
CONSTRUCTING SPECIFICATIONS OF ABSTRACT DATA TYPES BY REPLACEMENTS

H.-D. Ehrich / V.G. Lohberger

Abtei lung In fo rmat ik , Un ivers i t~ t Dortmund

Postfach 5oo5oo, 46oo Dortmund 5o, West Germany

Abstract - Categories of spec i f i ca t i ons , equational spec i f i ca t i ons , and p a r t i a l l y
l ~ p a r t i a l spec i f i ca t ions of abs t rac t data types are shown to have pushouts.
These resu l ts a l low us to carry over the machinery of graph replacement to speci-
f i c a t i o n s . We give some examples. Parametr izat ion is considered as an important
special case of replacement.

1. In t roduc t ion

In the development of programs and program systems, the i n i t i a l spec i f i ca t i on phase
is o f increasing importance. I t is essent ia l to have a c lean, unique, complete,
and implementation independent descr ip t ion of what the system is intended to do in
order to cope wi th many problems of r e l i a b i l i t y . Such a spec i f i ca t i on is not only
necessary as a documentation and communication basis fo r the programmer team. Also,
l og ica l er rors can be detected and debugged in an ear ly s ta te , seperate from imple-
mentation er rors occuring l a t e r in the implementation process. Moreover, implemen-
ta t ions or implementation steps can be matched against the requirements of the
spec i f i ca t i on , thus c o n t r o l l i n g the correctness of the program development. The
ro le of spec i f i ca t i on and the re la ted concept of modular i ty has been studied by
Parnas !19] , Liskov and Z i l l e s L19 and others.

There is a great need fo r formal methods to support these tasks. Program modules
have been modelled by abs t rac t data types !16, 13j , i . e . by
sets of operat ions on various domains i n t e r r e l a t e d in a cer ta in way. Mathematical ly
speaking, abs t rac t data types are abs t rac t a lgebra ic s t ruc tures . To speci fy the
desired proper t ies of a program module means to speci fy a class of abst rac t data
types, and th i s means to give a presentat ion of a class of a lgebra ic s t ruc tures .

There are wel l approved methods in algebra and log ic to give presentat ions and
inves t iga te the s t ruc ture of t h e i r models. Equational presentat ions and correspon-
ding classes of algebras are espec ia l l y well understood [i , 2, 4, 5, 6, 9, i i , 12,
18] . Spec i f ica t ions consis t o f a set of sor ts , a set of operat ion symbols wi th
in format ion about t h e i r domains and codomains, a set of predicates ~ f o r m a t i o n
about t h e i r domains, and a co l l ec t i on of condi t ions or axloms.

We give some in t roduc to ry examples that may serve to i l l u s t r a t e the basic ideas.
In our examples, we use a somewhat ad hoc nota t ion which can be viewed to be an
informal a lgebra ic spec i f i ca t i on language.

Example 1.1: The natural numbers wi th t h e i r order ing re l a t i on can be spec i f ied
as fo l lows.

Sorts: nat Preds: ~ : nat ~ nat
O: ~ nat ~ x ~ succ (x)
succ: nat ---) nat x ~ x

x~ y ^ y ~ z ~ x ~ z
xm y ^ y ~ x ~ x = y
x ~ y v y ~ x

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext
V. Claus, H. Ehrig, and G. Rozenberg, editors, Proc. Int. Colloquium
on Graph Grammars, LNCS 73, pages 180–191, Berlin, 1978. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

181

Example 1.2: The in terva l I to 10 of natural numbers w i l l be used in the next
e'xampl e.

Sorts: ~ :10]
0ps: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: -->[1:10]

suc : [1 :1014 [1:10]
Preds: ~ : [1:10] x [1:1~
Conds: I ~ 2 , 2 ~3 9 410 , x ~ y ~ y ~ x ~ x = y

x c x x ~ y v y ~ x
x < y A y ~ z ~ x ~ z suc (1)=2 suc(9) = 10

Example 1.3: We give a spec i f i ca t ion of an array with the components consist ing
of the sorts, ops, preds, and conds of the previous examples plus the fo l lowing:

Sorts: array
0ps: new: ~ array

• ~.] :=. : array ~ ~:10] ~ nat----~ array
['] ['] i = : array ~ ~I:10] - - > nat

Conds: 0//(a [i] : : n) [j] = i f i eq j then n else a ~j] f i new

I n t u i t i v e l y speaking, a [i] := n assigns value n to the i - t h component of array a,
whi le a [i] denotes the value stored in that component.

Example 1.4.: We extend the previous example by an operation sort ing a given array•
The fo l lowing operations and condit ions are added to those o f the previous example.

0ps: sort : array ~ array
~ d s : i ~ j =)sort (a) [i] ~ -so r t (a) [j]

(3P) [(H i) a [P(i)~ = sort(a) [i]"
A (P (i) = P(j) =7 i = j) A (~ ' i) (3 j) P(j) = i]

The f i r s t condi t ion expresses what i t means for an array to be sorted, and the
second condi t ion expresses that the contents o f the array may not be changed but
only permuted. I f we would l i k e to r e s t r i c t ourselves to equational speci f icat ions
where the condit ions are jus t sets of equations, we could do so by viewing predi-
cates c : x as operations ~ : x- -~ bool, where bool has two constants, true and
fa lse, equipped with appropriate boolean operations. The f i r s t three examples are
eas i ly rewr i t ten in equational form, but there seems to be no way to express the
idea of sor t ing by equations as convenient ly as example 1.4 does.

One p o s s i v i l i t y is to use an a u x i l i a r y opera t ion
sort1 : array ~ : 1 0] - ->array

and express the algori thm of bubble sort by the fo l lowing equations:
sor t (a) : s o r t 1 (a : i)
s o r t l (a , i) = i f i =%0 then a else

_ i f a [i] ~ - a [s u c (i)] then so~t l (a ,suc(i)) else s o r t 1 (a ' , l) f i f i
where a' = (aLsuc(i)] := a l l]) Llj := aLsuc{ i)] .
We feel that example 1.4 gives a more adequate and easier to understand descrip-
t ion of what sort ing means.

Although the expressive power o f equational spec i f i ca t ion is p r i n c i p a l l y s u f f i -
c ient for a l l pract ica l cases L2, 17] , convenience requires more comfortable
spec i f i ca t ion language. In the present paper, we therefore use second-order pre-
d icate calculus.

With increasing complexi t iy of program systems, the design process of speci f ica-
t ions must be given more and more a t ten t ion• A structured and modular approach to
spec i f i ca t ion design requires means to manipulate pieces o f spec i f ica t ions, put
them together, and consis tent ly replace parts of them. For example, i t is very
convenient to give speci f icat ions with formal parts, socal led parametric speci-
f i ca t i ons , where the formal parts can be replaced by d i f f e ren t actual spec i f ica-
t ions L6, 7]. Other types of replacement operations occur when spec i f icat ions are
to be modif ied, e.g. to remove errors or to adapt the system to changed user needs
i l l .

182

In the f i e l d of graph grammars, methods and tools for handling replacement opera-
t ions on graphs have been successful ly developed and applied to various s i tuat ions.
The purpose of th is paper is to demonstrate that these ideas can be carried over to
tackle some problems of speci f icat ion design.

In the categorical approach to graph grammars, the mechanisms of graph rewr i t ing
have been formalized by means of pushouts in the category graph of graphs ~0, 20,
21]. I t has been realized that these mechanisms can be appITe-d-to any structures
forming a category with pushouts C8]. Therefore, we investigate the existence of
pushouts in various related categories of speci f icat ions. The usefulness of re-
wr i t ings on these specif icat ions is demonstrated by examples. The techniques and
results carry over to p a r t i a l l y label led part ia l speci f icat ions, which su i t better
to applications. Here, we refer to [21].

In a certain sense, specif icat ions can be viewed as graphs enriched by conditions
ConveHsely, i f we forget about the condit ions, we get the socalled syntax graph of
a speci f icat ion. Thus, there are forgetful functors from specif icat ion categories
to corresponding graph categories. I t is shown that these functors respect pushouts.
Therefore, speci f icat ion r e w r i t i n ~ e f f e c t corresponding graph rewrit ings on the
syntax graphs.

Parametric specif icat ions can be considered as special cases of rewri t ing rules,
giving the rules how the formal parameter is substituted by the actual parameter.
We i l l u s t r a t e by an example how parametric specif icat ions and corresponding
speci f icat ion productions can be used in the edi t ing process of speci f icat ions.

2. Categories of specif icat ions and the i r graphs

Let S be a set of sorts. S ~ and S ÷ denote the sets of words resp. nonempty words

over S. Elements x ~ S ~ w i l l be called sorts, too. A signature over S is a mapping

]~ :~- ->S. Mappings into a sort set S are called S-sorted sets or simply sorted

sets, i f the sort set is clear from the context. Thus, a signature ~ is an S~-sorted

set, and i t s elements are called operations. I f ~ ~->xs is in ~ , x ~ S ~, s c S,

we cal l x the domain sort and s the codomain sort o f ~ - > x s (or jus t of ~). A co-

domain sort always has word length i . 32 determines two mappings: o~ : w ~->x and

7 ~ : ~ - ~ s for e a c h ~ , ~ xs in ~Z, the domain resp. codomain mappings.

We assume that the reader is fami l ia r with the category graph of graphs ~0, 20,

2 1] . A s ignature1~wi l l sometimes be considered to be that graph with nodesS ~,

edges ~ , source f u n c t i o n ~ , and target function%L ~. Siqnature morphisms

f : ~ _ i - ~ 2 are those graph morphismus f = (h,g) h : S~-- ,S~, g : ~J 1 -~ ~2'
where h is a length preserving st r ing homomorphism. Thus, h is completely deter-

mined by i t s res t r i c t ion to S 1 and S 2, also denoted by h : S I - -~S 2.
÷

If%Z i : ~ i ~ 7 S i , i = 1,2, the morphism condit ion is equivalent t o / L l h = g]~2
(we wri te function composition and appl icat ion from l e f t to r igh t , e.g. x f and xfg

instead of the more conventional f (x) and g f (x) .) Let sign be the subcategory of

graph consisting of a l l signatures and i t s morphisms. The fol lowing resul t carries

over form graph.

183

Theorem 2.1: sign has pushouts.
Proof: We do not give the complete proof since i t parallels that in the graph case
-[I-0-~,20, 21]. For later reference, we give the pushout construction in sign.

Let f l : Q l - - ~ Q 2 " f2:Q1--->Q3 be morphisms in sign. We construct Q4' f3:~2--~Q4 '
f4:Q3--~Q4 such that f ig . l (1) is a pushout: let Q i :~ i - -~S+ i and f i=(hi ,g i) for

f l hl gl
£ ~ I - - ~ > ~2 S I - ~ S2 ~1 -~ ~2

(I) f h (2) h 3 g (3) g3

f4 h4 g4
~'~'4 S 3 - - - > S4 ~3 > ~4

f2

C'~ 3

figure I

i=1, 2, 3, 4, and let h 3, h 4 and g3' g4 be given such that the diagrams in f ig . l (2)
and (3) are pushouts in the category set of sets. Due to the definit ion of
morphisms in sign, the diagram in f ig.2 is commutative. The upper quadrangle
coincides with f ig1(3), i .e. i t is a pushout. Thus, there is a unique mapping

~4: ; " " + Q4 °"~$4 making the whole diagram in f ig.2 commutative. / / /

~2 g,/I 2
/

h I

/
+

S 1

g3

g2

h 3

h 2

g4 ~
/ ,

t

i I

+

----> S 4

P~3, / h4

• +

S 3

f i gure2

Now we continue to develop our specification language. Given a sort set S, let
: ~ -~S* be an S~-sorted set of predicates. I f ~ x is in 7-[, x is called the

domain of the predicate. We suppose that an S-sorted set_Vi:Vi-~S of individual
variables is given, together with an S~-sorted set V~ : V~ --~ S* of predicate
variables and an S+-sorted set V~ :V~--->S + of operation variables. Let

V=V i u VuVw .

Let a sort set S, a signature Q, predicates~and variables Vi,V ~ , V~ over S be
given, and let al l these sets be dis joint . Terms and formulae are now constructed

184

as usual in sorted second-order predicate calculus with equal i ty [14]. We short ly
introduce our notation.

The S~-sorted set T of terms (including term n-tuples) is given as fol lows:

Definition 2.2: v~s eV i >. <v> ~-~ s ~T

<'Cl>F~>x , <~2)~y ~T ~ <Zl ,T2~'xy ET
~ x s ~P_, C' t -) t~x eT >- <~<T;> ~,x~o>~-> s e T

F ~ x s eV~ , < ~ x ~T ~ <~FC-cb~x]F> ~-e s eT

< i f ~ t h e n 4 ~ l > ~ X else ~ 2 > ~-~x f i > F - ~ x e

Here, -/~ is the set of formulae defined as fol lows:

Def in i t ion 2.3: true, false E /~

P~x~V~ ,KT>~x ET > P(T) (~

~1' ~2' ~3 ~ ~ > IF ~1 THEN ~2 ELSE ~3 El #
~ A , (v~x)~V > ((Vv)~) ~/~

As usual we w i l l use some deviations from the strong syntactical rules of notation
in order to increase readabi l i ty . Especial ly, we w i l l omit the sort part ~ x
whenever i t is clear from the context. Furthermore, we w i l l use the notational
abbreviations ~ , ~1v~2 , ~1A~2 , ~1 ~ 2 ' etc. for the conventional boolean

operations that are easi ly expressible by IF-THEN-ELSE-FI. Another conventional
notation is ((~ v) ~) for ~ ((V v) ~) .

The set ~ of formulae is cal led the (object) language of S, ~ , TF Ne wri te
(S, ~ , TT) in order to express t h e ~ l y ~ s exp l i c i t e l y . The variable

sets are assumed to be f ixed in the sequel. I f we take only the f i r s t two l ines
of de f in i t i on 2.3, we get a subset of I L , called the equational language of S,
and denoted by H(S, ~). We w i l l not explain the semantics of t ~ g u a g e s
in detai l but adopt the usual conventions (see, e .g . [14]o r any text book on
log ic) .

Now we have the tools to give a precise de f in i t i on of speci f icat ion.

Def in i t ion 2.4: A speci f icat ion is a quadruple D=<S,~,TT, C>where S is a set of
sorts,~ ~_ f s a signature over'S, ~ is an S*-sorted set of predicates, and
C c ~ (S , ~ , T T) is a set of condit ions. The speci f icat ion is cal led equational
i f f C c H (S , ~) .

In equational speci f icat ions, TT is empty. Therefore we wr i te D= { S , ~ , C> i f we
have an equational speci f icat ion. The signature ~ -v iewed as a graph - is
called the graph of the speci f icat ion.

Def in i t ion 2.5: A model (or in terpretat ion) of D is given by

(I) an S*-sorted set A: A--~S* with the properties
xA-1 (1.1) # for a l l x,y ¢ S ~

(i .2) (xy)A - I = xA -1X yA -1 J

(2) an assignment of a function ~:xA-1--~sA -1 to each operation ~ x s ~

(3) an assignment of a re lat ion ~ cxA - I to each predicate ~ x ÷TT.
Equality must be interpreted by a congruence relat ion on A.

(4) C is sat is f ied (i .e . each formula in C evaluates to true when assigning

185

arbi t rary values of appropriate sorts to the free variables).

Definit ion 2.6: Let D=<S,~,TT, C> be a specif icat ion, and le t B1, B2cA :=A(S,SL,TT).

BI~AB 2 means that B 2 is a logical consequence of B 1, i .e . B 2 is sat isf ied in each
model of CA, BI>. We shortly write D~ B instead of C ~ B .

Specifications can be related by specif ication morphisms in a natural way. Let
Di=<Si' Q i ' I T i ' Ci~' i=1, 2, b e specif ications, ' f '=(h, gw) :Q l -~Q2 be a
signature morphism, and g~ :TTI-->TT 2 be a mapping such that ITlh=gwTT 2. The
t r ip le f=(h,g~ ,g~) can then be extended to a mapping

~: z~ I - -~A2 ,

where z~ i=A(s i , ~ i , ~ i) ' i= l , 2, by replacing each occurrence of a sort x by xh,
of an operation symbol ~ by ~g~ , and of a predicate symbol w by ITgm . (Without

rest r ic t ing generality, we assume that there are variables (v ~xh) for each
variable (v~-~x).)

Definit ion 2.7: A specif ication morphism f;DI-->D 2 is a t r i p le f=(h,g~ ,g~) with
the properties

(i) f '=(h,g~) is a signature morphism, f ' : Q 1 --->Q2

(2) g~ : ~ 1 - - ~ 2 sat isf ies g~ TT2=TTlh
(3) for each formula B~ z~ I , i f Dlm B, then D2~B~.

Composition of specif ication morphisms is defined by composition of the constituent
mappings, separately for each component. I t is easily checked that the c r i te r ia
of a category are sat isf ied.

Definit ion 2.8: The category of specifications is denoted by spec. By spec = we
d'enote the fu l l subcategory of equational specifications.

We are now ready to prove our main result: spec and spec = inher i t the existence of
pushouts from thei r signatures sign. Let 1 ~, 1 ~: be t--~e-forgetful functors

T':spec-->sign resp. T'=: spec=--~sign sending each specif ication to i ts
s i g ~ r e - ~ s i d e r e d as a graph).

Theorem 2.9: spec and spec = have pushouts. 7 ~ and T ~= respect pushouts.

Proof: Let fl:D1--->D2 and f2 :D I~D3 be specif ication morphisms in spec. We

construct D 4, f3:D2-->D4 and f4:D3~D4 as follows (cf. figures I and 2).

Let f i=(hi ,g~, gi)] =(hi 'g i) ' Di=<Si ' ¢Zi 'TTi' C i > ' i= l , 2, 3, 4.
We define ~4" f3 ' f4 to be the pushout of f~ and f~ in sign (cf. theorem 2.1)
and TT~, g~, g# to be the pushout of g~, g~ in set. YT4: TT~S~ is then obtained

in the same unique way as g~4 in the proof of theorem 2.1 (cf. f ig .2) . Conditions

C 4 are defined as follows: C4={Bf~3 ID2mBI u{Bf~4 ID3mBI (or any set of
formulae that is logical ly equivalent).

We claim that D4, f3 ' f4 constructed this way form a pushout of f l ' f2 in spec.

In order to prove th is, le t D5, f5:D2--~D5, f6:D3-~D5 be such that f l f5=f2f6 .
I t follows that f~f~=f~f~ and glgs-g2g 6 ~ ~- ~ ~ , and thus there is exactly one f~: ~4~t~5

186

~ ' # # such that resp ~ - ~ ~ - ~ and exact ly one g7" ~ 7 f3 f7- f5 ' f4 f7- f6 " ~3u7-~5 ' u4~7-u6"
Therefore there is at most one morphism f7:D4--~D5 in spec sat is fy ing f3f7=f5

and f4f7=f6 , namely fT=(f~,g~). That f7 is in fact a morphism in spec fol lows

'~ B' ^ and from the d e f i n i t i o n of C4: i f D4m B, we have B=B f3 and D2m or B=B'f 4

D3mB'. In the f i r s t case, we have D5~B'~ 5 since f5 is a morphism. Obviously,

5- (f3f7)=(B' f3) f7=Bf7" The second case is proven in the same way.

Pushouts in spec = are constructed in the same way. That ~ and ~=respect
pushouts is c lear from the d e f i n i t i o n . / / /

I f we consider other languages of log ic , e.g. f i r s t - o r d e r predicate calculus,
proposi t ional calculus e tc . , s imi la r resul ts hold and can be proven in the same
way. The main drawback of the above construct ion is the rather clumsy set of
condit ions C 4. I t can be shown, however, that s imp l i f i ca t ions are possible:

condi t ion (3) Of d e f i n i t i o n 2.7 can be replaced by D2~CI~, and C 4 can then be

defined in the above proof to be simply C4=C2f 3vC3~ 4. The v e r i f i c a t i o n of these

proposit ions requires a l i t t l e b i t heavier machinery, and we cannot give the
deta i l s here.

3. Labelled and par t ia l spec i f i ca t ions

To use spec i f icat ions and spec i f i ca t ion productions in pract ical s i tua t ions , as [3]
do with graphs, i t is desirable to general ize the tools developed so fa r , to
include labels and p a r t i a l i t y .

The symbols that we used for sorts and operations in spec i f i ca t ions , un t i l now,
are only a notat ional means to i den t i f y the d i f f e ren t items in the spec i f ica t ions.
We see that the morphisms do not care about these notat ions. On the other hand
we feel that these names, although sometimes cal led "syntact ical sugar", play an
essent ial part as a guide through large spec i f i ca t ions , and we should provide for
taking these names to be part of the structure and to be respected by morphisms.
In conjunction with p a r t i a l i t y , we can have the p o s s i b i l i t y to a l t e r these names,
but these a l te ra t ions must be made e x p l i c i t and are formal ly contained in the
calculus and not mere a rb i t ra ry notat ion, as we shall learn from the examples.
For these purposes we need a g loba l l y defined set of labels.

[21] give a mot ivat ion for the use of pa r t ia l graphs which we accept also for
spec i f ica t ions: i f we want to describe syntact ic operations by these formalisms,
operations that replace only parts of graphs, i t would in general not be a
natural thing to add unnecessary informat ion, e.g. context to make the occurring
par t ia l graphs or spec i f icat ions t o t a l , and to increase at the same time the number
of replacement ru les, since there are many p o s s i b i l i t i e s to make these graphs or
spec i f icat ions t o t a l . Instead, we should be able to express handling of par t ia l
spec i f icat ions d i rec t l y .

To give an example, l e t us th ink of the spec i f i ca t ion of our array with natural
numbers as entr ies and a f i n i t e subset of natural numbers as keys. Imagine that
the above array of nat spec i f i ca t ion is supplied with labels "array" , "nat" ,
"new", e tc . , such that we have a labe l led spec i f i ca t ion with e x p l i c i t labels.
Now, we want to a l t e r the spec i f i ca t ion by de let ing nat and inser t ing in t for nat.
The names (labels) of a l l items not d i r ec t l y af fected by th is subst i tu t ion shal l
be maintained. This can be expressed by the production of f igure 3. I t is obvious
how 'p and p' shal l map ('p: key~-~nat, s ~ s u c c , e tc . ; p' analogously). The
l abe l l i ng is expressed by the symbol I .

Here, the gluing spec i f i ca t ion has no labels. That is why there are no labels to

187

be respected by the morphisms 'p and p' and so the production can a l te r the labels
as required. I t is obvious how the specif icat ion of example 1.3 has to be
supplemented by labels. On the other hand, the application of the production must
care for saving the labels of the old specif icat ion which are not affected.

We need not emphasize the fact that there are poss ib i l i t i es to handle labe l l ing
imp l i c i te l y when wr i t ing down a speci f icat ion, thus simpl i fy ing the work of
wr i t ing specif ications in a practical s i tuat ion. Here, the exp l i c i t handling
suits to the formal treatment.

'B K B'

sorts
"nat"

opers
~ n a t 1 "0"
succ:nat-~->nat 1 "succ"

preds
~ :na t~na t 1 " ~ "

i C o h m s

n~succ(n)

I

L

p
J

, :sorts

I 'opers
I, : ~ k e y
,,p ,s:key~key

Ipreds
i ~ " ~ Y × key
L

p l

>

sorts
" in t "

opers
~ i n t 1 "0"
succ: int~-~int 1 "succ"
pred: in t - -> in t T "pred"

u preds
I ~ t ~ i n t 1 " ~ " i

I conds I
' n~succ(n)
I I
, pred(n)_~n
: succ(pred(n))=n I
' pred(succ(n))=n
I A

Figure 3: production to substi tute nat by in t

Guided by the def in i t ions of total specif ications in section 2, by our i n tu i t i on
(example), and def in i t ions of pa r t i a l l y labelled part ia l graphs [21], we give the
fol lowing precise formulation:

Def in i t ion 3.1: The category spec-, called the category of pa r t i a l l y (L S, LQ, L~)

- label led speci f icat ions, has objects D=<S, ~ , IT , C,~>, where S, ~ , T~, C
are items as in the def in i t ion of spec, except of the requirement that °R, ~o ,

need only be part ia l pappings, but those operations and predicates occurring
in C must be to ta l ; and ~ : (~ S , ~ , ~) is a t r i p l e of three part ia l mappings

~S: S~--~Ls' ~ : ~ - - ~ L ~ , ~ : ~ - - - ~ L ~ , and th is category has morphisms

f:D1--->D 2, f=(h, g~ ,g~) which obey the same laws as in spec but addi t ional ly
the label l ing of sorts, operations, and predicates is transported by morphisms
i f i t is defined.

In [21] , the respective morphisms for graphs are called "weak morphisms".

Theorem 3.2: spec- has pushouts.

proof: The argument is as with spec, although we must be careful with some of the
arrows because of the pa r t i a l i t y - -~ the involved mappings. / / /

In analogy to the discussion of the last section, the same resul t holds for the
subcategories of spec- determined by a special calculus, as e.g. equational
calculus or f i r s t ~ e r predicate calculus. A pushout diagram in such a
specif icat ion category implies a pushout diagram in the underlying graph-category,
i .e . we have a forgetful functor from the specif icat ion catagory to the graph
category respecting pushouts.

188

We hint fu r ther that i t is useful fo r pract ica l s i tuat ions to be sure that
applying a production to a to ta l spec i f i ca t ion y ie lds a to ta l spec i f i ca t ion ,
even i f th is production consists o f pa r t ia l spec i f ica t ions. [21] give su f f i c i en t
c r i t e r i a fo r th is problem in the graph case, which carry over to the spec case.

We give an example in f igure 4 to demonstrate that i t is convenient ly possible to
use productions fo r r e l abe l l i ng of operations. Here, the p a r t i a l i t y of operations
provides the economy of specify ing not more than required. This production can be
applied to any spec i f i ca t ion where we f ind an analysis pushout. Obviously, a l l
other labels of the analysed spec i f i ca t ion are saved via the pushout-complement.

'B K B'

ops : , , ops ' , !ops :
su---Ec: ~ l "succ"> P i ~ . - - > I p ~: • . ~ ~ - T - . " . - - - > . 1 " N " '

Figure 4: production to relabel the successor operation

4. Parametric spec i f icat ions

Parametric spec i f ica t ions are a very convenient means for the spec i f i ca t ion
process. We do not care about semantical problems of parametric spec i f icat ions
c f . [15] , but discuss a more syn tac t i ca l l y or iented treatment fo l lowing [7] . To

give an example, the concept of an array is rather independent of the type of i t s
entr ies and keys. The only requirement is that there should be an "eq" - re la t ion
on keys and a constant entry serving as the value of new(i). Thus we would l i ke to
give spec i f icat ions as fo l lows.

Example 4.1: The parametric spec i f i ca t ion of array(key, entry) is :

params key, entry, eq, 0

sorts array, key, entry

ops 0 : - - > e n t r y
n e w : ~ a r r a y
. [. I : = . : a r r a y ~ k e y ~ e n t r y - - ~ a r r a y
. [.] : a r r a y ~ k e y - - ~ e n t r y
i f . t h e n . e l s e . f i : b o o l × e n t r y - e n t r y - - ~ e n t r y

preds eq : key×key

conds new[i I = 0
(a [i l : = n) [j l = i f i eq j then n else a [j] f i

We denote the formal parameter part by the params symbol. In spec-, an embedding
w i l l serve for th is purpose. A parameter ass-ignment should m a ~ r m a l parameters
to actual parameters which su i t in type and behaviour. So, assignments are well
modelled by morphisms. To apply a parametric spec i f i ca t ion to an actual
parameter is intended to subst i tu te the formal parameter spec i f i ca t ion by the
actual parameter spec i f i ca t ion and th is is done by the pushout construct ion.

Def in i t ion 4.2: A parametric spec i f i ca t ion p:F--~P is an embedding in spec-.
~ ~ - ~ s i g n ~ : ~ ~ r p h i s m f : F - ~ A . The resu l t of-'-tF~e
app l ica t ion of the parametric spec i f i ca t ion p:F--~P to the actual parameter A
via f :F--~A is the pushout-object o f the pushout of p and f .

In our examples with arrays, 1.3 and 4.1, we have:

189

(key, entry)) array (key, entry)

p.o. I

([I :10] , nat) >array ([1 :10] , nat)

Not that the actual parameter A can i t s e l f be a parametric spec i f i ca t ion q : E--->A
with a formal parameter part E. Thus, sequences of appl icat ions of parametric
spec i f icat ions can be constructed. The fo l lowing resu l t fo r spec = ~ , ~ carr ies
over to ~P~F and spec -:

Theorem 4.3: The app l ica t ion of parametric spec i f icat ions to parametric speci-
~ i c a t i o n s i s associat ive.

When we have a parametric spec i f i ca t ion , we can use i t as well as a production by
dupl icat ing the parameter. The idea is demonstrated by f igures 5 und 6.

params d,~

sorts d

preds ~ : d ~ d

conds x ~ x
x ~ y ^ y ~ z==~x ~ z
x ~y ~ y£ x ~ x = y
x ~ y ~ y ~ x

Figure 5: Parametric specification of a total ordering

[. -~ F V
preds ~ , preds ,

J

' ~ : d ~ d ~ 'P [~ : d ~ d I _ ~ (-

L ~ L I I
I

I

I
I
I
I

b

p red s I I
~ : d ~ d - - I

q

conds I

X ~ X I

x~ y ~ y ~ z ~ x ~ z ,

x~_ y A y ~ x ~ x = y 1
I

x - ~ y v y ~ x }

Figure 6: Production to generate to ta l orderings

Taking parametric concepts, supplementing them to productions, and stor ing these
productions in a l i b r a r y is a promising tool fo r ed i t ing spec i f ica t ions. Using the
production o f f igure 6, when we want to specify any s i tua t ion where a to ta l
ordering is involved, we need only give the few axioms that determine the spec i f ic
ordering. For example, for natural numbers we need only give

sorts: nat
ops: 0 : - - ~ nat

succ: n a t - - - ~ n a t
preds: ~ : nat × nat

x ~ succ (x)

190

Applying the production of f igure 6 to th is speci f icat ion, the ordering axioms are
inserted, and we get the speci f icat ion of example 1.1.

We can imagine that for more complex concepts there may be a considerable economy
in using parametric specif icat ions as replacement rules or productions.

5. References

I . ADJ (Goguen, J.A.-Thatcher, J.W.-Wagner, E.G.):
An i n i t i a l algebra approach to the speci f icat ion, correct ness, and
implementation of abstract data types. Current Trends in Programming
Methodology IV, ed. by R. Yeh, Prentice Hal l , New Jersey 1977

2. ADJ (Thatcher, J.W.-Wagner, E.G.-Wright, J.B.) :
Data type speci f icat ion, parametrization, and the power of speci f icat ion
technigues. Proc-Sigact Annual Symp. Theory Comp., 1978

3. Brendel, W.-Bunke, H.-Nagl, M.:
Syntaxgesteurte Programmierung und inkrementelle Compilation. Proc.
GI-7. Jahrestagung, Informatik Fachberichte i0, 57-73, Springer
Berl in 1977

4. Bursta l l , R.M.-Goguen, J.A.:
Putting theories together to make speci f icat ions. Proc. 5th IJCAI 77,
MIT, Cambridge, Mass. 1977

5. Ehrich, H.-D.:
Extensions and implementations of abstract data type specif icat ions.
Proc. MFCS'78, ed. by J. Winkowski, Lecture Notes in Computer Science,
Vol. 64, Springer-Verlag, Berl in 1978, 155-164

6. Ehrich, H.-D.:
On the theory of speci f icat ion, implementation , and parametrization
of abstract data types. To be published

7. Ehrich, H.-D.-Lohberger, V.G.:
Parametric speci f icat ion of abstract data types, parameter subst i tu t ion,
and graph replacements. Proc. Workshop "Graphentheoretische Konzepte in
der Informatik", Applied Comp. SC., Carl Hanser Verl . , Muenchen-Wien 1978

8. Ehrig, H.-Kreowski, H.-J.-Maggiolo-Schett ini , A.-Rosen, B.K.- Winkowski, J.:
Deriving structures from structures. Proc. MFCS 1978, ed. by J. Winkowski,
Lecture Notes in Computer Science, Vol. 64. Springer-Verlag, Berl in
1978, 177-19o

9. Ehrig, H.-Kreowski, H.-J.-Padawitz, P.:
Stepwise speci f icat ion and implementation of abstract data types.
Proc. 5th Intern Colloq. on Automata, Languages, and Programming,
Venice 1978

Io. Ehrig, H.-Pfender, M.-Schneider, H.-J.:
Graph-Grammars-an algebraic approach. Proc. Conf. Switch. Automata
Theory 1973, 167-18o

11. Goguen, J.A.:
Correctness and eqivalence of data types. In: Proc. Conf. on Alg. Syst.
Th., Udine, Lecture Notes In Comp. SC., Springer-Verl. , Berl in 1975

12. Goguen, J.A.:
Abstract errors for abstract data types. In: Proc. Conf. on Formal
Description of Programming Languages, Ed. by E.J. Neuhold, North-Holland
Publ. Company, Amsterdam 1976

191

13. Guttag, J.V.:
The specif ication and application to programming of abstract data types.
Techn. Report CSRG-59, Univ. of Toronto 1975

14. Kreisel, G.-Krivine, J.L.:
Modelltheorie, Springer, Berlin 1972

15. Lehmann , D.-J.-Smyth, M.B.:
Data types. Proc. 18th IEEE Symp. on Foundations of Computing. Providence
R.I . , 1977, 7-12

16. Liskov, B.-H.-Zi l les, S.N.:
Specification Tehcniques for data abstractions. IEEE Transact. Softw.-
Eng., Vol. SE-I (1975), 7-19

17. Majster, M-E.:
Data types, abstract data types and their specification problem. Report
TUM-INFO-774o, Techn. Univ. Muenchen, 1977

18. Manes, E.G.:
Algebraic Theories. Springer-Verl., New York 1976

19. Parnas, D.L.:
A technique for module specification with examples. Comm. ACM 15 (1972)
33o-336

2o. Rosen, B.K.:
Deriving Graphs from Graphs by applying a production. Acta Informatica 4,
337-357 (1975)

21. Schneider, H.J.-Ehrig, H.:
Grammars on part ial graphs. Acta Inf. 6, 297-316 (1976)

