On the Theory of Specification, Implementation, and Parametrization of Abstract Data Types

H.-D. EHRICH

Universität Dortmund, Dortmund, West Germany

ABSTRACT. In the framework of a category spec of equational specifications of abstract data types, implementations are defined to be certain pairs of morphisms with a common target. This concept covers, among others, arbitrary recursion schemes for defining the derived operations. It is shown that for given single steps of a multilevel implementation, there is always a multilevel implementation composed of these steps, but there is no effective construction of this overall implementation. Some suggestions are given for practical composition of implementations utilizing pushouts. Parametric specifications and parameter assignments are defined to be special morphisms in spec, and parameter substitution is made precise by means of pushouts. Since actual parameters can again be parametric, parameter substitution can be iterated. This iteration is shown to be associative. While the subject is being treated on a syntactical level in terms of specifications, the initial algebra approach is adopted as providing an appropriate semantics for specifications, and the effects of the present concepts and results on the initial algebras are studied.

Categories and Subject Descriptors: D.3.1 [Programming Languages] Formal Definitions and Theory, D.3.3 [Programming Languages] Language Constructs—abstract data types, F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs—specification techniques, F.3.2 [Logics and Meanings of Programs] Semantics of Programming Languages—algebraic approaches to semantics

General Terms: Languages, Theory

Additional Key Words and Phrases: abstract implementation, algebraic specification, algebras, category theory, data types, equational specification, implementation, parametrization, parametrized specification

1. Introduction

Equational specifications of data abstractions and abstract data types are considered to be a promising design tool in software engineering [14, 16, 28]. The theoretical basis of this method has been investigated by several authors [4–11, 14, 20, 25–27] utilizing initial algebras or algebraic theories.

In this paper we concentrate on two concepts that are central to the theory of abstract data types, namely, implementations and parametric specifications. There are several approaches to make the notion of implementation precise: as a relationship between algebras [14] or between specifications and algebras [6, 7, 11]. A more general functional approach is described in [20]. The approaches to parametrization [15, 25] model the idea of a type constructor: a parametric data type is considered to be a functor sending parameter types to a resultant type.

We consider the concepts of implementation and parametrization on a syntactical level, that is, as a relationship between specifications. Our choice of terminology and notation may need some justification, since it is not yet widely used in computer science. We use the language (but no deeper results) of category theory because we...
feel it is most appropriate for the material presented here. A great deal of the literature cited in this paper makes more or less explicit use of categorical concepts, and we are also encouraged by the availability of excellent introductory texts in category theory [1, 12]. The language of categories provides a clean and perspicacious way to deal with objects, together with certain relationships (morphisms) between them, in a closed and consistent system of notation. In comparison with more conventional notations, it helps to reduce the amount of notational detail, thus achieving more concise and elegant formulations. We found it especially advantageous to utilize the categorical concept of a pushout, both for implementation composition and parameter substitution.

Our mathematical framework is a category named spec: the objects are specifications, and the morphisms are certain pairs of mappings on the sorts and the operations. Associated with each specification there is a category of algebras (satisfying the specification), and there is an initial algebra in this category determined uniquely up to isomorphism [11-13]. This initial algebra serves as a semantics of the specification. While we develop our notions on a purely syntactical level, we discuss semantical issues by considering the effects on the associated initial algebras.

In Section 2 we give a brief exposition of the general algebraic background used in the paper. For more details we refer to the literature [1, 12, 13, 19]. In Sections 3 and 4 we develop our specific mathematical machinery, that is, the category spec of specifications. The notions of sufficient completeness and consistency in [14] are reflected by special morphisms.

In Section 4 we show that spec has pushouts (in fact, spec is cocomplete), and we prove some useful theorems about what properties of morphisms carry over to opposite sides of a pushout. The main idea in utilizing the categorical pushout construction is that pushouts describe, roughly speaking, how to build a new object by combining two objects while identifying certain parts of them. A simple instance of a pushout in the category of sets is the union of two sets. Pushouts have been used in the algebraic theory of graph grammars [21, 22] to describe the substitution of subgraphs by graphs and to handle at the same time the connections to the rest graph. In this paper we have two applications for pushouts: they describe how to glue implementation steps together and how to substitute actual parameters into parametric specifications.

In Section 5 we define implementations to be certain pairs of morphisms with a common target. This definition is general enough to include arbitrary recursion schemes for defining the derived operations used for implementation. Our main results concern the composability of implementations. We show that the single steps of a multilevel implementation can always be composed, but there is no general effective composition method. We give some hints and suggestions for a practical composition method utilizing pushouts, where the single nonsystematic step consists of finding a canonical term algebra [6, 11]. Special cases of interest, called full implementations, can be composed in nearly the same way, but there is one more nonsystematic step consisting of, roughly speaking, the completion of partially defined operations.

Parametric specifications are defined in Section 6 to be certain morphisms in spec, embedding a formal part into a specification. This notion coincides with that in [25] for the special case where the parameter conditions are equations. For parameter assignments we allow for a great deal of flexibility by requiring that they are morphisms in spec. Thus actual parameters may have more operations than prescribed by the formal parameter, and different formal sorts and operations can be assigned the same sort and operation, respectively. For example, from array of key
and entry we can get array of nat and int, array of int and (stack of entry), array of int and int with the same int, etc.

Parameter substitution is made precise by means of pushouts. Since it should again be possible to have parametric specifications as actual parameters, parameter substitution can be iterated. We show that this iteration is associative.

A given parametric specification defines a category of possible parameters that may be substituted for the formal part. Our pushout approach results in a functor from this parameter category to spec. Thus, we are not so much concerned with type constructors as in [15, 25] but with "specification constructors" as proposed in [3].

2. Algebraic Background

Let set be the category of sets with functions as morphisms. If \(S \in \text{set} \) (the class of objects in set), we denote by \(\text{set}_{S} \) the comma category whose objects are functions \(A : \tilde{A} \to S \), \(S \) fixed, and morphisms \(f : A \to B \) are functions \(\tilde{A} \to \tilde{B} \) such that \(A = fB \) (cf. Figure 1). Morphism composition is written from left to right, that is, \(xfg \) instead of the conventional \(g(f(x)) \).

If we call the elements of \(S \) sorts, we may view objects in \(\text{set}_{S} \) to be "\(S \)-sorted sets," that is, sets with a sort in \(S \) attached to each element. The objects of \(\text{set}_{S} \) are in bijective correspondence with \(S \)-indexed families of disjoint sets; for \(A : \tilde{A} \to S \) define \(A_\ast \) to be the set of all \(a \in A \) such that \(aA = s \). Many authors use \(S \)-indexed families without the disjointness requirement. Morphisms in \(\text{set}_{S} \) are mappings leaving the sort fixed.

Let \(S \in \text{set} \) be a set of sorts. By \(S^\ast(S^+) \) we denote the set of (nonempty) words over \(S \). An object \(\Omega \in \text{set}_{S^\ast} \) is called a signature over \(S \). If \(x \in S^\ast \) and \(s \in S \), an element \((\omega \mapsto x_\ast) \in \Omega \) is called an operation (symbol), \(x_\ast \) its index, \(x \) its domain, and \(s \) its codomain. Goguen et al. [11] use "type," "arity," and "sort" for our "index," "domain," and "codomain," respectively.

Given a signature \(\Omega \) over \(S \) we define an endofunctor \(\tilde{\Omega} : \text{set}_{S} \to \text{set}_{S} \), as follows: Each \(S \)-sorted set \(X \) of "variables" (or "constants") is sent to the \(S \)-sorted set \(X\tilde{\Omega} := \{([x_1, \ldots, x_p], \omega \mapsto s_{p+1}) \mid \omega \in \Omega, x_i \in X, \omega = s_1 \cdots s_{p+1}, x_iX = s_i \text{ for } 1 \leq i \leq p\} \) of all simple or atomic formal expressions consisting of an operation symbol applied to an appropriate \(p \)-tuple of variables. The source set of \(X\tilde{\Omega} \) is a set of strings over an alphabet consisting of \(X \), \(\Omega \), and the symbols \([\,], \,] \), and \(.. \). Morphisms \(f : X \to Y \in \text{set}_{S} \) are sent to the corresponding variable substitutions, that is, \(f\tilde{\Omega} : [x_1, \ldots, x_p]_\omega \mapsto [x_1f, \ldots, x_pf]_\omega \).

Definition 2.1. An \(\Omega \)-algebra is a pair \(\mathcal{A} = (A, \delta) \), where \(A \in \text{set}_{S} \) is an \(S \)-sorted carrier set and \(\delta : A\tilde{\Omega} \to A \in \text{set}_{S} \) is the operational structure.

\(\delta \) describes the operations of the algebra by associating a value with each formal expression \([a_1, \ldots, a_p]_\omega \). Thus, for fixed operation symbol \(\omega \) we have the associated operation

\[\delta_\omega : A_{s_1} \times \cdots \times A_{s_p} \to A_{s_{p+1}} : (a_1, \ldots, a_p) \mapsto ([a_1, \ldots, a_p]_\omega)\delta, \]

where \(A_s \) is the subset of all elements in \(A \) of sort \(s \).

Definition 2.2. \(\Omega \text{-alg} \) is the category of all \(\Omega \)-algebras. The morphisms \(f: (A, \delta) \to (A', \delta') \) are mappings of the carriers \(f : A \to A' \) such that \(\delta f = (f\tilde{\Omega})\delta' \) (see Figure 2).
Let Ω_0, Ω_1 be signatures over sort sets S_0 and S_1, respectively. If $S_0 \subset S_1$ and $\Omega_0 \subset \Omega_1$, there is a forgetful functor $U: \Omega_1\text{-alg} \to \Omega_0\text{-alg}$, sending each Ω_1-algebra $\mathcal{A} = (A_1, \delta_1)$ to the Ω_0-algebra $\mathcal{A} U = (A_0, \delta_0)$, where A_0 is the sorted subset of all elements in A_1 with a sort in S_0, and δ_0 is the restriction of δ_1 to operation symbols in Ω_0 and carrier elements in A_0. Algebra morphisms $f: \mathcal{A} \to \mathcal{A}'$ are sent to $f U: \mathcal{A} U \to \mathcal{A}' U \in \Omega_0\text{-alg}$, where $f U$ is the restriction of f to A_0. If $\mathcal{A} U \in \Omega_0\text{-alg}$, $\mathcal{A} U$ is called the reduct of \mathcal{A} induced by S_0 and Ω_0 or the (S_0, Ω_0)-reduct of \mathcal{A}.

A signature Ω over a sort set S determines an endofunctor $T_\Omega: \text{sets} \to \text{sets}$, associating the sorted set $X T_\Omega$ of all Ω-terms over variables X with each sorted set X of variables. Formally, $X T_\Omega$ is the least sorted set Y containing X and being closed with respect to an application of Ω, that is, the least Y such that (1) $X \subset Y$ and (2) $W \subset Y \Rightarrow \mathcal{W} T_\Omega \subset Y$. Morphisms $f: X \to X'$ are sent to $f T_\Omega$ given by (1) $x(f T_\Omega) = x f$ and (2) $[t_1, \ldots, t_p]_\omega(f T_\Omega) = [t_1(f T_\Omega), \ldots, t_p(f T_\Omega)]_\omega$; that is, $f T_\Omega$ is the variable substitution corresponding to f.

It is well known that for each $X \in |\text{sets}|$, $(X T_\Omega, X Y)$, where $X Y: [t_1, \ldots, t_p]_\omega \mapsto [t_1, \ldots, t_p]_\omega$, is a free Ω-algebra over X, that is, for each Ω-algebra (A, δ) and each mapping $g: X \to A$, there is a unique Ω-algebra morphism $g^*: (X T_\Omega, X Y) \to (A, \delta)$ extending g such that $g = \eta g^*$, where $\eta: X \subset \to X T_\Omega$ is the inclusion of generators.

Definition 2.3. The mapping $X\alpha: X T_\Omega \to [[X \to A] \to A]: t \mapsto [g \mapsto tg^*]$ is called the evaluation of terms over X in (A, δ).

We are especially interested in equationally defined Ω-algebras. Let $E \subset Y T_\Omega \times Y T_\Omega$, given $Y \in |\text{sets}|$. E is an S-sorted set, and its elements are called Ω-equations (or simply equations if Ω is clear from the context). For each equation $e = (t, t')$ let Y_e be the S-sorted set of variables occurring in e (i.e., in t or t'). An Ω-algebra (A, δ) is said to satisfy equations E iff $t(Y_e \alpha) = t'(Y_e \alpha)$ for each equation $e = (t, t') \in E$. Equations $(t, t') \in E$ are conventionally denoted by $t = t'$.

Definition 2.4. An ΩE-algebra is an Ω-algebra satisfying the given set E of equations. ΩE-alg denotes the full subcategory of all ΩE-algebras in Ω-alg.

For each Ω-algebra $\mathcal{A} = (A, \delta)$, a given set E of equations determines a congruence e_E generated by the relation e_E:

$$a e_E b: a = tg^* \land b = t'g^*$$

for some $(t = t') \in E$ and some $g: Y \to A$.

Figure 1

![Diagram](image1)

Figure 2

![Diagram](image2)
The quotient algebra \((X^E_\Omega, X^E_\Omega) := \langle X^E_\Omega, X^E_\Omega \rangle / \mathcal{E}\) is known to be a free \(\Omega E\)-algebra over \(X\) [19]. Thus \((\emptyset^E_\Omega, \emptyset^E_\Omega)\) is an initial object in \(\Omega E\text{-alg}\); since there is a unique mapping from \(\emptyset\) to each \(X\), there is a unique morphism from this initial algebra to each \(\Omega E\)-algebra.

Initial objects in categories are unique up to isomorphism. Therefore isomorphism classes of initial algebras are useful semantic domains for interpreting syntactic structures [11, 13]. We will not differentiate between isomorphic algebras. By “the” initial algebra we thus mean its isomorphism class or any representative of it.

3. Specifications

Definition 3.1. A specification is a triple \(D = (S, \Omega, E)\), where \(S\) is a set of sorts, \(\Omega\) is a signature over \(S\), and \(E\) is an \(S\)-sorted set of \(\Omega\)-equations.

As shown in the previous section, with each specification \(D\) and each \(S\)-sorted set \(X\) of variables the free algebra over \(X\) can be associated uniquely (up to isomorphism). The initial algebra, that is, the free algebra over \(\emptyset\), is called \(\text{init } D\).

We give some examples using the notation of Guttag [14]. Thus \(\omega : s_1 \times s_2 \times \cdots \times s_p \rightarrow s_{p+1}\) means that \(s_1, s_2, \ldots, s_p, s_{p+1}\) is the index of the operation \(\omega\). Signatures and equations are separated by horizontal lines.

Example 3.2

\[
\begin{align*}
D_b & \quad \text{true} : \rightarrow \text{bool} & D_n & \quad 0 : \rightarrow \text{nat} \\
false & \rightarrow \text{bool} & \text{succ} & : \text{nat} \rightarrow \text{nat}
\end{align*}
\]

These are very basic specifications without equations. Clearly, \(\text{init } D_b\) is a two-element set, and \(\text{init } D_n\) is isomorphic to the set of natural numbers generated by the constant 0 and the successor function.

Example 3.3. \(D_{nb}\) is obtained by taking \(D_b\) and \(D_n\) and adding the following items:

\[
\begin{align*}
\text{eq} & : \text{nat} \times \text{nat} \rightarrow \text{bool} \\
\text{if-then-else-fi} & : \text{bool} \times \text{nat} \times \text{nat} \rightarrow \text{nat}
\end{align*}
\]

The initial algebra \(\text{init } D_{nb}\) has as reducts \(\text{init } D_b\) and \(\text{init } D_n\), connected by an equality test and a branching operation.

Example 3.4

\[
\begin{align*}
D_a & \quad \text{new} : \rightarrow \text{array} \\
\text{store} & : \text{array} \times \text{nat} \times \text{nat} \rightarrow \text{array} \\
\text{read} & : \text{array} \times \text{nat} \rightarrow \text{nat}
\end{align*}
\]

\[
\begin{align*}
\text{read}(\text{new}, n) & = 0 \\
\text{read}(\text{store}(a, n, m), p) & = \text{if } \text{eq}(n, p) \text{ then } m \text{ else } \text{read}(a, p) \text{ fi}
\end{align*}
\]

Specification \(D_{nb}\) must be added to obtain a complete specification. \(\text{init } D_a\) behaves like an array with indexes and entries in \(\text{init } D_{nb}\). Actually, \(D_a\) specifies an array whose entries are stacks of nat, but only the top element of the stack can be accessed. Thus \(D_a\) does not specify array of nat according to correctness criteria imposed by Goguen et al. [11]. However, it serves its purpose as a useful example in our context.
Example 3.5

\[
D_s \quad \text{create} : \rightarrow \text{stack} \\
\text{push} : \text{stack} \times \text{array} \rightarrow \text{stack} \\
\text{pop} : \text{stack} \rightarrow \text{stack} \\
\text{top} : \text{stack} \rightarrow \text{array}
\]

\[
\begin{align*}
pop(\text{create}) &= \text{create} \\
top(\text{create}) &= \text{new} \\
pop(\text{push}(s, a)) &= s \\
top(\text{push}(s, a)) &= a
\end{align*}
\]

Specification \(D_0\) has to be added in order to complete this specification. In the first examples, errors are usually introduced. We avoid doing so in order to keep the examples small and complete. Equational specification of error handling is treated in [11], and [10] contains a semantic approach to errors. \(\text{init} D_a\) is a stack whose entries are taken from \(\text{init} D_a\).

Relationships between different specifications are generally given by relationships among their sorts, signatures, and equations. Let \(D_i = (S_i, \Omega_i, E_i), i = 0, 1\), be specifications. The sorts are related by a mapping

\[h : S_0 \rightarrow S_1.\]

Let \(h^+: S_0^+ \rightarrow S_1^+\) be the string homomorphism determined by \(h\). Then we can relate operation symbols by a mapping \(g : \Omega_0 \rightarrow \Omega_1\), where \(\Omega_i, i = 0, 1\), are the domains of \(\Omega_i\) such that \(\Omega_i h^+ = g \Omega_1\) (cf. Figure 3). Thus \(g\) is a morphism \(g : \Omega_0 h^+ \rightarrow \Omega_1 \in \text{sets}_1\).

Given \(h\) and \(g\), we can map each term \(t\) over signature \(\Omega_0\) and \(S_0\)-sorted set of variables \(X\) to a term \(t(Xf)\) over signature \(\Omega_1\) by simply replacing each operation symbol \(\omega \in S_1^+\) by its image \(\omega g : s_1 \times s_2 \times \ldots \times s_p \rightarrow s_{p+1}\) by its image \(\omega g : s_1 h \times s_2 h \times \ldots \times s_p h \rightarrow s_{p+1} h\). Formally, for each \(X\) we have a morphism

\[Xf : XT_{\Omega_0} h \rightarrow XhT_{\Omega_1} \in \text{sets}_{S_1}\]

(cf. Figure 4) sending each variable \(x\) of sort \(s\) to the “same” variable \(x\) but viewed as having sort \(s h\), and sending each term \([t_1, \ldots, t_p]_\omega\), where each \(t_i\) has sort \(s_i\), and \(\omega\) has index \(s_1 \times \ldots \times s_p \rightarrow s_{p+1}\), to the term \([t_1(Xf), \ldots, t_p(Xf)]\)\((\omega g)\), where each \(t_i(Xf)\) has sort \(s_i h\) and \(\omega g\) has index \(s_1 h \times \ldots \times s_p h \rightarrow s_{p+1} h\).

Letting \(X\) vary over \(S_0\)-sorted sets, we get a natural transformation

\[f : T_{\Omega_0} h \rightarrow hT_{\Omega_1},\]

where \(T_{\Omega_0} h\) and \(hT_{\Omega_1}\) are functors from \(\text{sets}_{S_0}\) to \(\text{sets}_{S_1}\) sending \(S_0\)-sorted sets of variables \(X\) to \(S_1\)-sorted sets of terms.

Let \(E_0 \subseteq Y_0T_{\Omega_0} \times Y_0T_{\Omega_0}\) be an \(S_0\)-sorted set of equations. By mapping both sides of each equation by \(Y_0 f\), we get an \(S_1\)-sorted set of equations

\[E_0 f := \{ (t(Y_0 f) = t'(Y_0 f)) \mid t = t' \in E_0 \} .\]

If \(E \subseteq YT_{\Omega_1} \times YT_{\Omega_1}\) is a set of equations over some signature \(\Omega\) and some variable set \(Y\), we can deduce other equations from \(E\) by the usual rules of equational calculus,
that is, substitution of terms for variables and the laws of equality. We write \(E \vdash t = t' \) if equation \(t = t' \) is deducible from \(E \). Let
\[
\hat{E} := \{ t = t' \mid E \vdash t = t' \text{ and } t, t' \in \varnothing T_0 \}
\]
be the set of equations without variables, also called constant equations, deducible from \(E \).

Definition 3.6. The category spec has specifications \(D = (S, \Omega, E) \) as objects, and its morphisms \(f: D_0 \to D_1 \) are pairs of mappings \(f = (h, g) \), \(h: S_0 \to S_1 \), \(g: \hat{\Omega}_0 \to \hat{\Omega}_1 \), such that (1) \(\Omega_0 h^* = g \Omega_1 \) and (2) \(\hat{E}_0 f \subseteq \hat{E}_1 \).

Condition (2) means that all and only the constant equations deducible from \(E_0 \) map to valid equations deducible from \(E_1 \). The obvious alternative of requiring that all equations in \(E_0 \) (and thus all those deducible from \(E_0 \)) map to valid equations deducible from \(E_1 \) is too restrictive for our purpose. This would, for instance, restrict proof methods for the correctness of implementations (cf. Section 5) to deductions in equational calculus, whereas our weaker condition allows for term induction, as suggested by Guttig's approach [14].

Each morphism \(f \in \text{spec} \) determines a natural transformation \(f \), as shown above. Condition (2) in the above definition means that congruent (w.r.t. \(E_0 \)) constant terms map to congruent (w.r.t. \(E_0 \)) constant terms. Thus we can factorize \(\hat{\alpha} f \) by sending each congruence class (w.r.t. \(E_0 \)) of constant \(\Omega_0 \)-terms to that congruence class (w.r.t. \(E_0 \)) of constant \(\Omega_1 \)-terms that contains its image. This defines a mapping
\[
\hat{\alpha} f : \varnothing T_{\Omega}^0 \to \varnothing T_{\Omega}^1.
\]

Definition 3.7. A morphism \(f = (h, g) \in \text{spec} \) is called an embedding iff \(h \) and \(g \) are injective. \(f \) is called an \(\Omega \)-embedding iff \(h \) is bijective and \(g \) is injective.

Up to renaming, an embedding \(f: D_0 \to D_1 \) describes the situation in which \(D_0 \) is a subspecification of \(D_1 \), that is, \(S_0 \subseteq S_1 \), \(\Omega_0 \subseteq \Omega_1 \) and \(\hat{E}_0 \subseteq \hat{E}_1 \) (note that \(E_0 \subseteq E_1 \) is not required). \(\Omega \)-embeddings denote the special cases where the sort sets are equal, that is, only operation symbols are added.

If \(f = (h, g) \) and \(X \subseteq |\text{set}_0| \), let \(\text{init } D_1^0 \) be the reduct induced by \(S_0 h \) and \((\Omega_0 h^*)g\). Clearly, if \(f \) is an embedding, there is an isomorphism from \((\Omega_0 h^*)g\)-alg to \(\Omega_0 \)-alg. We do not make this isomorphism explicit in our notation but consider \(\text{init } D_1^0 \) to be an algebra in \(\Omega_0 \)-alg (i.e., we take \(h, g \) to be inclusions). The next theorem relates embeddings to morphisms between the associated initial algebras.

Theorem 3.8 Let \(f = (h, g): D_0 \to D_1 \) be an embedding. Then \(\hat{\alpha} f : \text{init } D_0 \to \text{init } D_1^0 \) is an \(\Omega \)-algebra morphism.

The proof is straightforward by the definitions of \(\hat{f} \) and \(\tilde{f} \).

In what follows, special embeddings to be defined now will be of essential interest. If \(f_i = (h_i, g_i): D_i \to D_0 \), \(i = 0, 1 \), are embeddings, let \(S'_i = S_i h_i \) and \(\Omega'_i = (\Omega_i h^*)g_i \).

Furthermore, let \(T_i = \varnothing T_{\Omega_i} \) for \(i = 0, 1 \), and \(T_i^j = \varnothing T_{\Omega_i} h_i \) for \(i = 0, 1 \).

Definition 3.9. \(f_1 \) is called

(1) full w.r.t. \(f_0 \) iff for each term \(t_0 \in T_0 \) with a sort in \(S'_0 \), there is a term \(t_1 \in T'_1 \) such that \(t_0 = t_1 \in \hat{E}_2 \).

(2) full iff for each term \(t_2 \in T_2 \) with a sort in \(S'_1 \), there is a term \(t_1 \in T'_1 \) such that \(t_2 = t_1 \in \hat{E}_2 \).

(3) true iff for all terms \(t_1, t_2 \in T'_1 \), \(t_1 = t_2 \in \hat{E}_2 \) implies \(t_1 = t_2 \in \hat{E}_1 \).

(4) extension (w.r.t. \(f_0 \)) iff \(f_1 \) is a full (w.r.t. \(f_0 \)) and true embedding.

(5) enrichment (w.r.t. \(f_0 \)) iff \(f_1 \) is a full (w.r.t. \(f_0 \)) and true \(\Omega \)-embedding.
These notions of extension and enrichment are compatible with those given in [6, 7, 11]. Clearly, if f_i is full, it is full w.r.t. any f_0. Full embeddings correspond to sufficiently complete specifications, and true embeddings correspond to consistent specifications, both in the sense of Guttag [14].

Referring to Examples 3.2–3.5, all inclusions $D_b \rightarrow D_{nb}$, $D_a \rightarrow D_{nb}$, $D_{nb} \rightarrow D_a$, etc., are extensions. If we add, for example, the equation $\text{top}(\text{create}) = \text{top}(\text{push}(s, a))$ to D_a, we have a full inclusion $D_a \rightarrow D_s$ that is not true. If we drop, for example, the equation $\text{top}(\text{create}) = \text{new}$ in D_s, the inclusion $D_a \rightarrow D_s$ is not full but true.

We give some immediate consequences of the above definitions.

Proposition 3.10. If f and g are both full (true) embeddings (extensions, enrichments), so is fg.

Proposition 3.11. Let $f_i : D_i \rightarrow D_2$, $i = 0, 1$, be embeddings. With the notation of Definition 3.9 we have

1. If $S' \subseteq S''$, then f_i is full w.r.t. f_0 iff $(\text{init } D_i)(\mathcal{O}f_i)U_i \subseteq (\text{init } D_0)(\mathcal{O}f_0)U_0$. Here U_i is the respective forgetful functor sending algebras to their carriers.
2. f_i is full iff $\mathcal{O}f_i$ is surjective.
3. f_i is true iff $\mathcal{O}f_i$ is injective.
4. f_i is an extension iff $\mathcal{O}f_i$ is an isomorphism.
5. f_i is an enrichment iff $\mathcal{O}f_i$ is an isomorphism and h is bijective. In this case, $(\text{init } D_i)^g$ and $\text{init } D_i$ have the same carrier set.

Proposition 3.12. Let $f_i : D_i \rightarrow D_2$ be embeddings, $i = 0, 1$, and let f_i be full w.r.t. f_0.

1. If $f' : D'_0 \rightarrow D_0$ is any embedding, then f_1 is full w.r.t. f'_0f_0.
2. If $f'_i : D'_i \rightarrow D_i$ is a full embedding, then f'_1f_1 is full w.r.t. f_0.

Theorem 3.13. Consider the situation depicted in Figure 5, and suppose that all the morphisms are embeddings. If f_{15} is full w.r.t. f_{15} and f_{14} is full w.r.t. f_{14}, then $f_{14}f_{15}$ is full w.r.t. $f_{15}f_{15}$. (Note that the square need not be commutative.)

Proof. In order to facilitate notation we assume that all morphisms are inclusions. Let $T_i = \mathcal{O}T_{i0}$, $i = 0, \ldots, 5$. Let $t_0 \in T_0$. Since f_{13} is full w.r.t. f_{13}, there is a term $t_1 \in T_1$ such that $t_0 = t_1 \in \hat{E}_3$. Thus we have $t_0 = t_1 \in \hat{E}_3$, since f_{28} is a morphism. Moreover, since f_{24} is full w.r.t. f_{24}, there is a term $t_2 \in T_2$ such that $t_1 = t_2 \in \hat{E}_4 \subseteq \hat{E}_5$. It follows that $t_0 = t_2 \in \hat{E}_5$, proving the theorem. □

This theorem is of a more technical nature and will be utilized in Section 5 when we are discussing constructions for the composition of implementations.

4. Pushouts

The categorical pushout construction provides our main technical tool for describing how to put implementation steps together (Section 5) and how to apply parametric
Formally, a pushout diagram in a category is a square like that in Figure 6a (that is commutative and has the additional property that whenever there are two morphisms $f_3 : D_1 \to D_3$ and $f'_3 : D_2 \to D_3$, such that $f_1 f'_3 = f_2 f'_3$, there is a unique morphism $k : D_3 \to D'$ such that $f_3 k = f'_3$ and $f'_3 k = f''_3$. In this case the pair of morphisms (f_3, f'_3) is called the pushout of f_1 and f_2, and D_3 is called the pushout object. If a pushout exists, it is determined up to isomorphism. A category has pushouts iff a pushout exists for each pair of morphisms (f_1, f_2) with a common source.

The relevance of pushouts for our purposes lies in the fact that they give a neat and concise description of the following situation: Given two objects (D_1, D_2) in Figure 6a, we want to construct a new object (D_3) by combining them while identifying certain parts of them (as given by D_0, f_1, and f_2). The pushout construction gives—in a rough sense—the "minimal" such D_3, and the morphisms f_3 and f'_3 tell us what happens to the components D_1 and D_2, respectively, in the "combination" D_3. That is why it is important to know which properties f_3 and f'_3 have, dependent on those of f_1 and f_2.

We show that there are pushouts in Spec, and we investigate how relevant properties of morphisms carry over to opposite sides of pushouts.

Theorem 4.1. Spec has pushouts.

Proof. Let $f_1 : D_0 \to D_1$ and $f_2 : D_0 \to D_2$ be given. We construct $f_3 : D_1 \to D_3$ and $f_4 : D_2 \to D_3$ such that the diagram in Figure 6a is a pushout. Let $f = (h, g)$ and $D_i = (S_i, \Omega_i, E_i)$ for $1 \leq i \leq 4$ and $0 \leq j \leq 3$. Let h_0, h_4 and g_0, g_4 be given by the pushouts in set depicted in Figures 6b and c, respectively. Then we have the commutative diagram depicted in Figure 7 (without arrow Ω_0). Since the front diagram (6c) is a pushout, there is a unique mapping $\ell_3: S_3 \to S_3^+$ making the diagram in Figure 7 commutative.

Now we have S_3, Ω_3 and $f_3 = (h_3, g_3), f_4 = (h_4, g_4)$, and we know that $\Omega_1 h_3 = g_3 \Omega_3$ and $\Omega_2 h_4 = g_4 \Omega_3$ hold. We still have to construct equations E_3 such that for $D_3 = (S_3, \Omega_3, E_3)$, the diagram in Figure 6a is a pushout.

Equation set E_3 is defined as follows:

$$E_3 = \tilde{E}_3 f_3 \cup \tilde{E}_3 f_4.$$

It is evident that f_3 and f_4 are morphisms in spec.

That the diagram in Figure 6a is a pushout follows directly from those in Figures 6b and c being pushouts: if $f_5 : D_1 \to D_4$ and $f_6 : D_2 \to D_4$ are any morphisms such that $f_1 f_5 = f_2 f_6$, there are morphisms h_5, h_6 and g_5, g_6 in set such that $h_1 h_5 = h_2 h_6$ and $g_1 g_5 = g_2 g_6$, respectively. Since Figures 6b and c are pushouts, there is exactly one $h : S_3 \to S_4$ and exactly one $g : S_3 \to S_4$ such that $h_1 h = h_2 h = h_6$ and $g_1 g = g_2 g = g_6$, respectively. Thus the h and g exist. Thus there is at most one morphism $f : D_3 \to D_4$ in Spec such that $f s f = f_0$ and $f s f = f_0$, namely, $f = (h, g)$. That f is indeed a morphism follows easily from its construction and that of E_3. \Box
We note in passing that \((0, 0, 0)\) is an initial object in \(\text{spec}\). Thus \(\text{spec}\) has finite colimits [23]. \(\text{spec}\) can even be shown to be cocomplete since there are arbitrary coproducts.

There is some similarity between pushout constructions in \(\text{spec}\) and those in the category of graphs [21, 22] as used in the theory of graph grammars. The connection is established by associating the syntax graph [11] with each specification: the edges are \(\Omega\), and the incident nodes are those elements in \(S^*\) occurring as domains or codomains of operations in \(\Omega\). Then the forgetful functor sending specifications to their syntax graphs preserves pushouts (cf. [5]).

Consider Figure 6a. From the construction of pushouts in \(\text{spec}\) we have immediately that if \(f_1\) is an \((\Omega-)\) embedding, the same holds for \(f_2\).

Theorem 4.2. If \(f_1\) and \(f_2\) are both full embeddings, so are \(f_3\) and \(f_4\).

Proof. Since \(f_1\), \(f_2\) and consequently \(f_3\), \(f_4\) are embeddings, we facilitate our notation by assuming that they are inclusions. Then we have \(S_3 = S_1 \cup S_2\), \(S_0 = S_1 \cap S_2\) and \(\Omega_3 = \Omega_1 \cup \Omega_2\), \(\Omega_0 = \Omega_1 \cap \Omega_2\), as well as \(E_3 = E_1 \cup E_2\), \(E_0 \subseteq E_1 \cap E_3\), by the pushout construction in \(\text{spec}\). If both \(f_1\) and \(f_2\) are full, we can reduce each term \(t \in T_3\) (again, \(T_i := \mathcal{O}T_{\Omega_i}\)) with a sort in \(S_2\) to an equivalent term \(t' \in T_2\) (actually, \(T_0\)) by a bottom-up reduction, removing operation symbols in \(\Omega_1 - \Omega_2\) and \(\Omega_2 - \Omega_1\), respectively, by applying \(E_1\) and \(E_2\), respectively. Thus \(f_4\) is full. By symmetry, \(f_3\) is full too. \(\square\)

Theorem 4.3. If \(f_1\) and \(f_2\) are both true embeddings, so are \(f_3\) and \(f_4\).

Proof. Again we assume that \(f_1\), \(\ldots, f_4\) are inclusions, that is, that we have the same situation concerning the sorts and operations as in the previous proof. Let \(E_i, i = 1, 2\), be the subset of \(E\), consisting of all equations in which only operation symbols from \(\Omega_i\) occur. Truth of \(f_1\) and \(f_2\) means that

\[
E_0 = E_1 = E_2 = E_1 \cap E_2.
\]

We now want to show that \(f_4\) is true, that is, \(E_2 = E_3\), where \(E_3\) is the subset of \(E_3\) consisting of all equations in which only operation symbols from \(\Omega_2\) occur. That \(f_3\) is true will then follow from the symmetry of the situation.

Clearly \(E_2 \subseteq E_3\), by definition of morphism in \(\text{spec}\). Let \(t = t' \in E_3\) and let

\[
t = t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_n = t'
\]

be a sequence of terms such that \(t_{i+1}\) results from \(t_i\) by substituting \(\tau_{i+1}\) for a subterm \(\tau_i\) of \(t_i\), according to the equation \(\tau_i = \tau_{i+1} \in E_3\). From the pushout construction we have \(E_3 = E_1 \cup E_2\).
Let \(t_p \rightarrow t_{p+1} \) be the first step in which an equation in \(\mathcal{E}_1 - \mathcal{E}_2 \) is applied, say \(\sigma = \sigma' \). (If there is no such step, then \(t = t' \in \mathcal{E}_2 \), and we are done.) Subterm \(\sigma \) of \(t_p \) can have only operation symbols in \(\Omega_0 \). We may assume that \(\sigma \) is a maximal subterm of \(t_p \) with this property. In \(\sigma' \), at least one operation symbol \(\omega \in \Omega_1 - \Omega_0 \) occurs, and all such \(\omega \)'s must be removed in the further reduction process. We assume that this happens in the steps immediately after \(t_p \rightarrow t_{p+1} \), without being interrupted by reductions affecting only subterms independent from \(\sigma' \) (those using only \(\mathcal{E}_2 \) should have been executed before; others can be postponed).

Consequently, reduction goes on with equations in \(\mathcal{E}_1 \), say \(t_{p+1} \rightarrow \cdots \rightarrow t_{p+r} \), until all \(\omega \in \Omega_1 - \Omega_0 \) have been removed from subtree \(\sigma' \) in \(t_{p+1} \). (Since \(f_2 \) is true, there can be no intermediate steps using \(\mathcal{E}_2' - \mathcal{E}_1' \).) Because of the maximality of \(\sigma \), the effect of these steps can be achieved by a single step according to, say, \(\sigma = \sigma'' \in \mathcal{E}_1' \). Since \(f_1 \) is true, we have \(\mathcal{E}_1' \subset \mathcal{E}_2' \). This means that there is a reduction \(t \rightarrow \cdots \rightarrow t_{p+r} \) without using equations in \(\mathcal{E}_1 - \mathcal{E}_2 \). By induction, there is a reduction \(t \rightarrow \cdots \rightarrow t' \) using only equations in \(\mathcal{E}_2 \), that is, \(t = t' \in \mathcal{E}_2' \). This proves that \(\mathcal{E}_2' = \mathcal{E}_2 \), that is, that \(f_4 \) is true. By symmetry, \(f_3 \) is true. \(\square \)

Corollary 4.4. If \(f_1 \) and \(f_2 \) are both extensions, so are \(f_3 \) and \(f_4 \). If additionally \(f_1 \) is an enrichment, so is \(f_4 \).

5. Implementations

Subsequent to Guttag's paper [14] there have been several approaches to making the notion of implementation mathematically precise [4, 6, 7, 11, 20]. Our approach here is based on that given in [4], and there are some connections to the approaches of Goguen et al. [11] and Ehrig et al. [6, 7]. We will comment on these connections at the end of this section.

Roughly speaking, a specification \(D_1 \) implements a specification \(D_0 \) if the operations in \(D_0 \) can be associated with derived operations in \(D_1 \) realizing the behavior expressed in the equations of \(D_0 \). If we add new operation symbols for the derived operations and corresponding defining equations to \(D_1 \), we get another specification \(D_2 \), and there are obvious morphisms from both \(D_0 \) and \(D_1 \) to \(D_2 \).

Definition 5.1. An implementation of \(D_0 \) by \(D_1 \) is a triple \(I = (D_2, f, t) \), where \(f: D_1 \rightarrow D_2 \) is an \(\Omega \)-embedding that is full w.r.t. \(t \) and \(t: D_0 \rightarrow D_2 \) is a true embedding (cf. Figure 8). \(I \) is called a full implementation iff \(f \) is full. \(D_1 \) implements \(D_0 \) (fully) iff there is a (full) implementation \(I \) of \(D_0 \) by \(D_1 \). We use the notation \(I: D_1 \rightarrow D_0 \) if \(I \) is an implementation of \(D_0 \) by \(D_1 \), and we write \(D_1 \gg D_0 \) if \(D_1 \) implements \(D_0 \).

Please note that our definition of implementation is general enough to include (1) arbitrary recursion schemes for specifying the derived operations used for implementation, (2) identification of (derived) operations that are different in \(D_1 \), since \(f \) need not be true, and (3) the existence of "redundant" items in \(D_2 \) that have no interpretation in \(D_0 \), since \(t \) need not be full.

Example 5.2. We give a simplified version of Guttag's symbol table [14] (cf. also [6, 7]) and implement it by the specification \(D_5 \) of Example 3.5. We assume that identifiers and attributes have already been implemented by \texttt{nat}.

\[\text{FIGURE 8} \]

\[D_1 \rightarrow D_0 \]

\[f \]

\[t \]

\[D_2 \]
Abstract Data Types

\[D_s \text{ is } D_{nb} \text{ (see Example 3.3) extended by} \]

\[
\begin{align*}
\text{init} &: \rightarrow \text{Sytb} \\
\text{begin} &: \text{Sytb} \rightarrow \text{Sytb} \\
\text{end} &: \text{Sytb} \rightarrow \text{Sytb} \\
\text{add} &: \text{Sytb} \times \text{nat} \times \text{nat} \rightarrow \text{Sytb} \\
\text{retrieve} &: \text{Sytb} \times \text{nat} \rightarrow \text{nat}
\end{align*}
\]

\[
\begin{align*}
\text{end}(\text{init}) &= \text{init} \\
\text{end}(\text{begin}(s)) &= s \\
\text{end}(\text{add}(s, i, a)) &= \text{end}(s) \\
\text{retrieve}(\text{init}, i) &= 0 \\
\text{retrieve}(\text{begin}(s), i) &= \text{retrieve}(s, i) \\
\text{retrieve}(\text{add}(s, i, a), j) &= \text{if } \text{eq}(i, j) \text{ then } \text{retrieve}(s, j) \text{ else retrieve}(s, j) \text{ fi}
\end{align*}
\]

In order to implement \(D_s \) by \(D_s \), we specify \(D_2 \) as follows: \(D_2 \) consists of \(D_s \) plus the following operations and equations:

\[
\begin{align*}
\text{init}' &: \rightarrow \text{stack} \\
\text{begin}' &: \text{stack} \rightarrow \text{stack} \\
\text{end}' &: \text{stack} \rightarrow \text{stack} \\
\text{add}' &: \text{stack} \times \text{nat} \times \text{nat} \rightarrow \text{stack} \\
\text{retrieve}' &: \text{stack} \times \text{nat} \rightarrow \text{nat}
\end{align*}
\]

\[
\begin{align*}
\text{init}' &= \text{push}(\text{create}, \text{new}) \\
\text{begin}'(s) &= \text{push}(s, \text{new}) \\
\text{end}'(s) &= \text{push}(\text{pop}(\text{pop}(s)), \text{top}(\text{pop}(s))) \\
\text{add}'(s, i, a) &= \text{push}(\text{pop}(s), \text{store}(\text{top}(s), i, a)) \\
\text{retrieve}'(\text{create}, i) &= 0 \\
\text{retrieve}'(\text{push}(s, \text{new}), i) &= \text{retrieve}'(s, i) \\
\text{retrieve}'(\text{push}(s, \text{store}(a, k, e)), i) &= \text{if } \text{eq}(k, i) \text{ then } \text{else retrieve}'(\text{push}(s, a), i) \text{ fi}
\end{align*}
\]

Clearly, the inclusion \(f: D_s \rightarrow D_2 \) is a full embedding, so we have a full implementation. We define \(t = (h, g): D_s \rightarrow D_2 \) by

\[
\begin{align*}
h &: \text{Sytb} \rightarrow \text{stack} \\
\sigma &= \sigma \\
\omega &= \omega' \\
\tau &= \tau \\
\end{align*}
\]

for all other sorts \(\sigma, \omega \in \{ \text{init}, \text{begin}, \ldots, \text{retrieve} \} \), for all other operations \(\tau \).

The correctness proof for this implementation consists of showing that \(t \) is a true embedding. The first part is to show that \(t \) is a morphism, that is, that the constant equations of \(D_s \) carry over to valid equations in \(D_2 \). This is a straightforward exercise, and it has been done for several examples in [14]. The second part is to show that \(t \) is true. In our example it is easy to see that \(\text{init}' \), \(\text{begin}'(s) \), \(\text{begin}'(t) \), \(\text{add}'(s, i, a) \), \(\text{add}'(t, i, a) \) are pairwise unequal in \(D_2 \) if \(s \) and \(t \) are unequal. A general possibility for giving this part of the correctness proof is to give an "interpretation function" \(\Theta \) as is done in [6, 7, 14]:

\[
\begin{align*}
\Theta[\text{create}] &= \text{init} \\
\Theta[\text{push}(s, \text{new})] &= \text{begin}(\Theta[s]) \\
\Theta[\text{push}(s, \text{store}(a, r, i, a))] &= \text{add}(\Theta[\text{push}(s, a)], i, a)
\end{align*}
\]

Next we consider the semantic issues of our notion of implementation, that is, its effect on the associated initial initial algebras.
PROPOSITION 5.3. If \(I = (D_2, f, t) \) is an implementation of \(D_0 \) by \(D_1 \), we have

1. an \(\Omega_1 \)-algebra morphism \(\partial f : \text{init } D_1 \rightarrow (\text{init } D_2)^1 \) and
2. an injective \(\Omega_0 \)-algebra morphism \(\partial t : \text{init } D_0 \rightarrow (\text{init } D_2)^0 \) such that
3. \((\text{init } D_1)(\partial f)U_1 \subseteq (\text{init } D_0)(\partial t)U_0.

If \(I \) is full, \(\partial f \) is a surjective \(\Omega_1 \)-algebra morphism. \((\text{init } D_2)^1 \) and \(\text{init } D_2 \) have the same carrier.

The proof is immediate from the definitions and from Proposition 3.11.

The following proposition gives some more simple consequences that are useful for getting new implementations from given ones.

PROPOSITION 5.4. Let \(I = (D_2, f, t) : D_1 \rightarrow D_0 \) be an implementation.

1. If \((D_4, f', t') : D_3 \rightarrow D_2 \) is a (full) implementation, then we have a (full) implementation \((D_4, f', t') : D_3 \rightarrow D_0 \) (cf. Figure 9a).
2. If \((D_4, f', t') : D_2 \rightarrow D_3 \) is a (full) implementation and \(I \) is full, then we have a (full) implementation \((D_4, ff', t') : D_1 \rightarrow D_3 \) (cf. Figure 9b).
3. If \(f'' : D_3 \rightarrow D_1 \) is a full \(\Omega \)-embedding, then we have an implementation \((D_2, f', t') : D_1 \rightarrow D_3 \) that is full iff \(I \) is full (cf. Figure 9c).
4. If \(t' : D_3 \rightarrow D_0 \) is a true embedding, then we have an implementation \((D_2, f, t') : D_1 \rightarrow D_3 \) that is full iff \(I \) is full (cf. Figure 9d).

For the special case where \(D_0 = D_1 = D_2 \), we see from (3) and (4) that a true embedding \(t : D_3 \rightarrow D_0 \) yields a full implementation in the opposite direction, \(D_0 \rightarrow D_3 \), and a full \(\Omega \)-embedding \(f : D_3 \rightarrow D_0 \) yields a full implementation in the same direction, \(D_3 \rightarrow D_0 \).

In practice, it is essential that implementations can be done stepwise in multiple levels. For example, if we have an implementation \(I_1 \) of a symbol table in terms of stacks (like that in Example 5.2), and if we have another implementation \(I_2 \) of stacks in terms of, say, arrays with integer top pointers, then it should be possible to construct an implementation \(I \) of a symbol table in terms of arrays with integer top pointers that is in some sense the composition of \(I_1 \) and \(I_2 \).

Considering Figure 10, we show that there is always an overall implementation \(I : D_2 \rightarrow D_0 \) if we are given \(I_1 \) and \(I_2 \). This will be an easy consequence of our next theorem, which tells us that there is always an implementation of any \(D_0 \) by any \(D_1 \), provided that \(D_1 \) supports a "sufficient number of items." Of course, this is a necessary condition, too.

THEOREM 5.5. Let \(D_i = (S_i, \Omega_i, E_i), i = 0, 1, \) be specifications. \(D_1 \) implements \(D_0 \) \((D_1 \Rightarrow D_0) \) iff there are two injective mappings

\[h : S_0
\rightarrow S_1 \in \text{set}, \]
\[\alpha : \Omega T_{E_0}h
\rightarrow \Omega T_{E_1} \in \text{sets}_1. \]
PROOF. In order to facilitate notation, we assume that h is an inclusion. Then we construct $I = (D_2, f, t): D_1 \rightarrow D_0$ as follows: $D_2 = \langle S_2, \Omega_2 + \Omega_1, E_2 + E_1 + E' \rangle$, where $+$ denotes disjoint union, f is the obvious inclusion, $t = (h, g)$ where g is the obvious inclusion, and $E' = \{t' = t'' | ([t'] \rightarrow [t'']) \in \alpha\}$. Here $[t']$ denotes the congruence class containing t'. Actually, it would be sufficient if we include in E' just one pair of representatives $t' = t''$ for each element $([t'] \rightarrow [t'']) \in \alpha$. Then we have $\alpha = \emptyset$, that is, t is true, and for each $t' \in \emptyset T_0$ there is a $t'' \in [t']\alpha$ such that $t' = t'' \in E'$. Hence f is full w.r.t. t.

This theorem holds for full implementations, too. This can be proved following the lines of the above proof, but we must introduce more equations in order to define the derived operations $\omega \in \Omega_1$ totally: for each $\omega \in \Omega_1$ and each argument p-tuple $([t_1], \ldots, [t_p])$ of constant term classes (in $\emptyset T_{\emptyset}$), where at least one $[t_i]$ is not in $(\emptyset T_{\emptyset})\alpha$, we must introduce an equation $\langle t_1, \ldots, t_p \rangle \omega = t$, for some representatives t_1, \ldots, t_p and some $t \in \emptyset T_0$, of the appropriate sort.

Corollary 5.6. $D_2 \triangleright\triangleright D_1$ and $D_1 \triangleright\triangleright D_0$ implies $D_2 \triangleright\triangleright D_0$.

Again, under the above mentioned condition, this corollary holds for full implementations too.

The proof of Theorem 5.5 is, practically, not very useful. Proposition 5.4, however, gives some suggestions on how to construct compositions of implementations: considering Figure 10, we get an overall implementation $I: D_2 \rightarrow D_0$ if we succeed in finding an implementation $I_{23}: D_2 \rightarrow D_3$ or $I_{43}: D_4 \rightarrow D_3$ or, in case I_2 is full, $I_{40}: D_4 \rightarrow D_0$. I_{23} must give derived operations based on D_2 not only for the D_1 operations, but also for the derived operations based on D_1, given in I_1 for the D_0 operations. This means, practically, that I_{23} explicitly "reprograms" implementation I_1 in terms of D_2. Considering I_{40}, we must give derived operations for the D_0 operations in terms of the D_4 operations, and these consist of all D_2 operations plus the derived operations used in I_2 for the D_1 operations. This means, practically, that implementation I_2 is extended explicitly in order to implement D_0. The third possibility, finding implementation I_{40}, combines these features. It means, practically, that I_1 is "reprogrammed" in terms of I_2.

In these constructions we utilize only part of the information available. For I_{23} we do not make use of the derived operations of I_2, and for I_{40} we do not exploit I_1. I_{23} gives only a little improvement: it allows the use of I_2, but still, not only the D_1 operations but also the derived operations of I_1 have to be implemented. The question is whether we can do better.

In the case where f_3 is an enrichment w.r.t. t_3, Theorems 3.13 and 4.3 give a pleasant construction of an overall implementation $D_2 \rightarrow D_0$ (cf. Figure 11): the pushout (D_5, f_5, t_5) of f_3 and t_4 gives immediately a true t_5 and a composite implementation,

$$(D_5, f_3 f_5, f_4 t_5): D_2 \rightarrow D_0.$$

This means, practically, that the derived operations for D_0 in terms of D_2 (represented by $f_3 f_5$) have been translated automatically to derived operations for D_0 in terms of D_2 (represented by $f_4 f_5$), so that we have fully utilized what we had already.
Unfortunately, in most practical cases \(f_3 \) is not an enrichment w.r.t. \(t_3 \). For example, if we consider a stack implemented by an array with an integer top pointer, we would like to express the idea that arrays whose contents differ only beyond the top are equal as stacks. The corresponding \(f \) would then not be true.

In such cases pushouts do not give composite implementations in general. This is demonstrated by the following counterexample. We give only \(D_1, D_3, D_4, D_5 \) and \(f_3, t_4, f_5, t_5 \), assuming that \(t_3 \) and \(f_4 \) are identities.

Example 5.7 (due to U. Lipeck)

\[
\begin{align*}
D_1 &: \quad c_1, c_2 \rightarrow s, \\
 & \quad d_1, d_2, d_3 \rightarrow r \\
 & \quad t_4

D_2 &: \quad c_1, c_2 \rightarrow s, \\
 & \quad d_1, d_2, d_3 \rightarrow r \\
 & \quad b : s \rightarrow r \\
 & \quad d_1 = b(c_1), \\
 & \quad d_2 = b(c_2)

D_3 &: \quad c_1, c_2 \rightarrow s, \\
 & \quad d_1, d_2, d_3 \rightarrow r \\
 & \quad c_1 = c_2

D_4 &: \quad c_1, c_2 \rightarrow s, \\
 & \quad d_1, d_2, d_3 \rightarrow r \\
 & \quad b : s \rightarrow r \\
 & \quad d_1 = b(c_1), \\
 & \quad d_2 = b(c_2)

D_5 &: \quad c_1, c_2 \rightarrow s, \\
 & \quad d_1, d_2, d_3 \rightarrow r \\
 & \quad f_5

The morphisms are the obvious inclusions given by equal denotations. It is easily checked that \((D_5, f_5, t_5)\) is a pushout of \(f_3 \) and \(t_4 \), \(f_3 \) is full, and \(t_4 \) is an extension. However \(t_5 \) is not true, since in \(D_5 \) we can conclude that \(d_1 = b(c_1) = b(c_2) = d_2 \).

This counterexample shows that implementations cannot be composed in general by just taking the pushout. Moreover, pushouts are not extendible in general to implementations by some simple modifications, for example, adding equations.

In a less direct sense, however, we can utilize pushouts very well in practical cases. Let us consider a full w.r.t. \(t_3 \) but nontrue \(f_3 \). Such an \(f_3 \) is most often given by two nontrivial factors, \(f_3 = f_31f_32 \), where \(f_31 \) is true and \(f_32 \) just adds equations (i.e., \(h_{32} \) and \(g_{32} \) are both bijective, thus \(f_{32} \) is full). Intuitively speaking, \(f_{31} \) represents the addition and definition of derived operations terminating for the relevant arguments, while \(f_{32} \) expresses which items should be considered equal with respect to the implementation.

Let \(f_{32} : D_3 \rightarrow D_5 \) and suppose we have an implementation (cf. Figure 12) \(I_3 = (D_3', f_3', t_3') : D_3 \rightarrow D_3 \), where \(f_3' \) is an enrichment w.r.t. \(t_3' \). Then we can construct \((D_5, f_5, t_5)\) as the pushout of \(f_{31}f_3' \) and \(t_4 \). Theorem 4.3 guarantees that \(t_5 \) is true, and Theorem 3.13 gives us the desired result that \(I = (D_0, f_0, t_0, t_5) \) is an implementation of \(D_0 \) by \(D_2 \).

The only nonconstructive step in getting \(I \) is to find an appropriate \(I_3 \) such that \(f_3' \) is an enrichment w.r.t. \(t_3' \). But here we have a very special situation, and \(I_3 \) has a
natural practical interpretation: finding I_3 means intuitively that we must implement a quotient structure, obtained by adding equations, in terms of the original structure. This can be done by a “canonical term algebra” specification [6, 11] describing how the operations on congruence classes are implemented as operations on a system of distinguished representatives. It is well known that such a canonical term algebra always exists [11], but it cannot be constructed by a general method [6].

If I_1 and I_2 are full implementations and we want to get a full composite implementation, we can do so by extending the above approach, making use of Theorem 4.2, and Theorem 4.3 and Corollary 4.4, respectively.

Practically, a true but nonfull I_4 decomposes most often into two nontrivial factors $I_4 = t_4I_42$, where t_4 is an extension and I_42 describes the true injection of that subspecification of D_4 actually used for implementation into D_4. Let $t_4: D_4 \rightarrow D_4$, and suppose we have an implementation $I_4 = (D_4', f_4', I_4'): D_4 \rightarrow D_4'$, where I_4' is an extension. Then we have an implementation $I = (D_0, f_0f'4, t_0): D_2 \rightarrow D_0$ if (D_0, f_0, t_0) is the pushout of f_3 and t_4I_42. Here we have another nonconstructive step, namely, finding an appropriate I_4. A practical way to find it is to add equations that “make t_4 full” to D_4 thus getting D_4'. Intuitively, this means that we have to identify items not used for implementation (like an array with negative top pointer in our example of stack implementation) with some items used for implementation. Normally this is done by introducing exceptional “error” constants.

A more detailed discussion of application issues lies outside the scope of this paper. One important aspect is that if we have proven implementation steps I_1 and I_2 correct separately, we cannot conclude that an overall implementation built on these is correct unless we have found I_3 (and, in the case of full implementations, I_4) and corresponding correctness proofs.

The approach to implementation taken in [11] is related to a composition of two special implementations in our sense. Considering Figure 10, implementation $D_2 \rightarrow D_1$ corresponds to a Goguen-Thatcher-Wagner derivor from Ω_1 to Ω_2 (with injective sort mapping f) if t_4 is an extension, $\Omega_4 = \Omega_1 + \Omega_2$, and f_4 is the enrichment where each operation $\omega \in \Omega_4$ is defined explicitly by equations of the form $\omega(x_1, \ldots, x_n) = t$ and t is an Ω_2-term over variables x_1, \ldots, x_n. If, in the second implementation $D_1 \rightarrow D_0$ in Figure 10, f_5 is bijective on sorts and operations, it corresponds to the Goguen-Thatcher-Wagner congruence \equiv. Since f_5 is true, we have $\text{init } D_0 \subseteq \text{init } D_1 = \text{init } D_1 /\equiv$ (cf. Theorem 3.8 and Proposition 3.11). Ehrig et al. [6, 7] generalize the Goguen-Thatcher-Wagner derivor by a functor. An implementation in their sense is obtained by giving a functor from D_2-alg to D_1-alg, sending $\text{init } D_2$ to $\text{init } D_1$. Then f_3 defines a surjective homomorphism from $\text{init } D_1$ to $\text{init } D_0$ if t_3 is an identity and f_3 has the above property.
Most specifications of parts of programming systems are parametric; that is, they refer to other parts of the system by means of formal entities to be substituted later, possibly in different ways. We give the well known example of a "stack of something."

Example 6.1

```
Ps create:→ stack
    push:stack × entry → stack
    pop:stack → stack
    top:stack → entry
    e0:→ entry
```

<table>
<thead>
<tr>
<th>pop(create) = create</th>
<th>top(create) = e0</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop(push(s, e)) = s</td>
<td>top(push(s, e)) = e</td>
</tr>
</tbody>
</table>

Again we avoid introducing errors (cf. Example 3.5). What entry and e0 are is left open. They are formal parameters that can be substituted by actual parameters to get stack of nat, stack of array, etc. The formal parameter part constitutes a specification itself:

```
F~ = ((entry}, (e0:→ entry}, O),
```

and we have an embedding $p~: F~ \rightarrow P~$ (here, $p~$ is an inclusion).

Definition 6.2. A parametric specification p is an embedding $p: F \rightarrow P$ in spec. F is called the formal parameter part of p.

We identify nonparametric specifications D with the parametric specifications $(\emptyset, \emptyset, \emptyset) \rightarrow D$. The generality of the above definition allows not only formal sorts and operations, but formal equations too. The idea is that only actual parameters satisfying these equations can be substituted. Thus, in order to substitute an actual parameter for a formal one, we have to give an assignment of actual sorts to formal sorts and of actual operations to formal operations such that the equations resulting from the formal equations are valid in the actual parameter.

The actual parameter may itself be a parametric specification. For example, stack of (stack of entry) may be a useful concept. So, in general, we have the situation depicted in Figure 13a. We utilize pushouts in order to define what comes out if $p~$ is applied to p_1 by means of parameter assignment f (Figure 13b). We must, however, first define what a parameter assignment is, making precise what it means that the formal equations are valid in the actual parameter. We do this in two steps, defining the special case of a nonparametric actual parameter first.

Definition 6.3. Let $p_i: F_i \rightarrow P_i$, $i = 0, 1$, be parametric specifications, and let $f: F_0 \rightarrow P_1$ be a morphism in spec. f is called a parameter assignment from p_0 to p_1 in each of the following cases:

1. $F_1 = (\emptyset, \emptyset, \emptyset)$ and init P_1 satisfies $E_0 f_1$, where E_0 are the equations of F_0.
2. $F_1 \neq (\emptyset, \emptyset, \emptyset)$ and, for each parameter assignment $f_1: F_1 \rightarrow D$ in the sense of case (1), init P_2 satisfies $E_0 f_1''$, where $f_1'' = ff_1$ and (P_2, p'_1, f'_1) is the pushout of p_1 and f_1.

The second part of this definition implies that the parameter conditions E_0 hold in each actual parameter that can be obtained as a result of applying p_1 to some nonparametric specification in the sense of the following definition.

Definition 6.4. Let $p_i: F_i \rightarrow P_i$, $i = 0, 1$, be parametric specifications, and let $f: F_0 \rightarrow P_1$ be a parameter assignment from p_0 to p_1. By an application of p_0 to p_1 by
f we mean the pushout of Figure 13b. The result of this application is the parametric specification $p_2 = p_0 p_0': F_1 \rightarrow P_2$.

That p_2 is indeed a parametric specification is clear from the remark preceding Theorem 4.2. It follows immediately from our pushout theorems in Section 4 that if $p_0, p_1,$ and f are either full or true or both, then the same holds for p_2.

Example 6.5

$$\begin{align*}
\mathcal{P}_a & \quad \text{new:} \rightarrow \text{array} \\
\text{store:} & \quad \text{array} \times \text{key} \times \text{entry} \rightarrow \text{array} \\
\text{read:} & \quad \text{array} \times \text{key} \rightarrow \text{entry}
\end{align*}$$

$$\begin{align*}
\text{read}(\text{new}, k) &= e_0 \\
\text{read}(\text{store}(a, k, e), h) &= \text{if } \text{equ}(k, h) \text{ then } e \text{ else } \text{read}(a, h) \text{ fi}
\end{align*}$$

\mathcal{P}_a is understood to consist of all the sorts, operations, and equations given above. Then $p_0: \mathcal{F}_a \subseteq \mathcal{P}_a$ is a parametric specification, and each actual relation substituted for equ is required to be reflexive. Of course, additional equations, say, for symmetry and transitivity of equ, should be added, together with equations for if-then-else-fi.

Let $f: \mathcal{F}_a \rightarrow D_{nb}$ (cf. Example 3.3) be given by

$$\begin{align*}
h: & \quad \text{entry} \rightarrow \text{nat} \\
 & \quad \text{key} \rightarrow \text{nat} \\
 & \quad \text{bool} \rightarrow \text{bool} \\
g: & \quad e_0 \rightarrow 0 \\
 & \quad \text{equ} \rightarrow \text{eq} \\
 & \quad \text{true} \rightarrow \text{true} \\
 & \quad \text{false} \rightarrow \text{false} \\
 & \quad \text{if-then-else-fi} \rightarrow \text{if-then-else-fi}
\end{align*}$$

In order to prove that f is a parameter assignment, we must prove that $\text{eq}(n, n) = \text{true}$ holds in $\text{init } D_{nb}$. This can be proved by induction. The result of applying p_a to D_{nb} by means of f is D_a (cf. Example 3.4). Now let $f': \mathcal{F}_a \rightarrow \mathcal{P}_a$ (cf. Example 6.1) be given by

$$\begin{align*}
h': & \quad \text{entry} \rightarrow \text{array} \\
g': & \quad e_0 \rightarrow \text{new}
\end{align*}$$

Since \mathcal{F}_a has no equations, f' trivially is a morphism. The result of applying p_a to p_a by means of f' is $p_{sa}: \mathcal{F}_a \rightarrow \mathcal{P}_{sa}$, where \mathcal{P}_{sa} is \mathcal{P}_a extended by the sort stack and the stack operations and equations, with entry replaced by array and e_0 replaced by new.

The result of first applying p_a to p, to get $p_{sa} \triangleq \text{stack of array of key and entry}$ and then applying p_{sa} to D_{nb} to get $D_a \triangleq \text{stack of array of nat and nat}$ (cf. Example 3.5)
is the same as the result of first applying \(p_a \) to \(D_{nb} \) to get \(D_a \) = \textit{array of nat and nat} and then applying \(p_s \) to \(D_s \). That this is not incidentally so is shown by the next theorem.

Theorem 6.6. The application of parametric specifications to parametric specifications by means of parameter assignments is associative.

Proof. Let \(p_i : F_i \rightarrow P_i, i = 0, 1, 2, \) and \(f_i : F_{i-1} \rightarrow P_i, j = 1, 2, \) be given (cf. Figure 14). We have to show that application of \(p_0 \) to \(p_1 \) by \(f_1 \) and then of \(p_1p_0' \) to \(p_2 \) by \(f_2 \) yields the same result as first applying \(p_1 \) to \(p_2 \) by \(f_2 \) and then applying \(p_0 \) to \(p_2p_1' \) by \(f_1f_2' \). That means that we must show that (a) and (c, b) are pushouts iff (c) and (a, b) are pushouts. But both properties hold iff (a), (b), and (c) are pushouts, as we conclude from well known universal pushout properties [23].

We now study some consequences of our notion of parameter substitution. For ease of notation we restrict ourselves to nonparametric actual parameters. The ideas can be carried over to the parametric case without any complication.

Let \(p : F \rightarrow P \) be a parametric specification, and let \(\text{spec}(F, -) \) be the set of morphisms with source \(F \). We take \(\text{spec}(F, -) \) to be the objects of a new category \(\text{morph}(F) \). The morphisms \(g : f_0 \rightarrow f_1 \) in \(\text{morph}(F) \) are those morphisms \(g \) in \(\text{spec} \) satisfying \(f_0g = f_1 \). There is an obvious forgetful functor \(U(F) : \text{morph}(F) \rightarrow \text{spec} \) sending each \(f \) to its target.

Let \(\text{param}(F) \) be the full subcategory of \(\text{morph}(F) \) consisting of all parameter assignments. By our pushout approach to parameter substitution we can associate with each parametric specification \(p : F \rightarrow P \) a functor

\[
\Pi : \text{param}(F) \rightarrow \text{morph}(P),
\]

sending the left side of a pushout diagram like Figure 13b to its right side. To be more precise, let \(f_0, f_1 \in |\text{param}(F)| \) and \(g : f_0 \rightarrow f_1 \in \text{param}(F) \). Furthermore, let \(f_0, f_1 \in |\text{morph}(P)| \) result from the pushout of \(f_0 \) and \(f_1 \), respectively, and \(p \), as shown in Figure 15. Then there is exactly one \(g' : f_0' \rightarrow f_1' \in \text{morph}(P) \) making the diagram commutative, as follows easily from the definition of a pushout.

We now define \(\Pi \) as sending each object \(f \in |\text{param}(F)| \) to the corresponding \(f' \in |\text{morph}(P)| \) forming the opposite side of the pushout, and sending each morphism \(g \) to the unique \(g' \) as explained above. The functor

\[
\Pi U(P) : \text{param}(F) \rightarrow \text{spec}
\]

reflects the effect of parameter substitution in that each actual parameter (together with a parameter assignment) is sent to the resultant specification.

Considering the initial algebra: a parametric specification \(p : F \rightarrow P \) gives a rule telling how to send an actual parameter type to a resultant type: If \(f : F \rightarrow D \) is a parameter assignment, then \(\text{init} D \) is sent to \(\text{init}(f\Pi U(P)) \). Let this mapping be
denoted by Φ. Lehmann and Smyth [15] as well as Thatcher et al. [25] insist that a parametric data type be a functor from a category of parameter types to a category of resultant types. We could easily extend Φ to a functor by introducing appropriate morphisms between initial algebras, as suggested by our specification morphisms. We feel, however, that this would be somewhat artificial in our approach.

In practice, it is desirable that an actual parameter type A be "preserved" by Φ, that is, that A be isomorphic to a reduct of $A \Phi$. Thatcher et al. [25] confine themselves to such cases by requiring "persistency." Corollary 4.4 and Proposition 3.11 give us sufficient conditions under which we can guarantee this: If a parametric specification $p : F \rightarrow P$ and a parameter assignment $f : F \rightarrow D$ are both extensions, then $\text{init} D$ is isomorphic to a reduct of $(\text{init} D)\Phi = \text{init}(f \Pi U(P))$. It seems to be quite natural to have p be an extension and f be true, but unfortunately this is not the case with f being full, as Example 6.5 shows. If we allow, however, for nonfull f's, the parameter type is not preserved in general. This is illustrated by the following example.

Example 6.7

\[
\begin{align*}
 F & \quad a : \rightarrow s \quad p \quad b : \rightarrow r \quad P \quad a : \rightarrow s \\
 & \quad c : s \rightarrow r \quad d : r \rightarrow s \\
 & \quad f \downarrow \quad \text{p.o.} \quad \downarrow f' \\
 D_1 & \quad a : \rightarrow s \quad e : \rightarrow s \quad b : \rightarrow r \\
 & \quad D_2 \quad a : \rightarrow s \quad e : \rightarrow s \quad b : \rightarrow r \\
 & \quad c : s \rightarrow r \quad d : r \rightarrow s \\
 & \quad c(a) = b \quad d(b) = a \\
 & \quad c(a) = b \quad d(b) = a
\end{align*}
\]

Obviously p is an extension and f is true but not full. $\text{init} D_1$ has carrier $\{a, e, b\}$, disregarding the sorts, but $\text{init} D_2$ has carrier $\{a, e, b, c(e), d(c(e)), \ldots\}$. So we cannot have isomorphism.

The situation is more satisfactory if we are content with preserving the actual parameters only as subalgebras of reducts of the resultant types, since p and f need
only be true in order to guarantee this. In such cases the actual parameter type can be "polluted" only by introducing new elements. Actually, this is desired in some cases, for example, if exception or error constants are to be added.

7. Conclusion

We have introduced a conceptually simple but powerful notion of implementation of abstract data types as a relation between their equational specifications, and we have made precise the operations of parameter assignment and substitution when dealing with parametric specifications. In both cases we have made profitable use of pushouts in the category spec of specifications.

Corollary 5.6 shows that the steps of a multilevel implementation can always be composed to form an overall implementation. While there is no general composition construction, our results suggest a method utilizing pushouts that seems to cover most practical cases. There is one nonsystematic step consisting of, roughly speaking, finding a canonical term algebra. In the case of full implementations, the same method works with one additional nonsystematic step consisting of, roughly speaking, the completion of partially defined operations.

The notion of implementation developed so far does not apply directly to parametric specifications. Of course, we can first substitute actual parameters until we have a nonparametric specification and implement the latter. It would, however, be important to have "parametric implementations" that transform to implementations in our sense if actual parameters are substituted consistently.

Our approach to parametric specifications and parameter substitution defines the rules telling how to construct new specifications by substituting actual parameters for formal ones. The concept of parameter assignment as a morphism in spec allows for rather loose and flexible relationships between formal and actual parameters: parametric actual parameters and different sorts and signatures can be handled as well as the assignment of the same actual sort or operation to different formal sorts and operations, respectively. Formal parameter conditions can be formulated as equations, and the existence of a parameter assignment implies that the actual parameter satisfies these equations.

The definition of parameter substitution by pushouts implies a functor from the category of parameters to the resultant specifications, where the category of parameters depends on the parametric specification at hand. We briefly indicate a connection to the semantical approach in [25], where parametrization is understood to define a functor between categories of algebras. Quite a different semantical approach to parametrization is given in [15] in connection with the stepwise solution of systems of domain equations as introduced by Scott [24]. A critical comparison of these two semantical approaches is given in [25].

ACKNOWLEDGMENTS. I am much indebted to H.-J. Kreowski and U. Lipeck for giving valuable comments and criticism on an earlier draft of this paper. I also want to thank H. Ehrig, V. G. Lohberger, J. Thatcher, and E. Wagner for helpful discussions.

REFERENCES

(Note References [2, 17, 18] are not cited in the text)

Abstract Data Types

6 EHRI, H, KREWSKI, H-J., AND PADAWITZ, P. Some remarks concerning correct specification and implementation of abstract data types. Ber Nr. 77-13, Institute für Software und Theoretische Informatik, Technische Universität Berlin, FB 20, 1977

14 GUTTAG, J V. The specification and application to programming of abstract data types. Tech. Rep. CSRG-59, Univ. of Toronto, Toronto, Ontario, Canada, 1975

18 MAJSTER, M E. Limits of the algebraic specification of data types. SIGPLAN Notices 12 (1977), 37-42.

19 MANES, E G. Algebraic Theories. Springer-Verlag, New York, 1976

21 ROSEN, B K. Deriving graphs from graphs by applying a production. Acta Inf. 4 (1975), 337-357

22 SCHNEIDER, H J., AND EHRIG, H. Grammars on partial graphs. Acta Inf. 6 (1976), 297-316

23 SCHUBERT, H. Kategorien. Springer-Verlag, Berlin, 1970

24 SCOTT, D S. Data types as lattices. SIAM J Comput. 5 (1976), 522-587

Received February 1979, Revised March 1980, Accepted November 1980