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Abstract  - Categories of  spec i f i ca t i ons ,  equational spec i f i ca t i ons ,  and p a r t i a l l y  
l ~ p a r t i a l  spec i f i ca t ions  of  abs t rac t  data types are shown to have pushouts. 
These resu l ts  a l low us to carry over the machinery of  graph replacement to speci-  
f i c a t i o n s .  We give some examples. Parametr izat ion is considered as an important 
special  case of  replacement. 

1. In t roduc t ion  

In the development of  programs and program systems, the i n i t i a l  spec i f i ca t i on  phase 
is  o f  increasing importance. I t  is  essent ia l  to have a c lean, unique, complete, 
and implementation independent descr ip t ion  of  what the system is intended to do in 
order to cope wi th  many problems of  r e l i a b i l i t y .  Such a spec i f i ca t i on  is not only 
necessary as a documentation and communication basis fo r  the programmer team. Also, 
l og ica l  er rors  can be detected and debugged in an ear ly  s ta te ,  seperate from imple- 
mentation er rors  occuring l a t e r  in the implementation process. Moreover, implemen- 
ta t ions  or implementation steps can be matched against  the requirements of  the 
spec i f i ca t i on ,  thus c o n t r o l l i n g  the correctness of  the program development. The 
ro le  of  spec i f i ca t i on  and the re la ted concept of  modular i ty  has been studied by 
Parnas !19] , Liskov and Z i l l e s  L19 and others.  

There is a great need fo r  formal methods to support these tasks. Program modules 
have been modelled by abs t rac t  data types !16, 13j , i . e .  by 
sets of  operat ions on various domains i n t e r r e l a t e d  in a cer ta in  way. Mathematical ly 
speaking, abs t rac t  data types are abs t rac t  a lgebra ic  s t ruc tures .  To speci fy the 
desired proper t ies  of  a program module means to speci fy  a class of  abst rac t  data 
types, and th i s  means to give a presentat ion of  a class of  a lgebra ic  s t ruc tures .  

There are wel l  approved methods in algebra and log ic  to give presentat ions and 
inves t iga te  the s t ruc ture  of  t h e i r  models. Equational presentat ions and correspon- 
ding classes of algebras are espec ia l l y  well  understood [ i ,  2, 4, 5, 6, 9, i i ,  12, 
18] . Spec i f ica t ions consis t  o f  a set of  sor ts ,  a set of  operat ion symbols wi th  
in format ion about t h e i r  domains and codomains, a set of  predicates ~ f o r m a t i o n  
about t h e i r  domains, and a co l l ec t i on  of  condi t ions or axloms. 

We give some in t roduc to ry  examples that  may serve to i l l u s t r a t e  the basic ideas. 
In our examples, we use a somewhat ad hoc nota t ion which can be viewed to be an 
informal a lgebra ic  spec i f i ca t i on  language. 

Example 1.1: The natural  numbers wi th  t h e i r  order ing re l a t i on  can be spec i f ied  
as fo l lows.  

Sorts:  nat Preds: ~ : nat ~ nat 
O: ~ nat ~ x ~ succ (x) 
succ: nat ---) nat x ~ x 

x~  y ^  y ~  z ~ x ~  z 
xm y ^  y ~ x ~ x =  y 
x ~ y v y ~ x  
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Example 1.2: The in terva l  I to 10 of natural numbers w i l l  be used in the next 
e'xampl e. 

Sorts: ~ :10]  
0ps: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10: -->[1:10] 

suc : [ 1 :1014  [1:10] 
Preds: ~ : [1:10] x [1:1~ 
Conds: I ~ 2 ,  2 ~3 . . . . .  9 410 ,  x ~  y ~ y ~ x ~ x  = y  

x c x  x ~ y v y ~  x 
x < y A  y ~ z ~ x ~ z suc (1)=2 . . . . .  suc(9) = 10 

Example 1.3: We give a spec i f i ca t ion  of  an array with the components consist ing 
of  the sorts,  ops, preds, and conds of  the previous examples plus the fo l lowing:  

Sorts: array 
0ps: new: ~ array 

• ~.] :=. : array ~ ~:10] ~ nat----~ array 
[ ' ] [ ' ] i  = : array ~ ~I:10] - - >  nat 

Conds: 0//(a [ i ]  : :  n) [ j ]  = i f  i eq j then n else a ~j] f i  new 

I n t u i t i v e l y  speaking, a [ i ]  := n assigns value n to the i - t h  component of array a, 
whi le a [ i  ] denotes the value stored in that  component. 

Example 1.4.:  We extend the previous example by an operation sort ing a given array• 
The fo l lowing operations and condit ions are added to those o f  the previous example. 

0ps: sort :  array ~ array 
~ d s :  i ~  j =)sort (a)  [ i ] ~ -so r t (a )  [ j ]  

(3P) [ (H i )  a [P( i )~  = sort(a) [i]" 
A ( P ( i )  = P(j)  =7 i = j ) A ( ~ ' i )  (3 j )  P(j)  = i ]  

The f i r s t  condi t ion expresses what i t  means for  an array to be sorted, and the 
second condi t ion expresses that  the contents o f  the array may not be changed but 
only permuted. I f  we would l i k e  to r e s t r i c t  ourselves to equational speci f icat ions 
where the condit ions are jus t  sets of  equations, we could do so by viewing predi-  
cates c : x as operations ~ : x- -~ bool, where bool has two constants, true and 
fa lse,  equipped with appropriate boolean operations. The f i r s t  three examples are 
eas i ly  rewr i t ten in equational form, but there seems to be no way to express the 
idea of  sor t ing by equations as convenient ly as example 1.4 does. 

One p o s s i v i l i t y  is to use an a u x i l i a r y  opera t ion  
sort1 : array ~ : 1 0 ]  - ->array 

and express the algori thm of  bubble sort  by the fo l lowing equations: 
sor t (a)  : s o r t 1 ( a : i )  
s o r t l ( a , i )  = i f  i =%0 then a else 

_ i f  a [ i ]  ~ - a [ s u c ( i ) ]  then so~t l (a ,suc( i ) )  else s o r t 1 ( a ' , l )  f i  f i  
where a' = (aLsuc( i ) ]  := a l l ] )  Llj := aLsuc{ i ) ] .  
We feel  that  example 1.4 gives a more adequate and easier to understand descrip- 
t ion  of  what sort ing means. 

Although the expressive power o f  equational spec i f i ca t ion  is p r i n c i p a l l y  s u f f i -  
c ient  for  a l l  pract ica l  cases L2, 17] , convenience requires more comfortable 
spec i f i ca t ion  language. In the present paper, we therefore use second-order pre- 
d icate calculus. 

With increasing complexi t iy  of program systems, the design process of speci f ica-  
t ions must be given more and more a t ten t ion•  A structured and modular approach to 
spec i f i ca t ion  design requires means to manipulate pieces o f  spec i f ica t ions,  put 
them together,  and consis tent ly  replace parts of them. For example, i t  is very 
convenient to give speci f icat ions with formal parts, socal led parametric speci- 
f i ca t i ons ,  where the formal parts can be replaced by d i f f e ren t  actual spec i f ica-  
t ions L6, 7]. Other types of replacement operations occur when spec i f icat ions are 
to be modif ied, e.g. to remove errors or to adapt the system to changed user needs 
i l l .  
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In the f i e l d  of graph grammars, methods and tools for handling replacement opera- 
t ions on graphs have been successful ly developed and applied to various s i tuat ions.  
The purpose of th is paper is to demonstrate that these ideas can be carried over to 
tackle some problems of speci f icat ion design. 

In the categorical approach to graph grammars, the mechanisms of graph rewr i t ing 
have been formalized by means of pushouts in the category graph of graphs ~0, 20, 
21]. I t  has been realized that these mechanisms can be appITe-d-to any structures 
forming a category with pushouts C8]. Therefore, we investigate the existence of 
pushouts in various related categories of speci f icat ions. The usefulness of re- 
wr i t ings on these specif icat ions is demonstrated by examples. The techniques and 
results carry over to p a r t i a l l y  label led part ia l  speci f icat ions,  which su i t  better 
to applications. Here, we refer to [21]. 

In a certain sense, specif icat ions can be viewed as graphs enriched by conditions 
ConveHsely, i f  we forget about the condit ions, we get the socalled syntax graph of 
a speci f icat ion.  Thus, there are forgetful  functors from specif icat ion categories 
to corresponding graph categories. I t  is shown that these functors respect pushouts. 
Therefore, speci f icat ion r e w r i t i n ~ e f f e c t  corresponding graph rewrit ings on the 
syntax graphs. 

Parametric specif icat ions can be considered as special cases of rewri t ing rules, 
giving the rules how the formal parameter is substituted by the actual parameter. 
We i l l u s t r a t e  by an example how parametric specif icat ions and corresponding 
speci f icat ion productions can be used in the edi t ing process of speci f icat ions. 

2. Categories of specif icat ions and the i r  graphs 

Let S be a set of sorts. S ~ and S ÷ denote the sets of words resp. nonempty words 

over S. Elements x ~ S ~ w i l l  be called sorts, too. A signature over S is a mapping 

]~ :~- ->S.  Mappings into a sort set S are called S-sorted sets or simply sorted 

sets, i f  the sort set is clear from the context. Thus, a signature ~ is  an S~-sorted 

set, and i t s  elements are called operations. I f ~  ~->xs is in ~ ,  x ~ S ~, s c S, 

we cal l  x the domain sort and s the codomain sort o f ~ - > x s  (or jus t  of ~ ). A co- 

domain sort always has word length i .  32 determines two mappings: o~ : w ~->x and 

7 ~ : ~ - ~ s  for  e a c h ~ , ~  xs in ~Z, the domain resp. codomain mappings. 

We assume that the reader is fami l ia r  with the category graph of graphs ~0, 20, 

2 1 ] .  A s ignature1~wi l l  sometimes be considered to be that graph with nodesS ~, 

edges ~ , source f u n c t i o n ~  , and target function%L ~. Siqnature morphisms 

f : ~ _ i - ~ 2  are those graph morphismus f = (h,g) h : S~-- ,S~,  g : ~J 1 -~ ~2' 
where h is a length preserving st r ing homomorphism. Thus, h is completely deter- 

mined by i t s  res t r i c t ion  to S 1 and S 2, also denoted by h : S I - -~S 2. 
÷ 

If%Z i : ~  i ~ 7  S i ,  i = 1,2, the morphism condit ion is equivalent t o / L l h  = g]~2 
(we wri te function composition and appl icat ion from l e f t  to r igh t ,  e.g. x f  and xfg 

instead of the more conventional f (x )  and g f (x ) . )  Let sign be the subcategory of 

graph consisting of a l l  signatures and i t s  morphisms. The fol lowing resul t  carries 

over form graph. 
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Theorem 2.1: sign has pushouts. 
Proof: We do not give the complete proof since i t  parallels that in the graph case 
-[I-0-~,20, 21]. For later reference, we give the pushout construction in sign. 

Let f l : Q l - - ~ Q 2 "  f2:Q1--->Q3 be morphisms in sign. We construct Q4' f3:~2--~Q4 ' 
f4:Q3--~Q4 such that f ig . l (1 )  is a pushout: let  Q i :~ i - -~S+ i and f i=(hi ,g i  ) for 

f l  hl gl 
£ ~ I - - ~  > ~2 S I -  ~ S2 ~1  -~ ~2 

(I) f h (2) h 3 g (3) g3 

f4 h4 g4 
~'~'4 S 3 - - - >  S4 ~3 > ~4 

f2 

C'~ 3 . . . . .  

figure I 

i=1, 2, 3, 4, and let  h 3, h 4 and g3' g4 be given such that the diagrams in f ig . l (2 )  
and (3) are pushouts in the category set of sets. Due to the definit ion of 
morphisms in sign, the diagram in f ig.2 is commutative. The upper quadrangle 
coincides with f ig1(3), i .e. i t  is a pushout. Thus, there is a unique mapping 

~4: ; " "  + Q4 °"~$4 making the whole diagram in f ig.2 commutative. / / /  

~2 . . . .  g,/I 2 
/ 

h I 

/ 
+ 

S 1 

g3 

g2 

h 3 

h 2 

g4 ~ 
/ , 

t 

i I 

+ 

----> S 4 

P~3, / h4 

• + 

S 3 

f i gure2  

Now we continue to develop our specification language. Given a sort set S, let  
: ~ -~S*  be an S~-sorted set of predicates. I f  ~ x  is in 7-[, x is called the 

domain of the predicate. We suppose that an S-sorted set_Vi:Vi-~S of individual 
variables is given, together with an S~-sorted set V~ : V~ --~ S* of predicate 
variables and an S+-sorted set V~ :V~--->S + of operation variables. Let 

V=V i u VuVw . 

Let a sort set S, a signature Q,  predicates~and variables Vi,V ~ , V~ over S be 
given, and let  al l  these sets be dis joint .  Terms and formulae are now constructed 
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as usual in sorted second-order predicate calculus with equal i ty [ 14]. We short ly 
introduce our notation. 

The S~-sorted set T of terms ( including term n-tuples) is given as fol lows: 

Definition 2.2: v~s  eV i >. <v> ~-~ s ~T 

<'Cl>F~>x , <~2)~y ~T ~ <Zl ,T2~'xy ET 
~ x s  ~P_, C' t -) t~x eT >- <~<T;> ~,x~o>~-> s e T  

F ~ x s  eV~ , < ~ x  ~T ~ <~FC-cb~x]F> ~-e s eT 

< i f ~ t h e n 4 ~ l > ~ X  else ~ 2  > ~-~x f i > F - ~ x  e 

Here, -/~ is the set of formulae defined as fol lows: 

Def in i t ion 2.3: true, false E /~ 

P~x~V~ ,KT>~x  ET > P(T)  ( ~  

~1' ~2' ~3 ~ ~ > IF ~1 THEN ~2 ELSE ~3 El # 
~ A ,  (v~x)~V > ((Vv)~) ~/~ 

As usual we w i l l  use some deviations from the strong syntactical rules of notation 
in order to increase readabi l i ty .  Especial ly, we w i l l  omit the sort part ~ x  
whenever i t  is clear from the context. Furthermore, we w i l l  use the notational 
abbreviations ~ ,  ~1v~2 , ~1A~2 , ~1 ~ 2 '  etc. for the conventional boolean 

operations that are easi ly expressible by IF-THEN-ELSE-FI. Another conventional 
notation is ( ( ~ v ) ~ )  for ~ ( ( V v ) ~ ) .  

The set ~ of formulae is cal led the (object) language of S, ~ , TF Ne wri te 
( S, ~ , TT ) in order to express t h e ~ l y ~ s  exp l i c i t e l y .  The variable 

sets are assumed to be f ixed in the sequel. I f  we take only the f i r s t  two l ines 
of de f in i t i on  2.3, we get a subset of I L ,  called the equational language of S, 
and denoted by H( S, ~ ). We w i l l  not explain the semantics of t ~ g u a g e s  
in detai l  but adopt the usual conventions (see, e .g . [ 14 ]o r  any text  book on 
log ic) .  

Now we have the tools to give a precise de f in i t i on  of speci f icat ion.  

Def in i t ion 2.4: A speci f icat ion is a quadruple D=<S,~,TT, C>where S is a set of 
sorts,~ ~_ f s a signature over'S, ~ is an S*-sorted set of predicates, and 
C c ~ ( S , ~ , T T )  is a set of condit ions. The speci f icat ion is cal led equational 
i f f  C c H ( S , ~ ) .  

In equational speci f icat ions,  TT is empty. Therefore we wr i te D= { S , ~ ,  C> i f  we 
have an equational speci f icat ion.  The signature ~ -v iewed as a graph - is 
called the graph of the speci f icat ion.  

Def in i t ion 2.5: A model ( or in terpretat ion)  of D is given by 

( I )  an S*-sorted set A: A--~S* with the properties 
xA-1 (1.1) # for  a l l  x,y ¢ S ~ 

( i .2 )  (xy)A - I  = xA -1X yA -1 J 

(2) an assignment of a function ~:xA-1--~sA -1 to each operation ~ x s  ~ 

(3) an assignment of a re lat ion ~ cxA - I  to each predicate ~ x  ÷TT. 
Equality must be interpreted by a congruence relat ion on A. 

(4) C is sat is f ied ( i .e .  each formula in C evaluates to true when assigning 
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arbi t rary values of appropriate sorts to the free variables). 

Definit ion 2.6: Let D=<S,~,TT, C> be a specif icat ion, and le t  B1, B2cA :=A(S,SL,TT). 

BI~AB 2 means that B 2 is a logical consequence of B 1, i .e .  B 2 is sat isf ied in each 
model of CA,  BI>. We shortly write D~ B instead of C ~ B .  

Specifications can be related by specif ication morphisms in a natural way. Let 
Di=<Si' Q i ' I T i '  Ci~' i=1, 2, b e  specif ications, ' f '=(h, gw) :Q l -~Q2  be a 
signature morphism, and g~ :TTI-->TT 2 be a mapping such that ITlh=gwTT 2. The 
t r ip le  f=(h,g~ ,g~ ) can then be extended to a mapping 

~: z~ I - -~A2 , 

where z~ i=A(s i , ~ i , ~ i  ) '  i= l ,  2, by replacing each occurrence of a sort x by xh, 
of an operation symbol ~ by ~g~ , and of a predicate symbol w by ITgm . (Without 

rest r ic t ing generality, we assume that there are variables (v ~xh )  for each 
variable (v~-~x).) 

Definit ion 2.7: A specif ication morphism f;DI-->D 2 is a t r i p le  f=(h,g~ ,g~ ) with 
the properties 

( i )  f '=(h,g~ ) is a signature morphism, f ' : Q 1  --->Q2 

(2) g~ : ~ 1 - - ~ 2  sat isf ies g~ TT2=TTlh 
(3) for each formula B~ z~ I ,  i f  Dlm B, then D2~B~. 

Composition of specif ication morphisms is defined by composition of the constituent 
mappings, separately for each component. I t  is easily checked that the c r i te r ia  
of a category are sat isf ied. 

Definit ion 2.8: The category of specifications is denoted by spec. By spec = we 
d'enote the fu l l  subcategory of equational specifications. 

We are now ready to prove our main result:  spec and spec = inher i t  the existence of 
pushouts from thei r  signatures sign. Let 1 ~, 1 ~: be t--~e-forgetful functors 

T':spec-->sign resp. T'=: spec=--~sign sending each specif ication to i ts  
s i g ~ r e - ~ s i d e r e d  as a graph). 

Theorem 2.9: spec and spec = have pushouts. 7 ~ and T ~= respect pushouts. 

Proof: Let fl:D1--->D2 and f2 :D I~D3 be specif ication morphisms in spec. We 

construct D 4, f3:D2-->D4 and f4:D3~D4 as follows (cf. figures I and 2). 

Let f i=(hi ,g~,  gi ) ] =(hi 'g i  ) '  Di=<Si '  ¢Zi 'TTi'  C i > '  i= l ,  2, 3, 4. 
We define ~4"  f3 '  f4 to be the pushout of f~ and f~ in sign (cf. theorem 2.1) 
and TT~, g~, g# to be the pushout of g~, g~ in set. YT4: TT~S~  is then obtained 

in the same unique way as g~4 in the proof of theorem 2.1 (cf. f ig .2) .  Conditions 

C 4 are defined as follows: C4={Bf~3 ID2mBI u{Bf~4 ID3mBI (or any set of 
formulae that is logical ly  equivalent). 

We claim that D4, f3 '  f4 constructed this way form a pushout of f l '  f2 in spec. 

In order to prove th is,  le t  D5, f5:D2--~D5, f6:D3-~D5 be such that f l f5=f2f6 . 
I t  follows that f~f~=f~f~ and glgs-g2g 6 ~ ~- ~ ~ , and thus there is exactly one f~: ~4~t~5 
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~ ' #  # such that  . . . . . . . .  resp ~ - ~  ~ - ~  and exact ly one g7" ~ 7 f3 f7- f5  ' f4 f7- f6  " ~3u7-~5 ' u4~7-u6" 
Therefore there is at most one morphism f7:D4--~D5 in spec sat is fy ing f3f7=f5 

and f4f7=f6 , namely fT=(f~,g~ ). That f7 is in fact  a morphism in spec fol lows 

'~ B' ^ and from the d e f i n i t i o n  of  C4: i f  D4m B, we have B=B f3 and D2m or B=B'f 4 

D3mB'. In the f i r s t  case, we have D5~B'~ 5 since f5 is a morphism. Obviously, 

5- ( f3f7)=(B' f3) f7=Bf7" The second case is proven in the same way. 

Pushouts in spec = are constructed in the same way. That ~ and ~=respect 
pushouts is c lear  from the d e f i n i t i o n .  / / /  

I f  we consider other languages of log ic ,  e.g. f i r s t - o r d e r  predicate calculus, 
proposi t ional  calculus e tc . ,  s imi la r  resul ts  hold and can be proven in the same 
way. The main drawback of  the above construct ion is the rather clumsy set of 
condit ions C 4. I t  can be shown, however, that s imp l i f i ca t ions  are possible: 

condi t ion (3) Of d e f i n i t i o n  2.7 can be replaced by D2~CI~, and C 4 can then be 

defined in the above proof to be simply C4=C2f 3vC3~ 4. The v e r i f i c a t i o n  of these 

proposit ions requires a l i t t l e  b i t  heavier machinery, and we cannot give the 
deta i l s  here. 

3. Labelled and par t ia l  spec i f i ca t ions  

To use spec i f icat ions and spec i f i ca t ion  productions in pract ical  s i tua t ions ,  as [ 3 ]  
do with graphs, i t  is desirable to general ize the tools developed so fa r ,  to 
include labels and p a r t i a l i t y .  

The symbols that we used for  sorts and operations in spec i f i ca t ions ,  un t i l  now, 
are only a notat ional  means to i den t i f y  the d i f f e ren t  items in the spec i f ica t ions.  
We see that the morphisms do not care about these notat ions.  On the other hand 
we feel  that  these names, although sometimes cal led "syntact ical  sugar", play an 
essent ial  part as a guide through large spec i f i ca t ions ,  and we should provide for  
taking these names to be part  of  the structure and to be respected by morphisms. 
In conjunction with p a r t i a l i t y ,  we can have the p o s s i b i l i t y  to a l t e r  these names, 
but these a l te ra t ions  must be made e x p l i c i t  and are formal ly  contained in the 
calculus and not mere a rb i t ra ry  notat ion,  as we shall learn from the examples. 
For these purposes we need a g loba l l y  defined set of labels.  

[21]  give a mot ivat ion for  the use of pa r t ia l  graphs which we accept also for  
spec i f ica t ions:  i f  we want to describe syntact ic operations by these formalisms, 
operations that replace only parts of graphs, i t  would in general not be a 
natural thing to add unnecessary informat ion,  e.g. context to make the occurring 
par t ia l  graphs or spec i f icat ions t o t a l ,  and to increase at the same time the number 
of  replacement ru les,  since there are many p o s s i b i l i t i e s  to make these graphs or 
spec i f icat ions t o t a l .  Instead, we should be able to express handling of par t ia l  
spec i f icat ions d i rec t l y .  

To give an example, l e t  us th ink of the spec i f i ca t ion  of  our array with natural 
numbers as entr ies and a f i n i t e  subset of  natural numbers as keys. Imagine that  
the above array of nat spec i f i ca t ion  is supplied with labels "array" ,  "nat" ,  
"new", e tc . ,  such that we have a labe l led spec i f i ca t ion  with e x p l i c i t  labels.  
Now, we want to a l t e r  the spec i f i ca t ion  by de let ing nat and inser t ing in t  for  nat. 
The names ( labels)  of a l l  items not d i r ec t l y  af fected by th is  subst i tu t ion  shal l  
be maintained. This can be expressed by the production of f igure 3. I t  is obvious 
how 'p and p' shal l  map ( 'p:  key~-~nat, s ~ s u c c ,  e tc . ;  p' analogously). The 
l abe l l i ng  is expressed by the symbol I .  

Here, the gluing spec i f i ca t ion  has no labels.  That is why there are no labels to 
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be respected by the morphisms 'p and p' and so the production can a l te r  the labels 
as required. I t  is obvious how the specif icat ion of example 1.3 has to be 
supplemented by labels. On the other hand, the application of the production must 
care for saving the labels of the old specif icat ion which are not affected. 

We need not emphasize the fact that there are poss ib i l i t i es  to handle labe l l ing 
imp l i c i te l y  when wr i t ing down a speci f icat ion,  thus simpl i fy ing the work of 
wr i t ing specif ications in a practical s i tuat ion.  Here, the exp l i c i t  handling 
suits to the formal treatment. 

'B K B' 

sorts 
"nat" 

opers 
~ n a t  1 "0" 
succ:nat-~->nat 1 "succ" 

preds 
~ :na t~na t  1 " ~ "  

i C o h m  s 

n~succ(n) 

I 

L . . . . . . . . . . . . . . . . .  

p . . . . . . . . . . . . . .  
J 

, :sorts 

I 'opers 
I, : ~ k e y  
,,p ,s:key~key 

Ipreds 
i ~ " ~ Y  × key 
L . . . . . . . . . . . . . . . . .  

p l  

> 

sorts 
" in t "  

opers 
~ i n t  1 "0" 
succ: int~-~int 1 "succ" 
pred: in t - -> in t  T "pred" 

u preds 
I ~ t ~ i n t  1 " ~ "  i 

I conds I 
' n~succ(n) 
I I 
, pred(n)_~n 
: succ(pred(n))=n I 
' pred(succ(n))=n 
I . . . . . . . . . . . . . . . . .  A 

Figure 3: production to substi tute nat by in t  

Guided by the def in i t ions of total  specif ications in section 2, by our i n tu i t i on  
(example), and def in i t ions of pa r t i a l l y  labelled part ia l  graphs [21],  we give the 
fol lowing precise formulation: 

Def in i t ion 3.1: The category spec-, called the category of pa r t i a l l y  (L S, LQ, L~ ) 

- label led speci f icat ions, has objects D=<S, ~ ,  IT ,  C,~>, where S, ~ ,  T~, C 
are items as in the def in i t ion  of spec, except of the requirement that °R,  ~o , 

need only be part ia l  pappings, but those operations and predicates occurring 
in C must be to ta l ;  and ~ : ( ~ S , ~ , ~ )  is a t r i p l e  of three part ia l  mappings 

~S: S~--~Ls' ~ : ~ - - ~ L ~ ,  ~ : ~ - - - ~ L ~ ,  and th is  category has morphisms 

f:D1--->D 2, f=( h, g~ ,g~ )  which obey the same laws as in spec but addi t ional ly  
the label l ing of sorts, operations, and predicates is transported by morphisms 
i f  i t  is defined. 

In [21] ,  the respective morphisms for graphs are called "weak morphisms". 

Theorem 3.2: spec- has pushouts. 

proof: The argument is as with spec, although we must be careful with some of the 
arrows because of the pa r t i a l i t y - -~  the involved mappings. / / /  

In analogy to the discussion of the last  section, the same resul t  holds for the 
subcategories of spec- determined by a special calculus, as e.g. equational 
calculus or f i r s t ~ e r  predicate calculus. A pushout diagram in such a 
specif icat ion category implies a pushout diagram in the underlying graph-category, 
i .e .  we have a forgetful  functor from the specif icat ion catagory to the graph 
category respecting pushouts. 
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We hint  fu r ther  that i t  is useful fo r  pract ica l  s i tuat ions to be sure that  
applying a production to a to ta l  spec i f i ca t ion  y ie lds  a to ta l  spec i f i ca t ion ,  
even i f  th is  production consists o f  pa r t ia l  spec i f ica t ions.  [21 ]  give su f f i c i en t  
c r i t e r i a  fo r  th is  problem in the graph case, which carry over to the spec case. 

We give an example in f igure 4 to demonstrate that  i t  is convenient ly possible to 
use productions fo r  r e l abe l l i ng  of operations. Here, the p a r t i a l i t y  of operations 
provides the economy of  specify ing not more than required. This production can be 
applied to any spec i f i ca t ion  where we f ind an analysis pushout. Obviously, a l l  
other labels of the analysed spec i f i ca t ion  are saved via the pushout-complement. 

'B K B' 

ops : , , ops ' , !ops : 
su---Ec: ~ l "succ"> P i ~  . - - >  I p ~: • . ~ ~ - T - . " .  - - - >  . 1 " N "  ' 

Figure 4: production to relabel the successor operation 

4. Parametric spec i f icat ions 

Parametric spec i f ica t ions are a very convenient means for  the spec i f i ca t ion  
process. We do not care about semantical problems of parametric spec i f icat ions 
c f . [ 15 ] ,  but discuss a more syn tac t i ca l l y  or iented treatment fo l lowing [ 7 ] .  To 

give an example, the concept of  an array is rather  independent of  the type of  i t s  
entr ies and keys. The only requirement is that  there should be an "eq" - re la t ion  
on keys and a constant entry serving as the value of new(i).  Thus we would l i ke  to 
give spec i f icat ions as fo l lows.  

Example 4.1: The parametric spec i f i ca t ion  of  array(key, entry) is :  

params key, entry,  eq, 0 

sorts array,  key, entry 

ops 0 : - - > e n t r y  
n e w : ~ a r r a y  
. [ . I : = .  : a r r a y ~ k e y ~ e n t r y - - ~ a r r a y  
. [ . ]  : a r r a y ~ k e y - - ~ e n t r y  
i f . t h e n . e l s e . f i  : b o o l × e n t r y - e n t r y - - ~ e n t r y  

preds eq : key×key 

conds new[i I = 0 
( a [ i l : = n ) [ j l  = i f  i eq j then n else a [ j ]  f i  

We denote the formal parameter part by the params symbol. In spec-, an embedding 
w i l l  serve for  th is  purpose. A parameter ass-ignment should m a ~ r m a l  parameters 
to actual parameters which su i t  in type and behaviour. So, assignments are well 
modelled by morphisms. To apply a parametric spec i f i ca t ion  to an actual 
parameter is intended to subst i tu te the formal parameter spec i f i ca t ion  by the 
actual parameter spec i f i ca t ion  and th is  is done by the pushout construct ion. 

Def in i t ion  4.2: A parametric spec i f i ca t ion  p:F--~P is an embedding in spec-. 
~ ~ - ~ s i g n ~ : ~ ~ r p h i s m  f : F - ~ A .  The resu l t  of-'-tF~e 
app l ica t ion of the parametric spec i f i ca t ion  p:F--~P to the actual parameter A 
via f :F--~A is the pushout-object o f  the pushout of  p and f .  

In our examples with arrays, 1.3 and 4.1, we have: 
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(key, entry) ) array (key, entry) 

p.o. I 

( [ I :10 ] ,  nat) >array ( [1 :10] ,  nat) 

Not that  the actual parameter A can i t s e l f  be a parametric spec i f i ca t ion  q : E--->A 
with a formal parameter part  E. Thus, sequences of appl icat ions of  parametric 
spec i f icat ions can be constructed. The fo l lowing resu l t  fo r  spec = ~ , ~  carr ies 
over to ~P~F and spec -:  

Theorem 4.3: The app l ica t ion of  parametric spec i f icat ions to parametric speci- 
~ i c a t i o n s i s  associat ive.  

When we have a parametric spec i f i ca t ion ,  we can use i t  as well as a production by 
dupl icat ing the parameter. The idea is demonstrated by f igures 5 und 6. 

params d,~ 

sorts d 

preds ~ : d ~ d 

conds x ~ x 
x ~ y  ^ y ~  z==~x ~ z 
x ~y ~ y£ x ~ x = y  
x ~ y  ~ y ~ x  

Figure 5: Parametric specification of a total ordering 

[ . . . . . . .  -~ F . . . . . . . .  V 
preds ~ , preds , 

J 

' ~ :  d ~ d  ~ 'P  [ ~ : d ~ d  I _ ~ (  - 

L . . . . . . . .  ~ L . . . . . . . .  I I 
I 

I 

I 
I 
I 
I 

b . . . . . .  

p red s I I 
~ : d ~ d  - -  I 

q 

conds I 

X ~  X I 

x~  y ~ y ~  z ~ x  ~ z , 

x~_ y A  y ~ x ~ x = y  1 
I 

x - ~ y v y ~ x  } 

Figure 6: Production to generate to ta l  orderings 

Taking parametric concepts, supplementing them to productions, and stor ing these 
productions in a l i b r a r y  is a promising tool fo r  ed i t ing  spec i f ica t ions.  Using the 
production o f  f igure  6, when we want to specify any s i tua t ion  where a to ta l  
ordering is involved, we need only give the few axioms that  determine the spec i f ic  
ordering. For example, for  natural numbers we need only give 

sorts: nat 
ops: 0 : - - ~  nat 

succ: n a t - - - ~ n a t  
preds: ~ : nat × nat 

x ~ succ ( x )  
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Applying the production of f igure 6 to th is speci f icat ion,  the ordering axioms are 
inserted, and we get the speci f icat ion of example 1.1. 

We can imagine that for more complex concepts there may be a considerable economy 
in using parametric specif icat ions as replacement rules or productions. 
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