
 Exploiting Perceptual Similarity:

Privacy-Preserving Cooperative Query Personalization

Christoph Lofi, Christian Nieke
Technische Universität Braunschweig

Mühlenpfordtstr. 23, 38114 Braunschweig, Germany

{lofi, nieke}@ifis.cs.tu-bs.de

Abstract: In this paper, we introduce privacy-preserving query personalization

for experience items like movies, music, games or books. While these items are ra-

ther common, describing them with semantically meaningful attribute values is chal-

lenging, thus hindering traditional database query personalization. This often leads

to the use of recommender systems, which, however, have several drawbacks as for

example high barriers for new users joining the system, the inability to process dy-

namic queries, and severe privacy concerns due to requiring extensive long-term

user profiles. We propose an alternative approach, representing experience items in

a perceptual space using high-dimensional and semantically rich features. In order

to query this space, we provide query-by-example personalization relying on the

perceived similarity between items, and learn a user’s current preferences with re-

spect to the query on the fly. Furthermore, for query execution, our approach ad-

dresses privacy issues of recommender systems as we do not require user profiles

for queries, do not leak any personal information during interaction, and allow users

to stay anonymous while querying. In this paper, we provide the foundations of such

a system and then extensively discuss and evaluate the performance of our approach

under different assumptions. Also, suitable optimizations and modifications to en-

sure scalability on current hardware are presented.

(Keywords: Personalized Query Processing, Privacy in Information Systems)

1 Introduction

Effective personalization techniques have grown to be an integral and indispensable

part of current information systems, and are essential to support users when faced with a

flood of different choices. Here, two major approaches are common: a) Using SQL-style

personalized queries on meta-data, which unfortunately require users to have extensive

domain knowledge in order to formulate precise and efficient queries. Additionally, SQL-

style queries are difficult for the large domain of experience items like movies, books, or

music, as the commonly available meta-data is often not describing the items in a suitable

fashion (e.g. if they are suspenseful, funny, or romantic.) b) Adapting recommender sys-

tems which proactively suggest items to users based on their user profile, and which be-

came particularly popular in systems like Amazon or Netflix [1]: While many recom-

mender systems provide recommendations of high quality [2], they have several short-

comings. Especially, for each user an elaborate user model needs to be built and stored,

requiring up to hundreds of ratings until a user can get meaningful recommendations. This

creates a high barrier for new users to join the system. But more severely, this user model

contains exhaustive personal information on a user’s preferences, her reaction to different

items, or her general likes and dislikes. In order to query or use the system, this information

must be clearly associated with the respective user and needs to be stored long-term. Such

profiles are highly valuable, and can easily be commercialized, abused, or even stolen.

This situation raises many privacy concerns, and repels privacy-conscious users.

In this paper, we therefore present an alternative approach combining advantages of

both recommender systems and SQL-based database personalization techniques, while at

the same time avoiding many of the associated privacy risks. We realize this with privacy-

preserving query-by-example personalization, which allows users to query for items fit-

ting their current preferences easily without providing explicit feedback on attributes or

their values. In order to obtain meaningful attribute values for each database object, we

rely on perceptual spaces [3] which encode the implicitly perceived properties of each

item, allowing to measure the consensually perceived similarity between given items. Sim-

ilar to recommender systems, this perceptual information is mined from user-item ratings.

However, we avoid the drawbacks of recommender systems: no user profiles are necessary

to query the system, allowing situative, personalized, and anonymous ad-hoc queries.

In summary, our contributions in this paper are as follows:

 We present privacy-preserving queries for experience products using example-based

queries on perceptual spaces. Our query-centered personalization is based on an adap-

tion of Bayesian navigation.

 We discuss the advantages of our approach over SQL-style-based personalization and

recommender systems focusing specifically on privacy concerns and ease-of-use

 We address the performance and scalability issues resulting from adapting Bayesian

Navigation with significant improvements to the query execution process

 We evaluate the effectiveness of our approach in an extensive user study

 We evaluate the effects of our proposed algorithmic optimizations on the system’s

performance, scalability and result quality, and show that our approach can indeed be

scaled to satisfy the demands of modern information systems.

2 Foundations & System Design

Experience products like movies, games, but also restaurants or hotels are items which

are mostly characterized by non-hard attributes, i.e. they are subjectively experienced by

their consumers and it is hard to find explicit attributes describing this resulting experience

properly (e.g., a movie is considered humorous in a dry sense, as opposed to slapstick).

Our approach is intended to allow users to easily explore a database with experience prod-

ucts by using personalized and privacy preserving query-by-example (QBE) navigation in

order to avoid directly interacting with attribute values.

The intended semantics of our approach are complementary to both SQL-style person-

alization as well as to recommender systems: SQL-style personalization offers powerful

queries using the usually available meta-data (like actors or genres for movies) and is suit-

able for users who know exactly what they are looking for (i.e. users need good domain

knowledge and must be able to formalize a precise query). SQL queries will provide exact

results and do not require any form of user profiling. In contrast to that, recommender

systems or cross-selling systems focus on the case that a user does not know what she is

looking for, and the system proactively presents suitable database items. In order to realize

this, these systems need to “get to know” each user, i.e. they need to learn each user’s

likes, and dislikes. A scenario where a group of friends spontaneously decides to watch a

movie would require to create an account for the group and vote on up to hundreds of

movies, while our system allows to create a temporary profile on-the-fly while browsing.

Additionally, the information aggregated in permanent user profiles can become very ex-

tensive and poses a serious threat to privacy. Furthermore, systems run into the risk of

over-personalization by recommending only those items the system believes a user will

like, which in turn makes it more likely that users consume and provide feedback only on

similar items, locking them tightly into a “filter bubble” [4].

Our approach is in the middle-ground between both: the user poses a simple query by

giving a vague example of what she is looking for, and can navigate through items selected

and displayed due to their perceptual similarity to the example, by simply pointing out

good suggestions in the display. It adopts a browsing behavior similar to physical book or

video stores with “I know what I am looking for when I see it”-semantics. No direct inter-

action with attribute values is necessary. This type of query occurs quite often naturally,

i.e. “There is a movie which I found interesting (because I liked it, or it was interesting in

a way, or me and my friend both liked it, etc.), and now I am interested in more like that”.

Accordingly, two major challenges are discussed in this paper: a) How can experience

items be represented in a high-dimensional feature space such that meaningful similarity

measurements and QBE navigation are possible? b) How can we personalize an example-

based query in such a way that it respects the user’s feedback actions and privacy?

Most popular QBE approaches in multimedia databases tried to operate on features ex-

tracted from the actual multimedia file itself, which could be low-level features (e.g. color

histograms or pattern-based features), or so-called high-level features as for example in

scene composition [5] or content-based semantic features [6] (e.g., presence of explosions

or a flag, etc.). Here, our approach takes a completely different route, as our features result

from external user ratings instead of being extracted from the media. Such information has

been shown to be very informative, and semantically more meaningful to users than tra-

ditional meta data as, e.g. information about the director or actors (as shown in e.g. [7] for

Figure 1. Basic System Design Figure 2. Screenshot of Prototype

2nd display after user provided “The Terminator

(1984)” as start example

Offline – System Setup

Interactive

Bayesian

User

Modelling

User Ratings

I⨯U⨯S I⨯ℝd

Construct

Perceptual Space

Item-User Scores Perceptual Space

(Item-Feature Vector)

Online – Query Execution

Disposable User Model 1

I⨯P

User 1

Disposable User Model 2

I⨯P

User 2

Personalized Result

Personalized Result

(Item – Personalized Probability)

movies). In this paper, we demonstrate how such semantically rich rating data can repre-

sent each item of an experience product database within a high-dimensional feature space.

The idea is that the resulting space implicitly encodes how users perceived a movie, e.g.,

if it was funny, or if certain plot elements or tropes were present. For this task, we adapt

perceptual spaces. Perceptual spaces have been introduced in [3], and are built on the

basic assumption that each user who provides ratings on items has certain personal inter-

ests, likes, and dislikes, which steer and influence her rating behavior [8]. The resulting

general system design of our approach is shown in Figure 1: in an offline system initializa-

tion phase, a large number of user ratings is processed into a perceptual space, and then

our adapted Bayesian Navigation approach is used to personalize user queries by eliciting

short term user profiles which are discarded after the query.

2.1 Personalization and Privacy

Privacy concerns severely impact a user’s overall satisfaction with a Web-based system

(as argued in [9]), and might even prevent them from using it altogether, if the balance

between privacy concerns and perceived system utility becomes unfavorable. The focus

of our system in terms of privacy is to allow all users to use the personalized query capa-

bilities without requiring a user profile or pre-query preference elicitation. Especially, this

means that browsing or querying our system requires no long term user profiles (unlike

recommender systems), but only temporary query profiles, thus removing the need to store

and protect this sensitive information. A single query profile will usually not be enough to

extract a sufficiently distinctive pattern to identify a user, as it is not connected to other

profiles (or a user id) and is only of the form: “an (anonymous) user wanted to start his

query with ‘The Terminator’, and then selected ‘Conan’ out of a small set of movies pro-

posed by the system” – it provides little insight into the wider preferences of a user.

But still, our system will require a small group of enthusiast users to provide identifiable

rating data in order to construct the perceptual space. However, this construction process

is completely decoupled from executing queries, and the perceptual space itself does not

contain any user related information, not even in an anonymized or masked form. Even

just the number of users that participated in its creation are not included. It is basically just

a matrix of movie ids and their major perceptual dimensions (n=100 in our case). There-

fore, approaches de-anonymizing ratings similar to the ones detailed in [10] cannot be

applied. This fact could also allow a “trusted platform” like MovieLens to use its users’

ratings to construct a perceptual space, which then could be used by another system like

ours. In contrast to publishing anonymized rating data, publishing a perceptual space car-

ries only minimal risks to the user’s privacy. But in any case, even if users did decide to

contribute ratings to build the space, all users can use the query capabilities of our system

without leaving trails of personal information in an ad-hoc fashion.

2.2 Related Work

Content-based retrieval [11] and Query-by-example-based approaches [12, 13] have

been very popular during the late 90s in the context of multi-media databases. The para-

digm’s main selling point is that querying high-dimensional data becomes very simple as

it only requires the user to give a starting example and some easy-to-elicit feedback. How-

ever, QBE became less popular in recent years as, according to [14], the features used

were often unsufficient, as discussed before. Also the Bayesian Retrieval approach [15]

adapted to our system was originally designed to work on image color histograms. Here,

our approach takes a completely different route, as our feature space results from the re-

actions of users after consuming the media instead of being extracted from the media itself.

Feature spaces constructed from ratings, like our perceptual space [3], have also been ex-

plored, as for example in [16]. However, in contrast to these works, we complement such

feature spaces with personalized query capabilities, and discuss and address the design

issues resulting from integrating such an approach into an information system. Approaches

based on different flavors of Bayesian modeling have also been employed in recommender

systems. In [17], users rate a small set of movie trailers in order to generate a user mood

profile using Bayesian modeling, which later is integrated into a long-term user profile.

However, they do not offer QBE functionality.

Approaches for privacy preservation in recommender systems mostly focus on the pro-

tection of the potentially vulnerable rating data. Here, many different approaches have

been developed to either anonymize or encrypt the rating data to protect it from misuse by

either the recommender platform itself, or from malicious attacks by 3rd parties. In most

of these solutions, there is an inherent trade-off between privacy, accuracy, and efficiency

[18]. For example in [19], user data is perturbed by adding fixed-distribution random val-

ues to each user rating, therefore hindering subsequent user identification, but also de-

creasing the quality of recommendations. A similar notion is followed by differentially-

private recommender systems like [20], which add noise to the item similarity matrix in

order to obfuscate the ratings originally provided.

2.3 Perceptual Spaces

Perceptual spaces have been introduced and formalized in [3], we therefore only briefly

summarize the most relevant aspects in this section. Perceptual Spaces exploit the bias of

users when rating items, which is influenced by personal likes and dislikes towards prop-

erties of the rated item. They heavily rely on factor models, a technique popular in recom-

mender systems research [2]. Factor models have originally been developed to estimate

the value of non-observed ratings for the purpose of recommending new (yet unrated)

items to existing users, but can also be beneficial beyond recommendation tasks [21]. We

assume that a perceptional space is a d-dimensional space as follows: each user and each

item is represented as a d-dimensional numeric vector. The vector of a user represents her

personality, i.e., the degree by which she likes or dislikes certain characteristics. Likewise,

item vectors represent the degree to which an item shows the same characteristics. Items

which are perceived similarly in some aspect have similar vectors. As we are only inter-

ested in items, user vectors are not stored and are discarded in later stages. Furthermore,

each user rating can be seen as a function of the user vector and item vector. This assump-

tion reflects established models of human preferences and is well-accepted in recom-

mender systems research [2]. All model parameters are estimated by minimizing a cost

function measuring the deviation between the actual observed ratings and those predicted

by the model. By formulating this as an optimization problem, user and item vectors can

be found that fit the given rating data best.

Formally, a large and sparse user-item-rating matrix is given, containing only rating for

around 1-2% of all user-item pairs. The goal is to find a matrix 𝐴 = (𝑎𝑚,𝑘) ∈ ℝ𝑛𝑀×𝑑 rep-

resenting movies as 𝑑-dimensional coordinates. To achieve this, we also need a helper

matrix 𝐵 = (𝑏𝑢,𝑘) ∈ ℝ𝑛𝑈×𝑑, representing user in the same space. Then, we use a factor

model representing a rating function𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ. Basically, this function can pre-

dict missing ratings given user and item vectors. We approximate this function and the

involved vectors/matrices, we use Euclidian Embedding (as in [22]), and we want the dis-

tance between a movie vector 𝑎𝑚 and user vector 𝑏𝑢 to be small if user 𝑢 likes movie 𝑚;

otherwise, it should be large. To account for general effects independent of personal pref-

erences, for each movie 𝑚 and user 𝑢, we introduce the model parameters 𝛿𝑚 and 𝛿𝑢 ,

which represent a generic movie rating bias relative to the average rating 𝜇. Then, a rating

of a movie 𝑚 by a user 𝑢 can be predicted by �̂�𝑚,𝑢 = 𝜇 + 𝛿𝑚 + 𝛿𝑢 − 𝑑𝑖𝑠𝐸
2(𝑎𝑚, 𝑏𝑢), i.e.

the average rating of all movies (e.g., 𝜇=6.2 out of 1..10) plus the user bias (e.g., 𝛿𝑢=-1.6

representing a critical user always rating worse than others) and the movie bias (e.g., an

overall good movie with an average rating of 8.4, so 𝛿𝑚=2.2). The last term, 𝑑𝑖𝑠𝐸(∙,∙),

represents the distance of the movie vector and the user vector in a 𝑑-dimensional space.

Finally, all movie vectors (and therefore the matrix 𝐴) are approximated by solving a least

squares optimization problem with all instances of the above equation for which a rating

is known (including a correction for noise). The result represents our perceptual space.

Unfortunately, the resulting features in this space are implicit and have no direct real-

world interpretation, and therefore not suitable for SQL-style queries. However, they al-

low for measuring perceived similarity effectively (i.e. the distance between the feature

vectors). This now allows using the query-by-example paradigm, which provides simple

query formulization without the need to explicitly refer to any features.

2.4 Basic Bayesian Retrieval

For approaching query-by-example personalization, we will adapt Bayesian Retrieval

as shown in e.g. [15]. Such approaches have been successfully used in multimedia data-

bases research, but have also been adapted to general database retrieval [23]. In short, our

approach aims at computing for each database object the probability of the user being

interested in it considering the feedback she has provided on a selection of items during a

cooperative preference elicitation. We will only briefly summarize the basic theory of

Bayesian retrieval and user modeling in this subsection, before highlighting the modifica-

tions necessary to adapt the model to our context in the next section, and discussing tech-

niques for improving the computational and memory performance of the approach in sec-

tion 4. From a user’s perspective the interaction style of this approach is similar to non-

personalizing similarity navigation (i.e. repeatedly navigating from one item to similar

ones), but we will show that incorporating Bayesian personalization will lead to signifi-

cantly better and quicker interaction performance, outshining similarity navigation.

Elicitation of user preferences is performed interactively over several steps. In each step

𝑡 = 1,2, …, the user will be shown a set of objects 𝐷𝑡 (the so-called display) from the

database containing our previously computed perceptual space with 𝑛𝑀 objects. The

choice of objects in 𝐷𝑡 depends on a selection strategy (discussed later), which relies on

analyzing the probability estimates for each database object representing the belief that it

is the one the user is looking for given the current interaction history. This is formalized

as follows: the database objects are denoted as 𝑂1, 𝑂2, … , 𝑂𝑛 . Each object 𝑂𝑖 is annotated

with a probability of being the user's target 𝑂. Here, the target is the best suited object in

the database to fulfill the user’s current needs, which is of course yet undefined.

After reviewing the objects, the user will provide feedback on the display’s items in

form of a user action 𝐴𝑡. In our case, this is simply selecting any items that “look right”

(similar to judging covers in a video store). The initial a priori estimate before starting the

user interaction for each object 𝑂𝑖 will be denoted as 𝑃(𝑂 = 𝑂𝑖). Again, several strategies

are viable for providing this startup distribution of the a priori estimates (discussed later).

After the interaction has started, the probabilities are updated to a posteriori estimates

respecting the current interaction history denoted as: 𝐻𝑡 = 𝐴0, 𝐷0, 𝐴1, 𝐷1, … , 𝐴𝑡, 𝐷𝑡 .

Since 𝐷𝑡 is deterministically given by the selection strategy and 𝐻𝑡−1 is known, we arrive

at the following formula (see [15] for details):

Simplified Bayesian Update: For each 𝑂𝑖 in the perceptual space:

𝑃(𝑂 = 𝑂𝑖 | 𝐻𝑡) = 𝑃(𝑂 = 𝑂𝑖| 𝐷𝑡, 𝐴𝑡, 𝐻𝑡−1) =
𝑷(𝑨𝒕 |𝑶 = 𝑶𝒊, 𝑫𝒕, 𝑯𝒕−𝟏) 𝑃(𝑂 = 𝑂𝑖 | 𝐻𝑡−1)

∑ 𝑃(𝐴𝑡| 𝑂 = 𝑂𝑗 , 𝐷𝑡, 𝐻𝑡−1) 𝑃(𝑂 = 𝑂𝑗 |𝐻𝑡−1)
𝑛𝑀

𝑗=1

.

After each user feedback, this update operation has to be performed for all items in the

perceptual space, thus forming the user model representing in which items the current user

is likely interested. This is represented in the model by all a-posteriori probabilities of all

items 𝑃(𝑂 = 𝑂𝑖 | 𝐻𝑡) with 1 ≤ 𝑖 ≤ 𝑛𝑀.

The term 𝑃(𝑂 = 𝑂𝑗|𝐻𝑡−1) can be computed recursively until the a priori approximation

given by the start distribution is reached. But the central term within the previous equita-

tion 𝑃(𝐴𝑡 | 𝑂 = 𝑂𝑖 , 𝐷𝑡 , 𝐻𝑡−1) remains difficult, i.e. the probability that the user will ac-

tually perform the current action 𝐴𝑡 given that the current database object 𝑂𝑖 is indeed the

target 𝑂 given the history 𝐻𝑡−1. This term predicts a user’s action considering all currently

known information, and is provided via a user prediction model (next section).

3 Adapting Bayesian Retrieval
For adapting Bayesian retrieval to our usage scenario, we need to create a suitable user

prediction model, startup distribution, and selection strategy.

The user prediction model provides an implementation for evaluating the term

𝑃(𝐴𝑡 | 𝑂 = 𝑂𝑖 , 𝐷𝑡 , 𝐻𝑡−1) from the previous section. This makes up the “semantic core”

of the calculation and is essential in determining whether the calculated probabilities will

actually correctly represent the users’ preferences. To allow an easy and intuitive interac-

tion with the system, we opt for item-based feedback during a user feedback cycle, mean-

ing that a user simply selects any number of items from the display 𝐷𝑡 = {𝑋1, … , 𝑋𝑛𝐷
} she

wants to use as positive examples for further personalization. 𝑛𝐷 is a system parameter

denoting how many items are shown in each display, and can be adjusted to the type of

items and display device which is used (we used 𝑛𝐷 = 9 in our Web-based prototype).

Then, following [15] we also take a soft-min approach for item-based feedback, assuming

that the user behaves time invariant (i.e. her decisions are based on her implicitly known

target object and we can drop 𝐻𝑡−1). Accordingly, the probability for each decision on

each single object 𝑋𝑎 from the display can be modeled as:

𝑃𝑠𝑜𝑓𝑡(𝐴 = 𝑎|𝑋1, … , 𝑋𝑛𝐷
, 𝑂𝑗) =

exp (−𝑑(𝑋𝑎, 𝑂𝑗))

∑ exp (−𝑑(𝑋𝑖 , 𝑂𝑗))
𝑛𝐷

𝑖=1

In this formula, 𝑑(𝑋𝑎, 𝑂𝑗) denotes the distance between item 𝑋𝑎 and the target object

𝑂𝑗 and the approach yields highest values for those items 𝑋𝑎 closest to the target 𝑂𝑗. The

quality of this approach is of course highly dependent on choosing a meaningful metric

for the distance, which corresponds to the similarity of the objects. We use the Euclidian

distance measured in the perceptual space, which is a significant contribution as it pro-

vides a semantically meaningful high-dimensional feature space for augmenting regular

database objects, and distances measured in this space represent the consensual subjective

semantic similarity between the objects elicited from a large number of users. These

measures are significantly more meaningful than similarity measured on typical meta-data

usually available in information systems [3]. Using the assumption of independent deci-

sions, a combined decision can be calculated by multiplying the probabilities of each sin-

gle decision, e.g. 𝑃𝑠𝑜𝑓𝑡(𝐴 = 1, 2) = 𝑃𝑠𝑜𝑓𝑡(𝐴 = 1) ∗ 𝑃𝑠𝑜𝑓𝑡(𝐴 = 2).

The selection strategy decides which objects are included in a display 𝐷𝑖 for each feed-

back cycle 𝑡𝑖 and is important to allow a satisfying interaction with the system. Basically,

two major approaches are possible here:

a) Most-probable strategies select objects with the highest a posteriori probabil-

ity 𝑃(𝑂 = 𝑂𝑖| 𝐻𝑡). These selection strategies tend to favor similar objects at the beginning

of the interaction, and at a first glance might resemble similarity search for the first one or

two displays. However, after few feedback cycles, this strategy will be able to cross larger

distances in the space depending on user input. But still, in its naïve form, this strategy is

prone to getting stuck in clusters repeating the same objects over and over.

b) Most-informative strategies aim at maximizing the information gain in each feedback

step [15] by diversifying the display (i.e. displaying those items which would impact the

a posteriori probabilities most). This usually leads to higher navigation speeds, and users

can traverse the space quickly with only few feedback steps.

While the most-informative strategy shows superior performance (i.e. it needs less user

interactions to find a certain target in the space), we found in our pre-study that users were

easily confused by the resulting displays, as the “long distance links” to yet untouched

areas of the space were perceived as mistakes of the algorithm (e.g. presenting the family

movie “Finding Nemo” after a user selected the action movie “The Terminator”).

We therefore opted for adapting the most-probable strategy to our needs, sacrificing

some interaction speed for increased user satisfaction. In order to avoid being caught in

local maxima or clusters, we only consider objects which have not yet been displayed to

the user, resulting in the most-probable unseen strategy.

The startup distribution defines the a-priori probability 𝑃(𝑂 = 𝑂𝑖) for each database

object 𝑂𝑖 of being the target object 𝑂 before the user starts interacting, which can alleviate

the cold start problems of the not yet personalized system. Without any additional assump-

tions, the naïve approach is a uniform startup distribution with 𝑃(𝑂 = 𝑂𝑖) = 1
𝑛⁄ for each

𝑂𝑖 ∈ {𝑂1, … , 𝑂𝑛}. Alternatively, additional information on the database objects could be

incorporated into the startup distribution as for example average user ratings or popularity

measures. In our prototype implementation, we initialized the system with a simple uni-

form startup distribution, modified by an explicit, user-provided example. For this, a single

feedback-step is transparently executed during startup (i.e. the user does not see this first

feedback step). Here, we evaluated two approaches:

Free Example: The user freely provides an example to start the query and we simulate the

first user action 𝐴0 as selecting the example from a display 𝐷0 which contains only two

items: the example and the movie in the dataset with the maximal distance to that selected

movie. Therefore, the first display the user will see is 𝐷1 which is already strongly influ-

enced by the start example.

Supported Free Example: In our pre-studies, we found that some users had a hard time

thinking of a good example for starting the query. We therefore presented a set of 12 pop-

ular example movies hand-picked from different genres, allowing the user to either pro-

vide her own example or pick one of ours. 𝐷0 is then made up of these 12 examples plus

the optional freeform example.

4 Mastering Performance Issues

For performance evaluation, we focus only on costs for executing individual user que-

ries, as the costs for maintaining the perceptual space are negligible. The perceptual space

is not impacted enough by adding single ratings to justify the effort for continuous updates.

In contrast, query performance raises several demanding issues: Bayesian retrieval as

introduced in the last sections requires storing the a posteriori probabilities for each data-

base object individually in the user model of each user. Furthermore, for each user inter-

action, all probabilities in that user’s model need to be updated, and each update of a single

probability requires considering all other probabilities. Clearly, this situation presents se-

vere challenges to scalability with respect to the number of objects in the perceptual space

𝑛𝑀, but also to the number of concurrent system users 𝑛𝑈𝐶. Both memory space for storing

the user models as well as computation time are negatively impacted. Here, the required

memory is in 𝑂(𝑛𝑈𝐶 ∗ 𝑛𝑚), while the computation effort per query is in 𝑂(𝑛𝑈𝐶 ∗ 𝑛𝑚
2). By

simply caching the denominator term in the Bayesian update formula in 2.4, the resulting

algorithm can be brought to linear complexity in 𝑂(𝑛𝑈𝐶 ∗ 𝑛𝑚).

Therefore, we introduce locality-restricted Bayesian updates in this section. While

these efforts do not improve the theoretical worst-case complexity, they drastically im-

prove the actual time and memory needed for executing a query, making our approach

feasible on currently available hardware, even for larger perceptual spaces and many con-

current users. The basic idea is to restrict the probability updates to the relevant parts of

the perceptual space, i.e. those objects that are close to those selected before. If a user

started her query with a family comedy, we can ignore horror movies unless her feedback

indicates otherwise by steering toward that direction. This allows us to extend the area

under observation slowly and in a directed fashion, without affecting semantics too much.

We implement this by introducing, for each user, the set 𝑀𝑗 for memorizing the relevant

part of that user’s user model, i.e. the objects that are close to formerly chosen objects,

which therefore have a high a posteriori probability after interaction step 𝑡𝑗. As the re-

maining objects are far from the objects that are currently considered to be likely, they

will have a low probability and can be ignored until the exploration leads to their section

of the space. The set 𝑀−1 is initialized with the example object selected by the user and

its 𝛿𝑁 nearest neighbors in the perceptual space. The parameter 𝛿𝑁 can be freely chosen

during system setup, and we will show the effects for different 𝛿𝑁’s in the evaluation sec-

tion. After each user interaction 𝑡𝑗, the previous set 𝑀𝑗−1 is expanded by adding the 𝛿𝑁

nearest neighbors in the perceptual space of each display object 𝑋 that was selected by the

user in 𝑡𝑗. As the probabilities of the newly added objects are still unknown, we will heu-

ristically assume that their probability is similar to the closest neighbor already in the set

𝑀𝑗−1 and use the known probability of this neighbor to initialize the new object.

After all new objects were added to the set 𝑀𝑗−1, the locality-restricted Bayesian update

computes the new set 𝑀𝑗 by calculating the a posteriori probabilities of each object and

their respective probabilities in 𝑀𝑗−1 similar to its original version, but ignoring all objects

not being in 𝑀𝑗−1. After that, 𝑀𝑗−1 can be discarded and we continue with the extended

set 𝑀𝑗. Locality-Restricted Bayesian Update at 𝑡𝑗:

For each Oi ∈ Mj−1: 𝑃(𝑂 = 𝑂𝑖 | 𝐻𝑡) =

𝑃(𝐴𝑡 |𝑂 = 𝑂𝑖 , 𝐷𝑡, 𝐻𝑡−1) 𝑃(𝑂 = 𝑂𝑖 | 𝐻𝑡−1)

∑ 𝑃(𝐴𝑡| 𝑂 = 𝑂𝑘 , 𝐷𝑡, 𝐻𝑡−1) 𝑃(𝑂 = 𝑂𝑘 |𝐻𝑡−1)𝑶𝒌 ∈ 𝑴𝒋−𝟏

with 𝑀−1 = {𝛿𝑁𝑁𝑁(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝐴0))} and 𝑀𝑖 = 𝑀𝑖−1 ∪ 𝛿𝑁𝑁𝑁(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝐴𝑖))

In our locality-restricted variant, the actual effort needed to store or update the user

model after each interaction is clearly reduced as the set 𝑀𝑖 is significantly smaller than

the whole perceptual space. But this also incurs a penalty on the semantics of the approach,

as relevant objects, which would have been assigned a high probability using a non-re-

stricted approach, might not yet be part of the latest set 𝑀𝑖, and are therefore ignored.

Of course finding nearest neighbors can be very expensive as well, but in our current

prototype, we simply materialize a full index of the 𝛿𝑁-nearest neighbors of each object

offline when importing a new perceptual space, which even for 100k objects is easily fea-

sible even on low-end machines. This provides us with near instant access to the nearest

neighbors independent of the size of the perceptual space.

5 Evaluations

In this section, we present extensive evaluations of our privacy-preserving query-by-

example personalization on perceptual spaces. In the first set of evaluations focusing on

usability and semantics, we use a real-life dataset with movie ratings for initializing the

perceptual space, and have real users interact with a prototype implementation. In addition

to this study, simulations focusing on performance aspects of the approach under different

assumptions and parameters were performed. Also, these simulations are run on increas-

ingly larger datasets to analyze scalability issues. We close the section with a discussion

of the results and their adaptability to other domains.

The perceptual space used in our real-word data experiment is based on the dataset

released during the Netflix Prize challenge [1], and consists of 103M ratings given by

480k users on 17k video and movie titles. This dataset is still one of the largest user-item-

rating datasets which are available to the community. All titles are from 2005 and older.

We filtered out all TV series and retained only full feature movies for our evaluation,

leaving 11,976 movies. The initial construction of the 100-dimensional space took slightly

below 2 hours on a standard notebook computer.

For simulations on synthetic data, we randomly generated spaces with 100-dimensions

and a varying amount of database items assuming an independent uniform distribution of

the attribute values. Although real perceptual spaces are usually not uniformly distributed,

our experiments comparing the real perceptual space with the uniformly generated ones

showed that the results are close enough to allow drawing some conclusions about perfor-

mance from simulations to real-world behavior (see section 5.2). Our prototype was im-

plemented in Java 7, and the perceptual space as well as all probabilities computed for the

user models were held using the H2 Main Memory DBMS. Our prototype ran on a note-

book computer with a Core-i7 at 2.4GHz and 10GB of main memory usable for Java.

5.1 User Study

Our user study was performed using the CrowdFlower.com crowdsourcing platform to

recruit participants. The users were redirected to our Web-based prototype implementation

(screenshot in Figure 2 in section 2), answered a survey afterwards, and were finally paid

for their efforts. 179 users participated, and as we allowed users to perform additional

(unpaid) interactions, this resulted in 288 completed queries. In the survey concluding the

evaluation, we asked users for feedback on a number of statements, on a scale from 1:

strongly disagree, 3: neutral, to 5: strongly agree, and we counted 4 and 5 as explicit agree-

ment and 1 and 2 as explicit disagreement. Our test users were fairly evenly distributed

over different age classes, gender, movie knowledge and experience with existing movie

subscription system like Netflix or Amazon Instant.

We asked the users to test the system in an explorative fashion with the task of deciding

on a suitable movie for an imaginative movie night in mind. We allowed them to start the

interaction with an example of their choice, but additionally supported this with displaying

a selection of 12 manually selected examples for inspiring the choice of a start example.

Users were then able to explore the movie space using Bayesian Navigation as they saw

fit, and could end the interaction whenever they felt they had seen enough.

After querying, 74% of all users explicitly claimed to have found a suitable movie, but

only 6% explicitly disagreed (the other users were neutral). However, this statement has

to be taken carefully as our users often had certain expectations of what movie they should

discover when certain examples and feedback were provided. As our dataset was restricted

to movies released in or before 2005, many users complained that they expected newer

movies in the display which were simply not part of our dataset (e.g. they expected to find

“The Hobbit (2012)” when providing “The Lord of the Rings 1 (2001)” as a start example).

To assess the semantic quality of each feedback cycle’s display, we asked our test users

if the screens presented by the system were a good fit for the feedback they had given, and

got 60% explicit agreement and only 12% explicit disagreement to this statement. While

this does not allow to quantify how close our displays and query results are to the “best

possible ones”, it shows that users felt that they were “good enough”.

When asked if they prefer our approach over the regular query approaches as used by

e.g. Amazon Instant or Netflix (recommendations with SQL-style querying and most-pop-

ular-in-category lists), 54% of all participants stated that they explicitly prefer our ap-

proach, while only 9% explicitly disagreed. However, when being asked whether they

think if this approach is a valuable addition to current state-of-the-art interaction para-

digms, the explicit agreement increased to 73% of all users, while only 9% think our ap-

proach is not a useful extension. This result underlines our notion that personalized exam-

ple-based queries are a very valuable addition to SQL-style filtering, categorization, and

recommender systems, but of course are not a full-fledged replacement. SQL-style queries

cover the case where a user knows exactly what she is looking for, while recommender

systems proactively recommend an item, often even without a query. Our approach is in

the middle ground, where users have some intuition about their preferences, but still can-

not precisely formulate them as required for an SQL query.

5.2 Performance Simulation

In this section, we evaluate our approach using simulated user interactions on the Net-

flix perceptual space and on different artificially created ones. As it is rather hard to eval-

uate the semantic usefulness of an explorative query paradigm in simulations, the main

purpose of this section is to showcase the impact of different factors on the systems per-

formance. Especially, we are interested in the scalability of our approach and the impact

of our proposed heuristic on memory and CPU consumption to show the expected runtime

performance when applied to big datasets.

Therefore, as natural browsing behavior is hard to model, we chose a similar approach

as in [23]. In this type of simulation, a particular movie has to be found as quickly as

possible, starting from the initial example. While this setting does not represent a typical

user’s behavior, in addition to assessing performance and scalability, this setup is also able

to provide some insight into the speed in which the space could theoretically be traversed.

In order to perform the experiments, we randomly select a movie from the database to

be a user’s target movie, i.e. the intended perfect match for the user’s current preferences

which has to be found. The simulation algorithm then picks the best choice of a given

feedback display, which is the movie with the smallest distance to the target in the percep-

tual space, and continues until the target appears in the feedback display. The simulation

only had a limited set of start example movies to choose from, depending on the experi-

ment either the 12 handpicked movies we used for our supported free example startup

when using the Netflix perceptual space, or the 12 centroid objects of the clusters resulting

from a k-means-clustering of the artificial spaces. For all experimental results presented

in the following, we performed at least 1,000 independent simulation runs.

To assess the effectiveness of our approach in this simulation setting, we measured how

many displays (with 9 choices each) a simulated user needed to asses before finding the

target. In Figure 3 we show this for the Netflix perceptual space, and a uniformly generated

one of the same size, each with locality-restricted updates with varying 𝛿𝑁 and an unre-

stricted version. Furthermore, we included an approach based only on similarity search

without Bayesian modeling, i.e. a user provides a start example and is shown a display of

the 9 yet-unseen nearest neighbors in the perceptual space, selects one, and obtains a new

display with that movie’s yet-unseen closets neighbors. Here, we can see that Bayesian

retrieval approaches outperform similarity search, as they need significantly less displays,

Figure 3. Simulated Query Runtimes for 𝒏𝒎 = 𝟏𝟏, 𝟗𝟕𝟔
in number of displays that needed feedback to reach a randomly selected target

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Si

m
ila

ri
ty

δ
N

=
5

0

δ
N

=
1

0
0

δ
N

=
2

0
0

δ
N

=
5

0
0

δ
N

=
1

0
0

0

δ
N

=
2

0
0

0

U
n

re
st

ri
ct

e
d

Si
m

ila
ri

ty

δ
N

=
5

0

δ
N

=
1

0
0

δ
N

=
2

0
0

δ
N

=
5

0
0

δ
N

=
1

0
0

0

δ
N

=
2

0
0

0

U
n

re
st

ri
ct

e
d

Perceptial Space Uniform Space

40+

31-40

21-30

11-20

0-10

while the locality restricted Bayesian update deteriorates towards similarity search for very

small 𝛿𝑁 and converges towards unrestricted Bayesian retrieval for sufficiently large 𝛿𝑁.

For 𝛿𝑁 = 1,000 the target is found after 10.7 displays on average in the perceptual

space, while additional experiments using a uniform space with 100k items resulted in a

slightly higher average of 17.7 displays. The parameter 𝛿𝑁 affects the uniform space more

strongly than a real perceptual space, but it can be seen that the general behavior of the

algorithm in a perceptual space can roughly be approximated by the uniform space. Espe-

cially for values of 𝛿𝑁 = 500 the observed query behavior is similar; therefore we use this

value when evaluating the scalability of our algorithm in the next experiments.

Figure 4 shows the memory usage of our locally restricted Bayesian update approach

for storing the final user model after a query found its intended target for increasing dataset

sizes. It can clearly be seen that the locality restriction scales favorably: the user model

requires only about 16% the size of the unrestricted approach for the uniform dataset with

11,976 items (the size of the original perceptual space) while for the larger space contain-

ing 100k items, this percentage even decreases down to 6%.

In Figure 5, we investigate the average time needed per single locality-restricted update

operation on a large synthetic perceptual space with 100k objects. Using larger 𝛿𝑁 unsur-

prisingly increases the updates times, which can become higher than the time needed for

unrestricted updates when using very high values of 𝛿𝑁 (but still, all times are well below

0.5 seconds which is perfectly fine for Web applications). However, for 𝛿𝑁 = 1,500 which

provides semantically very similar results to the unrestricted approach, there is still a com-

putation time advantage of 138ms. Also, the number of items to be held in each user model

increases with 𝛿𝑁 (see Figure 6). However, here it can clearly be seen that locality re-

striction significantly affects the amount of memory needed, and even for 𝛿𝑁 = 2,000,

only 11.7% of the memory required by the unrestricted variant is consumed.

5.3 Adapting to different domains

While we used movies as a running example to demonstrate our system design, our

approach can be adapted to any experience product which is frequently consumed and

rated. Unfortunately, the free availability of user-item-rating information is limited, espe-

cially after the scandals following the release of the Netflix dataset (which is still the most

Figure 4. Memory for

User Profiles
y: #1000 items stored; x: size 𝑛𝑀

Figure 5. Time per Update

with 𝑛𝑀 = 100𝑘
y: time in sec

Figure 6. Memory for User Pro-

files 𝑛𝑀 = 100𝑘
y: #1000 items stored

0

10

20

30

40

50

60

70

80

90

100

Unrestricted

δN=500

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0

10

20

30

40

50

60

70

80

90

100

Th
o
u
sa
n
d
s

extensive dataset up to now). Therefore, we resorted to rating data crawled from the Web

in 2012 [3] to show the applicability in other domains. The first data set contains restaurant

ratings in the San Francisco area obtained from yelp.com (3,811 restaurants; 128,486 us-

ers; 626,038 ratings). It is only a small item set with a large but rather inactive user base

(i.e. only few ratings per user). In contrast, the second dataset consists of ratings of board

games from boardgamesgeek.com (32,337 games; 73,705 users; 3,536,455 ratings). Here,

a rather small user base is a highly active, rating a large number of items each.

For both datasets, we performed simulations similar to those described in the last sub-

section and found that the yelp.com data set could be traversed in 8.5 screens on average,

while the board games data set needed 11.1 screens on average. No further user studies

have been performed so far, as users recruited from crowd sourcing platform most likely

lack the domain knowledge to evaluate a system using such data, but real user experiments

with these datasets will be part of future works. While we currently do not provide exper-

imentally supported insight into the resulting user experience, we can claim that the adap-

tation to different domains is at least technically possible and the results are comparable

to movies for the simulations.

6 Summary & Discussion

In this paper, we demonstrated privacy-preserving query personalization using Bayes-

ian query-by-example techniques on perceptual spaces. This allows users to query an in-

formation system with experience products in an anonymous and ad-hoc fashion, not re-

quiring profiling or explicit preference elicitation. Our system is in the middle ground

between SQL-style queries, which need the user to be able to formulize a precise query,

and recommender systems which proactively suggest items to users. It allows explorative

queries with “I know what I am looking for when I see it” semantics, which also helps

users to break out from the “filter bubble” created by recommender systems.

We have shown how to build such a system, and how perceptual spaces can be com-

bined with, and adapted to our proposed Bayesian query-by-example framework. Further-

more, we demonstrated how the resulting performance and scalability issues can be over-

come by introducing locality-restricted Bayesian updates which provide tremendous ad-

vantages in terms of memory consumption, and saves a significant amount of computation

time. Finally, in our extensive evaluations we have presented a user study with over 175

participants, and obtained their opinion on the effectiveness of the system. Furthermore,

we have performed several experiments using simulations on synthetic data, and showed

that the approach is indeed scalable and adaptable even on lower-end hardware like a lap-

top.

While we achieved semantically meaningful and simple to formulate queries without

requiring user profiling during the query process, our current approach still relies on ag-

gregating user-item-ratings from a group of enthusiast users to construct the perceptual

space, which still carries certain privacy concerns. One of the future directions of research

is hence the development of representations of experience items which are similarly ex-

pressive as perceptual spaces, but can be constructed using data not exhibiting any privacy

concerns, like for example using Linked Open Data sources or anonymized product re-

views. Furthermore, while system usability is already quite good as is, it could be further

improved by explaining the system behavior to users. This especially covers describing

why the presented items are a good match to the query, e.g., “The items shown have been

selected because they have settings similar to movie X, but share the humor of movie Y –

and you used both movies as positive examples”.

References
1. Bell, R.M., Koren, Y., Volinsky, C.: All together now: A perspective on the Netflix Price.

CHANCE. 23, 24–24 (2010).

2. Koren, Y., Bell, R.: Advances in Collaborative Filtering. Recommender Systems

Handbook. pp. 145–186 (2011).

3. Selke, J., Lofi, C., Balke, W.-T.: Pushing the Boundaries of Crowd-Enabled Databases

with Query-Driven Schema Expansion. Proc. VLDB. 5, 538–549 (2012).

4. Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin Books

(2011).

5. Sundaram, H., Chang, S.-F.: Computable scenes and structures in films. IEEE Trans.

Multimed. 4, 482–491 (2002).

6. Neo, S.-Y., Zhao, J., Kan, M.-Y., Chua, T.-S.: Video Retrieval Using High Level

Features: Exploiting Query Matching and Confidence-Based Weighting. Lect. Notes

Comput. Sci. 4071, 143–152 (2006).

7. Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable

than metadata. ACM Conf. on Recom. Systems (RecSys). , New York, USA (2009).

8. Kahneman, D., Tversky, A.: Psychology of Preferences. Sci. Am. 246, 160–173 (1982).

9. Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the

user experience of recommender systems. UMUAI. 22, 441–504 (2012).

10. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse Dataset. IEEE

Symposium on Security and Privacy. , Oakland, USA (2008).

11. Yoshitaka, A., Lchikawa, T.: A survey on content-based retrieval for multimedia

databases. IEEE Trans. Knowl. Data Eng. 11, (1999).

12. Kato, T., Kurita, T., Otsu, N., Hirata, K.: A sketch retrieval method for full color image

database-query by visual example. Pattern Recognit. (1992).

13. Niblack, C.W., Barber, R., Equitz, W., Flickner, M.D., Taubin, E.H.G.D.P., Yanker, P.,

Faloutsos, C., Taubin, G.: QBIC project: querying images by content, using color, texture,

and shape. Storage and Retrieval for Image and Video Databases. , San Jose, USA (1993).

14. Santini, S., Jain, R.: Beyond query by example. ACM Multimedia. , Bristol, UK (1998).

15. I.J. Cox, Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian

Image Retrieval System, PicHunter: Theory, Implementation, and Psychophysical

Experiments. IEEE Trans. Image Process. (2000).

16. Slaney, M., White, W.: Similarity Based on Rating Data. 8th Int. Conf. on Music

Information Retrieval (ISMIR). , Vienna, Austria (2007).

17. Babas, K., Chalkiadakis, G., Tripolitakis, E.: You Are What You Consume: A Bayesian

Method for Personalized Recommendations. RecSys ’13. , Hong Kong, China (2013).

18. Jeckmans, A.J.P., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R.L., Tang, Q.: Privacy in

Recommender Systems. Social Media Retrieval. pp. 263–281. Springer London (2013).

19. Polat, H., Du, W.: SVD-based collaborative filtering with privacy. ACM Symp. on

Applied Computing (SAC). , Santa Fe, USA (2005).

20. McSherry, F., Mironov, I.: Differentially Private Recommender Systems: Building

Privacy into the Netflix Prize Contenders. ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining (KDD). , Paris, France (2009).

21. Selke, J., Balke, W.T.: Extracting Features from Ratings: The Role of Factor Models.

Workshop on Advances in Preference Handling. , Lisbon, Portugal (2011).

22. Khoshneshin, M., Street, W.: Collaborative filtering via euclidean embedding. 4th ACM

Conf. on Recommender Systems (RecSys). , Chicago, Illinois, USA (2010).

23. Lofi, C., Nieke, C., Balke, W.-T.: Mobile Product Browsing Using Bayesian Retrieval.

IEEE Conf. Commerce and Enterprise Comp. (CEC). , Shanghai, China (2010).

