V. Claus,H. Ehrig,andG. Rozenbergeditors,Proc.Int. Colloquium
on GraphGrammarsLLNCS 73, pagesl80-191Berlin, 1978.Springer—Verla

CONSTRUCTING SPECIFICATIONS OF ABSTRACT DATA TYPES BY REPLACEMENTS
H.-D. Ehrich / V.G. Lohberger

Abteilung Informatik, Universitdat Dortmund
Postfach 500500, 4600 Dortmund 50, West Germany

Abstract - Categories of specifications, equational specifications, and partially
TabeTTed partial specifications of abstract data types are shown to have pushouts.
These results allow us to carry over the machinery of graph replacement to speci-
fications. We give some examples. Parametrization is considered as an important
special case of replacement.

1. Introduction

In the development of programs and program systems, the initial specification phase
is of increasing importance. It is essential to have a clean, unique, complete,

and implementation independent description of what the system is intended to do in
order to cope with many problems of reliability. Such a specification is not only
necessary as a documentation and communication basis for the programmer team. Also,
logical errors can be detected and debugged in an early state, seperate from imple-
mentation errors occuring later in the implementation process. Moreover, implemen-
tations or implementation steps can be matched against the requirements of the
specification, thus controlling the correctness of the program development. The
role of specification and the related concept of modularity has been studied by
Parnas (191 , Liskov and Zilles [16 and others.

There is a great need for formal methods to support these tasks. Program modules
have been modelled by abstract data types [16, 13/, i.e. by

sets of operations on various domains interrelated in a certain way. Mathematically
speaking, abstract data types are abstract algebraic structures. To specify the
desired properties of a program module means to specify a class of abstract data
types, and this means to give a presentation of a class of algebraic structures.

There are well approved methods in algebra and logic to give presentations and
investigate the structure of their models. Equational presentations and correspon-
ding classes of algebras are especially well understood [1, 2, 4, 5, 6, 9, 11, 12,
181 . Specifications consist of a set of sorts, a set of operation symbols with
information about their domains and codomains, a set of predicates with information
about their domains, and a collection of conditions or axioms.

We give some introductory examples that may serve to illustrate the basic ideas.
In our examples, we use a somewhat ad hoc notation which can be viewed to be an
informal algebraic specification language.

Example 1.1: The natural numbers with their ordering relation can be specified
as follows,

Sorts: nat Preds: & : nat = nat
Ops: 0: —» nat Conds: x £ succ (x)
succ: nat — nat X & X
Xe ynyez=axsz
XeYyaysax=x=y
Xg Yyvyszx

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext
V. Claus, H. Ehrig, and G. Rozenberg, editors, Proc. Int. Colloquium
on Graph Grammars, LNCS 73, pages 180–191, Berlin, 1978. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

181

Example 1.2: The interval 1 to 10 of natural numbers will be used in the next
example.
Sorts: [1:10]
ops: 1,2,3,4,5,6,7,8,9, 10: —[1:10]
suc : {1:10— [1:10)
Preds: = : [1:10] = [1:1G

Conds: 122,223, ...,9 210, XZYy Ay X =3%x=Y
X Z X X2y wVvyz=x
XzYyArY 2 2=5X 21 suc (1)=2, , suc(9) =10

Example 1.3: We give a specification of an array with the components consisting
of the sorts, ops, preds, and conds of the previous examples plus the following:
Sorts: array
Ops: new: — array
- .[.J :=. :array = [1:10 * nat —— array
.[.1 :array » (1:100 —» nat R
Conds: new [i] = O/Qa [j{ :=n) (31 = if 1 eq j then n else a [j] fi

Intuitively speaking, a B] := n assigns value n to the i-th component of array a,
while a[i] denotes the value stored in that component.

Example 1.4.: We extend the previous example by an operation sorting a given array.
The following operations and conditions are added to those of the previous example.
Ops: sort: array — array B
Conds: iz j & sort(a) Uil £sort(a) [j]
T @GP L) alP(i)] = sort(a) il B
(J =J) ~ (V1) (33) P(3) = 1.

~(P() =P(J) & i
The first condition expresses what it means for an array to be sorted, and the
second condition expresses that the contents of the array may not be changed but
only permuted. If we would 1ike to restrict ourselves to equational specifications
where the conditions are just sets of equations, we could do so by viewing predi-
cates « : x as operations m : x — bool, where bool has two constants, true and
false, equipped with appropriate boolean operations. The first three examples are
easily rewritten in equational form, but there seems to be no way to express the
idea of sorting by equations as conveniently as example 1.4 does.

One possivility is to use an auxiliary operation.

sortl : array =[1:10] —> array
and express the algorithm of bubble sort by the following equations:

sort(a) = sortl{a,1)

sortl(a,i) = if i =10 then a else

if a_(i]1= alsuc(i)] then sortl(a,suc{i)) else sortl(a',1) fi fi

erea'=(aBuq1ﬂ[F aﬁ%)[%):=a5uqin.(’ (i) ()
We feel that example 1.4 gives a more adequate and easier to understand descrip-
tion of what sorting means.

Although the expressive power of equational specification is principally suffi-
cient for all practical cases [2, 177, convenience requires more comfortable
specification language. In the present paper, we therefore use second-order pre-
dicate calculus.

With increasing complexitiy of program systems, the design process of specifica-
tions must be given more and more attention. A structured and modular approach to
specification design requires means to manipulate pieces of specifications, put
them together, and consistently replace parts of them. For example, it is very
convenient to give specifications with formal parts, socalled parametric speci-
fications, where the formal parts can be replaced by different actual specifica~-
tions 6, 7). Other types of replacement operations occur when specifications are
to_be modified, e.g. to remove errors or to adapt the system to changed user needs

7.

182

In the field of graph grammars, methods and tools for handling replacement opera-
tions on graphs have been successfully developed and applied to various situations.
The purpose of this paper is to demonstrate that these ideas can be carried over to
tackle some problems of specification design.

In the categorical approach to graph grammars, the mechanisms of graph rewriting
have been formalized by means of pushouts in the category graph of graphs [10, 20,
211, It has been realized that these mechanisms can be applied to any structures
forming a category with pushouts [8]. Therefore, we investigate the existence of
pushouts in various related categories of specifications. The usefulness of re-
writings on these specifications is demonstrated by examples. The techniques and
results carry over to partially labelled partial specifications, which suit better
to applications. Here, we refer to [21].

In a certain sense, specifications can be viewed as graphs enriched by conditions
Conversely, if we forget about the conditions, we get the socalled syntax graph of
a specification. Thus, there are forgetful functors from specification categories

to corresponding.graph categories. It is shown that these functors respect pushouts.
Therefore, specification rewritings effect corresponding graph rewritings on the
syntax graphs.

Parametric specifications can be considered as special cases of rewriting rules,
giving the rules how the formal parameter is substituted by the actual parameter.
We illustrate by an example how parametric specifications and corresponding
specification productions can be used in the editing process of specifications.

2. Categories of specifications and their graphs

Let S be a set of sorts. S* and ST denote the sets of words resp. nonempty words
over S. Elements x ¢ S* will be called sorts, too. A signature over S is a mapping
Q12 =s, Mappings into a sort set S are called S-sorted sets or simply sorted
sets, if the sort set is clear from the context. Thus, a signature £ is an s¥-sorted
set, and its elements are called operations. Ifw +xs is in 2, x ¢ S*Z s €5,

we call x the domain sort and s the codomain sort of w +>xs {or just of w). A co-
domain sort always has word length 1. £2 determines two mappings:°§2 w > X and
N%:wrss for eachw«—s xs in L, the domain resp. codomain mappings.

We assume that the reader is familiar with the category graph of graphs [10, 20,
*

211 . A signature {2 will sometimes be considered to be that graph with nodes S°,

edges 0 , source function °7 , and target function 2°, Signature morphisms

f il f—>522 are those graph morphismus f = (h,g) h : ST-—» Sg} g i i" 32,
where h is a length preserving string homomorphism. Thus, h is completely deter-
mined by its restriction to S1 and 52’ also denoted by h : Sl—~ﬁ 52'

IfQ ' i S?, i = 1,2, the morphism condition is equivalent to fllh = g2,
(we write function composition and application from left to right, e.g. xf and xfg
instead of the more conventional f(x) and gf(x).) Let sign be the subcategory of
graph consisting of all signatures and its morphisms. The following result carries
over form graph.

183

Theorem 2.1: sign has pushouts.

Proof: We do not give the complete proof since it parallels that in the graph case
{10, 20, 21). For Tater reference, we give the pushout construction in sign.

Let flz Q1<—»£72, f2: Ql-—> Q3 be morphisms in sign. We construct (24, f3:92~+»Q4,
f4:R;—> %, such that fig.1(1) is a pushout: Tet §21:'§1 ~+S; and fy=(h;,q.) for

1 hy = 9 .
gLt 5 —toss, G —L 0,

|
1M 5 on @) hl g () g
fa hy X9
fp—t—sn, s,—tss g1,

figure 1

i=1, 2, 3, 4, and let h3, h4 and 935 9 be given such that the diagrams infig.1(2)
and (3) are pushouts in the category set of sets., Due to the definition of
morphisms in sign, the diagram in fig.Z2 is commutative. The upper quadrangle
coincides with figl(3), i.e. it is a pushout. Thus, there is a unique mapping

§l4: Q4-w>sz making the whole diagram in fig.2 commutative. /7

_ 9 .
) >y

~a
™~

9 Y% 94 \
A
/ 9, / |
v - !
“ Q3 Py
I
i ; figure 2
) , figure 2
s3 3 ~—ss;
S %3 h
1 4
/o,
2
+ +
51 53

Now we continue to develop our specification language. Given a sort set S, let
TT:Ti—S™ be an S*-sorted set of predicates. If mwx is in JT, x is called the
domain of the predicate. We suppose that an S-sorted set Vi:Vi-aS of 1nd1v1dua1
variables is given, together with an S*-sorted set V. : V.~ S$* of predicate
variables and an S*-sorted set v, Y, — st of operation variables. Let

V=V u oy

Let a sort set S, a signature &, predicatesTand variables VsV, V, over S be
given, and let all these sets be disjoint. Terms and formulae are now constructed

184

as usual in sorted second-order predicate calculus with equality [141. We shortly
introduce our notation,

The S*-sorted set T of terms (including term n-tuples) is given as follows:
Definition 2.2: vess eVy > <v> s €T
<rl>Hx » (Tyiby €T > <‘C1,T2))’—‘xy €T
wexs €2, <TYPx eT > <{<T> b xlwdr s €T
Feoxs eV, , <ok x €T > <[<Tox[F> - s eT
pely<Tpbx, CTo> b x T >
<1'f<fnthen<t1>t—+x e]se<t2> = x fideex el

Here, A\ is the set of formulae defined as follows:

Definition 2.3: true, false ¢ A
(TP x, (Tymx T 5 T=T, e
proxellidtorx e T > p(T) e A
Prxely (oo x €T = Plr) e A
vl, ?2, %3 AN P4 THEN Wz ELSE ?3 FI o« A
e, (vx)ed > ((Yv)) e A\

As usual we will use some deviations from the strong syntactical rules of notation
in order to increase readability. Especially, we will omit the sort part & x
whenever it is clear from the context. Furthermore, we will use the notaticnal
abbreviations Y, $1V‘92, ?1’\?2’ \Pl = ?2, etc. for the conventional boolean

operations that are easily expressible by IF-THEN-ELSE-FI. Another conventional
notation is ((Jv)y) for —;((b’v)-—mp).

The set {/\ of formulae is called the (object) language of S, £, TT . He write
ACS, S, T) in order to express the underlying items explicitely. The variable
sets are assumed to be fixed in the sequel. If we take only the first two lines
of definition 2.3, we get a subset of A, called the equational language of S,f2
and denoted by H(S, {2). We will not explain the semantics of these Tanguages

in detail but adopt the usual conventions (see, e.g.[14] or any text book on
Togic).

Now we have the tools to give a precise definition of specification.

Definition 2.4: A specification is a quadruple D=<¢S, R, TT, C> where S is a set of
sorts, S¢ 1s a signaturé over 5, 17 1is an S*-sorted set of predicates, and
CeA(S,R,T) is a set of conditions. The specification is called equational

iff CeH(S,0). R

In equational specifications, TU is empty. Therefore we write D=¢S,Q2, C) if we
have an equational specification. The signature Q ~ viewed as a graph - is
called the graph of the specification.

Definition 2.5: A model [or interpretation) of D is given by
(1) an S*-sorted set A: A~>S* with the properties

-1
(1.1) xA = # P L for all x,y ¢ S®
(1.2) o)Al = xalx yat !
(2) an assignment of a function W xa Lo sa™l o each operation whxs €%

(3) an assignment of a relation ¥ ch_l to each predicate T x ¢[T.
Equality must be interpreted by a congruence relation on A.

(4) C is satisfied (i.e. each formula in C evaluates to true when assigning

185
arbitrary values of appropriate sorts to the free variables).

Definition 2.6: Let D=XS,R,T,C> be a specification, and let Bl’ Bzc-ﬁ,:=/\(5,sa,TT).

B1 AB2 means that 82 is a logical consequence of Bl’ i.e. B2 is satisfied in each

model of <A, Bl>. We shortly write D& B instead of C 3\5.

Specifications can be related by specification morphisms in a natural way. Let
Di=<si’ Qs Ty C1>’ i=1, 2, be specifications, f'=(h, gy Q — Q be a

signature morphism, and g : TT —>]T be a mapping such that TT h= g“.TT2 The

triple f=(h,q, ,9,) can then be extended to a mapping

L)

f: A f—>/\2 s
where /\1=/\(Si,§2i,TT1), i=1l, 2, by replacing each occurrence of a sort x by xh,
of an operation symbol w by wg, , and of a predicate symbol w by mg, . (Without

restricting generality, we assume that there are variables (v b»xh) for each
variable (vrrx).)

Definition 2.7: A specification morphism f:D1—~>D2 is a triple f=(h,q,, .9,) with

the properties
(1) £'=(h,9,,) is a signature morphism, f':Q,—> Q,

(2) gy : T ——>TT2 satisfies gy TT TT h

(3) for each formula Be A, if Dl'= B then Dzh BF.
Composition of specification morphisms is defined by composition of the constituent
mappings, separately for each component. It is easily checked that the criteria

of a category are satisfied.

Definition 2.8: The category of specifications is denoted by spec. By spec= we
denote the fuTl subcategory of equational specifications.

We are now ready to prove our main result: spec and spec inherit the existence of
pushouts from their signatures sign Let T, T© be the forgetful functors

T :spec—»sign resp. I : spec —»sign sending each specification to its
signature (co sidered as a graph).

Theorem 2.9: spec and spec™ have pushouts. 7" and T~ respect pushouts.

Proof: Let fl:D1—~>D2 and f2:D1——->D3 be specification morphisms in spec. We
construct D4, f3 D2-—>D4 and f4:D3——>D4 as follows (cf. figures 1 and 2).

Let f. =(h ,g“, g IR ; =(h.,gm), D1= (Si, §li, TYi, Ci> , 1=1, 2, 3, 4.

We def1ne 92 f‘ to be the pushout of fi and fé in sign (cf. theorem 2.1)
and TT4, 93, g4 to be the pushout of g?, gg in set. ﬂh: ﬁi wasz is then obtained
in the same unique way as §24 in the proof of theorem 2.1 (cf. fig.2). Conditions
Cy are defined as follows: C,= {Bf D BBl v {B?ﬁ }D3b B} (or any set of
formulae that is logically equ1va1ent)

We claim that D4, f3, f4 constructed this way form a pushout of fl’ 2 in spec.

In order to prove this, let D5, f5 D2—->D5, fs D3—~>D5 be such that f1f5 f2f6

It follows that f1f5 fzfé and 9195_9296 . and thus there is exactly one f;-sz-;s?5

186

T s T LFlof! Ry T aTaa® qMqlzql
and exactly one 9711y FT7 such that f3f7 f5, f4f7 f6 resp. 939505 9,97=9¢-
Therefore there is at most one morphism f7:D4——>D5 in spec satisfying f3f7=f5
and f4f7=f6, namely f7=(f},g§ }. That f7 is in fact a morphism in spec follows
from the definition of C,: if D4=vB, we have B=B’?§ and Dzr B or B=B‘?A and

4
D3::B'. In the first case, we have Dsh B'?é since f5 is a morphism. Obviously,

B‘?szB‘($3?})=(B’%é)?7=8?}. The second case is proven in the same way.

Pushouts in sgggz are constructed in the same way. That T" and T respect
pushouts is cTear from the definition. /1!

If we consider other languages of logic, e.g. first-order predicate calculus,
propositional calculus etc., similar results hold and can be proven in the same
way. The main drawback of the above construction is the rather clumsy set of
conditions C4. It can be shown, however, that simplifications are possible:
condition (3) of definition 2.7 can be replaced by th:Cl?, and C4 can then be
defined in the above proof to be simply C4=C2?3\:C3?4. The verification of these

propositions requires a little bit heavier machinery, and we cannot give the
details here.

3. Labelled and partial specifications

To use specifications and specification productions in practical situations, as [3]
do with graphs, it is desirable to generalize the tools developed so far, to
include labels and partiality.

The symbols that we used for sorts and operations in specifications, until now,
are only a notational means to identify the different items in the specifications.
We see that the morphisms do not care about these notations..On the other hand

we feel that these names, although sometimes called "syntactical sugar", play an
essential part as a guide through large specifications, and we should provide for
taking these names to be part of the structure and to be respected by morphisms.
In conjunction with partiality, we can have the possibility to alter these names,
but these alterations must be made explicit and are formally contained in the
calculus and not mere arbitrary notation, as we shall learn from the examples.

For these purposes we need a globally defined set of Tabels.

[211 give a motivation for the use of partial graphs which we accept also for
specifications: if we want to describe syntactic operations by these formalisms,
operations that replace only parts of graphs, it would in general not be a
natural thing to add unnecessary information, e.g. context to make the occurring
partial graphs or specifications total, and to increase at the same time the number
of replacement rules, since there are many possibilities to make these graphs or
specifications total. Instead, we should be able to express handling of partial
specifications directly.

To give an example, let us think of the specification of our array with naturai
numbers as entries and a finite subset of natural numbers as keys. Imagine that
the above array of nat specification is supplied with Tabels "array", "nat",
“new", etc., such that we have a labelled specification with explicit labels.

Now, we want to alter the specification by deleting nat and inserting int for nat.
The names (labels) of all items not directly affected by this substitution shall
be maintained. This can be expressed by the production of figure 3. It is obvious
how ‘p and p' shall map {'p: keywsnat, s+ssucc, etc.; p' analogouslyj. The
Tabelling is expressed by the symbol 1.

Here, the gluing specification has no Tabels. That is why there are no labels to

187

be respected by the morphisms 'p and p' and so the production can alter the labels
as required. It is obvious how the specification of example 1.3 has to be
supplemented by labels. On the other hand, the application of the production must
care for saving the labels of the old specification which are not affected.

We need not emphasize the fact that there are possibilities to handle labelling
implicitely when writing down a specification, thus simplifying the work of
writing specifications in a practical situation. Here, the explicit handling
suits to the formal treatment.

'B K B'

[ttt e TR g e omrmm s - g [il 1
sorts i\ isorts i1 osorts |
i Aat 1 "nat" v key E P Tt T tint! .
opers i iopers ! 1 opers f
0:—nat 1 "0" V10 < key o G:—»jnt 1o ;

succ:nat —nat 1 "succ" !, rs:ikey—key t 1 osucc:int —int 1 "succ"
- sEp i : p;, pred:int —int T "pred* !
preds i !preds | preds i
<:nat=nat 1 "= ! £ rkey = key o =rint=int 1 "< i
— § H 1 - !
conds R L TR 4 ! conds :
n<succ(n) | ' n<succ(n) '

: ¢ pred(n)zn

! i succ{pred(n))=n !
! , pred{succ(n})=n N

————————————————— o v o e e e e e

Figure 3: production to substitute nat by int

Guided by the definitions of total specifications in section 2, by our intuition
{example), and definitions of partially labelled partial graphs [217], we give the
fallowing precise formulation:

Definition 3.1: The category spec-, called the category of partially (LS, LQ_, LTr)

-labelled specifications, has objects D=<¢S, @, T, C,AD>, where S, U, v, C
are items as in the definition of spec, except of the reguirement that °Q, Q° ,

need only be partial pappings, but those operations and predicates occurring
in C must be total; and A=(AS,KQ, Aﬂ) is a triple of three partial mappings

XS: S*—)LS, XQ: Q—-\LQ R XU:TT ~—>Lqr, and this category has morphisms
f:Dl——>D2, f=(h, g, ,9x) which obey the same laws as in spec but additionally
the labelling of sorts, operations, and predicates is transported by morphisms
if it is defined.

In [211, the respective morphisms for graphs are called “weak morphisms™.

Theorem 3.2: spec- has pushouts,

proof: The argument is as with spec, although we must be careful with some of the
arrows because of the partiality of the involved mappings. 1/

In analogy to the discussion of the last section, the same result holds for the
subcategories of spec- determined by a special calculus, as e.g. equational
calculus or first order predicate calculus. A pushout diagram in such a
specification category implies a pushout diagram in the underlying graph-category,
i.e. we have a forgetful functor from the specification catagory to the graph
category respecting pushouts.

188

We hint further that it is useful for practical situations to be sure that
applying a production to a total specification yields a total specification,
even if this production consists of partial specifications. [21] give sufficient
criteria for this problem in the graph case, which carry over to the spec case.

We give an example in figure 4 to demonstrate that it is conveniently possible to
use productions for relabelling of operations. Here, the partiality of operations
provides the economy of specifying not more than required. This production can be
applied to any specification where we find an analysis pushout. Obviously, all
other labels of the analysed specification are saved via the pushout-complement.

t ¢ ——— —
 Succ: .—» . 1 "succ® F”“E‘“ ST . —>. P s W e
E) - v —_

e e e e = — e = — =

Figure 4: production to relabel the successor operation

4. Parametric specifications

Parametric specifications are a very convenient means for the specification
process. We do not care about semantical problems of parametric specifications
cf.[15], but discuss a more syntactically oriented treatment following [71. To
give an example, the concept of an array is rather independent of the type of its
entries and keys. The only requirement is that there should be an "eg"-relation

on keys and a constant entry serving as the value of new(i). Thus we would like to
give specifications as follows.

Example 4.1: The parametric specification of array(key, entry) is:
params key, entry, eqg, O
sorts array, key, entry

ops 0 : —»entry
- new: —» array
[)=, ¢ arrayx key=entry — array
.[.] : arrayx<key — entry
if.then.else.fi : bool = entryxentry — entry

preds eq : keyx=key

conds new[il =10
(afil:=n){j] = if 1 eq J then n else a[j] fi

We denote the formal parameter part by the params symbol. In spec-, an embedding
will serve for this purpose. A parameter assignment should map formal parameters
to actual parameters which suit in type and behaviour. So, assignments are well
modelled by morphisms. To apply a parametric specification to an actual
parameter is intended to substitute the formal parameter specification by the
actual parameter specification and this is done by the pushout construction.

Definition 4.2: A parametric specification p:F—P is an embedding in Spec-.
X parameter assignment for p:F—>P is a morphism f:F —A. The result of the

application of the parametric specification p:F—P to the actual parameter A
via f:F—A is the pushout-object of the pushout of p and f.

In our examples with arrays, 1.3 and 4.1, we have:

189

(key, entry) y array (key, entry}
L p.o. l
({1:10], nat) > array ([1:10], nat)

Not that the actual parameter A can itself be a parametric specification q : E— A
with a formal parameter part E. Thus, sequences of applications of parametric
specifications can be constructed. The following result for spec = [6,7] carries

over to spec and spec -:

Theorem 4.3: The application of parametric specifications to parametric speci-
Tications 1s associative.

When we have a parametric specification, we can use it as well as a production by
duplicating the parameter. The idea is demonstrated by figures 5 und 6.

params d,=

sorts d

preds < :d = d

conds X ¢ X
XY AN YEZ=aX<1Z
XY A YeX=X=Y
X<y v YezX

Figure 5: Parametric specification of a total ordering

Figure 6: Production to generate total orderings

Taking parametric concepts, supplementing them to productions, and storing these
productions in a 1ibrary is a promising tool for editing specifications. Using the
production of figure 6, when we want to specify any situation where a total
ordering is involved, we need only give the few axioms that determine the specific
ordering. For example, for natural numbers we need only give

sorts: nat
ops: 0 : — nat

succ: nat — nat
preds: ¢ : nat = nat
conds: X s succ(x)

190

App]ying the production of figure 6 to this specification, the ordering axioms are
inserted, and we get the specification of example 1.1.

We can imagine that for more complex concepts there may be a considerable economy
in using parametric specifications as replacement rules or productions.

5. References

1. ADJ (Goguen, J.A.-Thatcher, J.W.-Wagner, E.G.):
An initial algebra approach to the specification, correct ness, and
implementation of abstract data types. Current Trends in Programming
Methodology IV, ed. by R. Yeh, Prentice Hall, New Jersey 1977

2. ADJ {Thatcher, J3.W.-Wagner, E.G.-Wright, J.B.):
Data type specification, parametrization, and the power of specification
technigues. Proc-Sigact Annual Symp. Theory Comp., 1978

3. Brendel, W.-Bunke, H.-Nagl, M.:
Syntaxgesteurte Programmierung und inkrementelle Compilation. Proc.
GI-7. Jahrestagung, Informatik Fachberichte 10, 57-73, Springer
Berlin 1977

4. Burstall, R.M.-Goguen, J.A.:
Putting theories together to make specifications. Proc. 5th IJCAI 77,
MIT, Cambridge, Mass. 1977

5. Ehrich, H.-D.:
Extensions and implementations of abstract data type specifications.
Proc. MFCS'78, ed. by J. Winkowski, Lecture Notes in Computer Science,
Vol. 64, Springer-Verlag, Berlin 1978, 155-164

6. Ehrich, H.-D.:
On the theory of specification, implementation , and parametrization
of abstract data types. To be published

7. Ehrich, H.-D.-Lohberger, V.G.:
Parametric specification of abstract data types, parameter substitution,
and graph replacements. Proc. Workshop “"Graphentheoretische Konzepte in
der Informatik", Applied Comp. SC., Carl Hanser Verl., Muenchen-Wien 1978

8. Ehrig, H.-Kreowski, H.-J.-Maggiolo-Schettini, A.-Rosen, B.K.- Winkowski, J.:
Deriving structures from structures. Proc. MFCS 1978, ed. by J. Winkowski,
Lecture Notes in Computer Science, Vol. 64. Springer-Verlag, Berlin
1978, 177-19%

9. Ehrig, H.-Kreowski, H.-J.-Padawitz, P.:
Stepwise specification and implementation of abstract data types.
Proc., 5th Intern Collog. on Automata, lLanguages, and Programming,
Venice 1978

lo. Ehrig, H.-Pfender, M.~Schneider, H.-d.:
Graph-Grammars-an algebraic approach. Proc. Conf. Switch. Automata
Theory 1973, 167-180

11. Goguen, J.A.:
Correctness and egivalence of data types. In: Proc. Conf. on Alg. Syst.
Th., Ydine, Lecture Notes In Comp. SC., Springer-Verl., Berlin 1975

12. Goguen, J.A.:
Abstract errors for abstract data types. In: Proc. Conf. on Formal
Description of Programming Languages, Ed. by E.J. Neuhold, North-Holland
Publ. Company, Amsterdam 1976

13.

14.

15.

16.

17.

18.

19,

20.

21.

191

Guttag, J.V.:
The specification and application to programming of abstract data types.
Techn. Report CSRG-59, Univ. of Toronto 1975

Kreisel, G.-Krivine, J.L.:
Model1theorie, Springer, Berlin 1972

Lehmann , D.~-J.-Smyth, M.B.:
Data types. Proc. 18th IEEE Symp. on Foundations of Computing. Providence
R.I., 1977, 7-12

Liskov, B.-H.-Zilles, S.N.:
Specification Tehcniques for data abstractions. IEEE Transact. Softw.-
Eng., Vol. SE-1 (1975), 7-19

Majster, M-E.:
Data types, abstract data types and their specification problem. Report
TUM-INFO-7740, Techn. Univ. Muenchen, 1977

Manes, E.G.:
Algebraic Theories. Springer-Veri., New York 1976

Parnas, D.L.:
A technique for module specification with examples. Comm. ACM 15 (1972)
330-336

Rosen, B.K.:

Deriving Graphs from Graphs by appiying a production. Acta Informatica 4,
337-357 (1975)

Schneider, H.J.-Ehrig, H.:
Grammars on partial graphs. Acta Inf. 6, 297-316 (1976)

