left-deep join trees
 – Result not necessarily optimal
8.5 Greedy Strategy

• Algorithm
 – **Start** with tree containing a join pair with cheapest costs
 • Smaller relation to the left
 – **While** not all relations on tree
 • Join current tree with relation promising cheapest join costs by attaching new relation to the right side of the tree
8.5 Greedy Strategy

• Find “good” join order restricted to left-deep join trees
• 4 Relations
 – **R** with attributes *a* and *b*
 – **S** with attributes *b* and *c*
 – **T** with attributes *c* and *d*
 – **U** with attributes *d* and *a*
 – Each relation has size of 1000
 – Following Table: $\#dV(\text{Relation, attribute})$
 • Number of distinct values for attributes and values

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.5 Greedy Strategy

- Start with $T \bowtie U$ promising the smallest result
 - Cost 1000
- Consider $(T \bowtie U) \bowtie R$ and $(T \bowtie U) \bowtie S$
 - $(T \bowtie U) \bowtie S$ better with costs 2000
- Join in R
 - Result $((T \bowtie U) \bowtie S) \bowtie R$ with costs 3000

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
The algorithms so far have some drawbacks:

- DP algorithms are optimal, but very heavy weight
 - Especially memory consumption is high
- Greedy heuristics are still only heuristics
 - Will probably not find the optimal solution
 - Both find a solution only after the complete search

Sometimes a light-weight algorithm is needed

- Low memory consumption
- Can stop when time runs out and still has a result
- Usually finds a good solution
8.6 Motivation

• Solutions to the join order problems can be seen as **points in a solution space**
 – Connect these points by a set of edges **transforming** the solutions into each other
 – Edges are called **moves**

• Randomized algorithms perform a **random walk** through the solution space along the edges
 – Random walk moves into the direction of better solutions
 – The walk can be stopped at any time, or if a (local) minimum is reached
8.6 Typical Moves

• If the search is restricted to **left-deep plans only**, the solutions are simple sequences of the relations R_1, \ldots, R_n

• Sequences can be transformed into each other by **two different moves**

 – **Swap**: exchange the positions of two arbitrary positions in the sequence

 – **3Cycle**: cyclic rotations of three arbitrary positions in the sequence
8.6 Typical Moves

- If also **bushy trees** are considered, add four additional moves:
 - **Commutativity**
 - **Associativity**
8.6 Typical Moves

- Left Join Exchange

- Right Join Exchange
8.6 Randomized Algorithms

• Typical algorithms are
 – Iterative Improvement
 – Simulated Annealing

• Each of these algorithms can return some result at all times, but can improve them with more time
 – i.e. optimize until a good enough solution is reached and stop
 – Either stop after a certain time span, or once a local minimum is detected
8.6 Iterative Improvement

• The set of solutions will **not contain** only a single global cost minimum reachable via all paths
 - But local minima are often sufficient
 - Remember: The optimizer does not need the optimal plan, but has to avoid crappy ones

• **Simple hill climbing** would
 - Start at some random point
 - Determine the neighboring node with smallest costs
 - Carry out the respective move
 - Until no smaller neighbor can be found
8.6 Iterative Improvement

• But finding the minimum cost of all possible neighbors is expensive

• **Iterative improvement**
 – Starts at some random point
 – Randomly applies a move
 – Checks whether the new solution is less costly
 • If yes, start new iteration from current solution
 • If no, undo last move and start new iteration
 – If no better move is found for several iterations, the solution is considered a local minimum; algorithm stops
• Iterative improvement performs a random walk through the solution space by taking every possible improvement
 – Quite efficient procedure
 – Constant improvement during the walk
 – No possibility to leave local minima, even if there is a global minimum near
 • Local minima may still have high cost
8.6 Simulated Annealing

- Simulated annealing is a refinement of iterative improvement
 - Moves do not always have to result in lower costs
 - Simulated annealing does not get caught in local minima so easily
8.6 Simulated Annealing

- The algorithm simulates the **natural annealing process** of crystals
 - simply stated: first **heating** and then **slowly cooling** a liquid will result in **crystallization**
 - One large crystal is of lower energy than several smaller ones combined
 - The system eventually reaches a state of minimum energy
 - The slower the cool down, the lower the final energy
8.6 Simulated Annealing

• Basic algorithm with cost function c
 – Start with a random tree and a high temperature
 – Apply a random move
 – Proceed with the new solution, if it is less expensive
 – Proceed with the new solution anyway with a probability of
 $$\frac{\left(\frac{c(\text{newsolution}) - c(\text{oldsolution})}{\text{temperature}}\right)}{e}$$
 – Reduce temperature and apply new random move until an equilibrium is reached or the temperature is at freezing point
8.6 Simulated Annealing

• It is very hard to determine the best parameters
 – Starting temperature, temperature reduction, stopping condition, etc.

• Often a two-phase version is used
 – Do iterative improvements for several random solutions
 – Use the least expensive result solution for a simulated annealing process
 • Since the initial solution is already better, the process can start with a lower temperature
If the solution space cannot be enumerated, **randomized algorithms** are generally most appropriate

- If **good solutions** are of primary importance use simulated annealing
- If **short optimization times** are of primary importance use iterative improvement
- Results for both are **far better** than in the heuristic case
8.6 Randomized Trees

• Problem: **How to generate a random join tree?**

• Generating a Random Join Tree has two phases
 – Generate a random **tree shape**
 – Generate a random **relation assignment** to the shape
• **Easiest Case:** Generate a Random Deep-Left Tree for \(n \) relations

 – Deep-Left Tree has only one shape
 – Relations can be assigned in any order (permutation) to the shape
 – Need to find a random permutation of the \(n \) relations
8.6 Randomized Trees

• Generating a real random permutation efficiently is tricky
 – We use a technique named **Ranking/Unranking**

Let S be a set with n elements.
• a bijective mapping \(f : S \rightarrow [0, n[\) is called **ranking**
• a bijective mapping \(f : [0, n[\rightarrow S \) is called **unranking**

– Consider S as being the set of all permutations of relations
– Given an **unranking function**, we can generate random elements in S by generating a random number in \([0, n[\) and unranking this number.
 • Challenge: making unranking fast.
• An efficient **unranking** for permutations
 – Unranking between integers \([0,n!]\) and permutations
 • Based on factoradic numbers
 – Array *elements* contains relations \([R_1, R_2, R_3, \ldots, R_n]\)
 – Algorithm returns the *k*'s permutation of *s*

```plaintext
function permutation(k, elements) {
    for j= 2 to length(elements) {
        k:= k/ (j-1);  // integer division
        swap elements[(k mod j)+ 1] with elements[j]; }
    return elements; }
```
8.6 Randomized Trees

Example: 4 Elements

\[
\begin{align*}
\text{k} = 0: & \quad \text{swap 1 with 2} \quad [2, 1, 3, 4] \\
& \quad \text{swap 1 with 3} \quad [3, 1, 2, 4] \\
& \quad \text{swap 1 with 4} \quad [4, 1, 2, 3] \\
\text{k} = 1: & \quad \text{swap 2 with 2} \quad [1, 2, 3, 4] \\
& \quad \text{swap 1 with 3} \quad [3, 2, 1, 4] \\
& \quad \text{swap 1 with 4} \quad [4, 2, 1, 3] \\
\text{k} = 2: & \quad \text{swap 1 with 2} \quad [2, 1, 3, 4] \\
& \quad \text{swap 2 with 3} \quad [2, 3, 1, 4] \\
& \quad \text{swap 1 with 4} \quad [4, 3, 1, 2] \\
\end{align*}
\]
8.6 Randomized Trees

• **More Difficult Case:** Generate arbitrarily shaped Random Trees for n relations

 – Generate a random shape
 • To be done..

 – Assign a random permutation of relations to the shape
 • Learned already
8.6 Randomized Trees

• How to generate a random tree shape?
 – Generating random trees is tricky

• Usually, not the tree itself is generated but an equivalent code word
 – Example: Dyck words (words of balanced number of characters, usually parenthesis)
 • e.g. (), (()), (()()), (()(()())), …
 • There is an bijection between all Dyck words and all binary trees
8.6 Randomized Trees

- **Encoding Binary Tree with Dyck Words**
 - Traverse the tree in Pre-Order
 - Pre-Order
 - Visit node
 - Traverse left subtree
 - Traverse right subtree
 - Skip last leaf node
 - For each encountered **inner node**, write a ‘(‘
 - For each encountered **leaf node** write a ‘)’
 - For binary Dyck Representation, replace ‘(‘ with ‘1’ and ‘)’ with ‘0’
 - so called Zaks sequence

((()))() = 11010010
8.6 Randomized Trees

- Dyck words can be mapped to a triangle grid
 - Start at \((0,0)\); end at \((2n,0)\)
 - For each digit move one hop to the right, move up for 1 and down for 0

 \[C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} \]

\[(((()))()) = 11010010 \]
• Unranking Binary Trees
 – We try to create an unranking function for binary trees
 • Translates an integer number to a tree
 – i.e. generate a Zaks/Dyck sequence word from an integer
 – A tree with \(n+1 \) leafs has \(n \) inner nodes
 • For each relation in the join tree, one leaf is needed
 • We need Dyck words of the length \(2n \) for \(n+1 \) relations
 – In the following: sketch of the canonical version
8.6 Randomized Trees

• For unranking, we work on a **triangle grid**
 – Number of possible paths from (0,0) to any position in the grid
 - $p(i, j) = \frac{j+1}{i+1} \left(\frac{i+1}{2(i+j)+1} \right)$
 – so called **Ballot number**
 – Number of possible paths from any position to (2n,0)
 - $q(i, j) = p(2n-i, j)$

• **Algorithm Sketch** (without proofs and derivation...)
 – Work on a triangle grid
 – Generate random tree rank r from $[0, C(n)]$
 - Maximum number of possible trees (again) expressed by Catalan numbers
 – Start on (0,0)
While **number of paths** from current point to \((2n, 0)\) exceeds rank \(r\) (i.e. \(q(i,j) - q(i-1,j+1) > r\)), or baseline \((x, 0)\) is reached

move a step **top-right**

1. i.e. go from \((i,j)\) to \((i+1, j+1)\)
2. Write an ‘(‘ or ‘1’ for each upward movement

Otherwise

1. Write an ‘)’ or ‘0’, move to the **lower-right**
 1. i.e. go from \((i,j)\) to \((i+1, j-1)\)
2. **Subtract** number of paths of the overlaying coordinate (i.e. the one which we had reached if we had gone top-right) from the **rank** and **resume** moving top-right
 1. i.e. if we just went from \((i,j)\) to \((i+1, j-1)\), subtract number of paths from \((i+1, j+1)\)

Stop when \((2n, 0)\) is reached
8.6 Randomized Trees

• Example: \(n=4 \) (join trees for 5 relations)
 – \(C(4) = 14 \)
 – Generate random rank in \([0,14]\)
 • e.g. \(r=12 \)

![Diagram showing randomized trees](image)
8.6 Randomized Trees

- Start at (0,0), \(r=12 \)
- Number of Paths at (0,0): 14
 - We are at the baseline, so Move up

Result:
Position (1,1), rank r=12

Number of Paths at (1,1): 14

- $q(1,1) - q(0,2) = 14 - 5 \leq r \Rightarrow \text{Move down}$
- Subtract $q(2,2)=9$ from rank $r \Rightarrow r:=3$

Result:

$\begin{pmatrix}
1 \\
4
\end{pmatrix}$
8.6 Randomized Trees

- Position (0,2), rank $r=3$
- **Number of Paths at (0,2): 5**
 - We are at the baseline, so Move up

![Diagram showing randomized trees with positions and numbers of paths]
8.6 Randomized Trees

- Position (3,1), rank $r=3$
- Number of Paths at (3,1): 5
 - $q(3,1) - q(0,4) = 5 - 2 \leq r \Rightarrow$ Move down
 - Subtract $q(4,2)=3$ from rank r; $r:=0$

Result:

```
(1)(101)
```
8.6 Randomized Trees

- Position (4,0), rank $r=0$
- Number of Paths at (4,0): 2
 - We are at the baseline, so Move up

\[
\begin{array}{ccccccc}
 & & & & & & 8 \\
 & & & & & 7 & \\
 & & & & 6 & & \\
 & & & 5 & & & \\
 & & 4 & & & & \\
 & 3 & & & & & \\
2 & & & & & & \\
1 & & & & & & \\
\end{array}
\]

Result: (\()\(\)

1010
8.6 Randomized Trees

- Position (5,1), rank \(r=0 \)
- Number of Paths at (5,1): 2
 - \(q(5,1) - q(0,6) = 2 - 1 > r \Rightarrow \text{Move Up} \)

\[\text{Result: } ()()()\]

\[\text{10101} \]
– Position (6,2), rank $r=0$
– Number of Paths at (6,2): 0

\[q(6,2) - q(7,1) = 0 - 0 \leq r \Rightarrow \text{Move down} \]
8.6 Randomized Trees

- Position \((7,1)\), rank \(r=0\)
- Number of Paths at \((7,1)\): 0

 • Just one way possible ⇒ Move down

Result:
(()(()))
1010110
8.6 Randomized Trees

- Reached end point \((8, 0)\)

Result:

\(\text{(}()\text{(})\text{(})\text{)}\)

\(10101101\)
8.6 Randomized Trees

- In General:
 - **Red**: Number of possible paths $q(i,j)$
 - **Green**: Interval of remainder ranks that choose the annotated path
• Canonical unranking performs badly
 – Generating and working with Catalan numbers is expensive
 • $C(5000)$ has already 2000 digits…

• We need algorithms which work in space/time complexity of $O(n)$
 – Generate Dyck words/Zaks sequences directly without Catalan numbers
 – There are already such wonderful algorithms
 • Arnold and Sleep Algorithm
 • Atkinson and Sack Algorithm
 • Martin and Orr Algorithm
 • Johnson and Zergling Algorithm
 • …
Basic database transactions
The ACID principle
Transaction schedules
Conflict serializability
Locking schedulers