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Abstract 

The specification of abstract data types requires the possibility to 

treat exceptions and errors. We present an approach allowing all forms 

of error handling : error introduction, error propagation and error 

recovery. The algebraic semantics Of our method and a new correctness 

criterion is given. We also introduce an operational semantics of a 

subclass of our specifications which coincides with the algebraic 

semantics. 
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I. I n t r o d u c t i o n  

Abstract data types offer promising tools for the specification and 

implementation of programs. Research in this field has been initiated 

by [ Gu 75, LZ 7& ]. Pleasant features of the method are that it is 

well-founded algebraically [ AD3 78, £h 79, EKTWW 81, WPPDB 80 ] and 

operationally [ Ro 73, Hu 77, O'D 77, Wa 77 ] and that it is a sound 

basis for specification languages. 

The problem of handling exceptions and errors in abstract data types 

has been studied in [ GHM 77, AD3 78, Go 78.I, Go 78.2, Ma 79, B1 BO ] 

and an operational treatment has been given in [ EP£ B1 ]. 

We here modify the approach of [ EPE 81 ] and study the algebraic and 

operational semantics of specifications allowing error and exception 

handling. We distinguish syntactically between error introducing and 

normal functions and allow two different types of variables for the 

same sort. Thus all forms of error and exception handling, i.e. error 

introduction, error propagation and error recovery, may be treated. We 

avoid the strict propagation of errors as in [ AD3 78,Go 78.I,Ma 79 ], 

the transformation of axioms via new operations as in [ AD3 78 ] and 

the introduction of a semi-lattice structure on the set of sorts as in 

[ Go ?S.2 ] .  

S e c t i o n  2 g i v e s  an i n f o r m a l  i n t r o d u c t i o n  t o  our method. In  s e c t i o n s  3 

and 4 we present the algebraic semantics of our specifications. 

Section 5 gives a new correctness criterion and section B introduces 

the operational semantics of a subclass of our specifications and 

shows that it coincides with the algebraic semantics. Because of 

spa~e limitations, we omit the proofs. 

2. The basic idea 

The n a t u r a l  numbers are an example o f  a s imp le  da ta  t y p e ,  which needs 

e r r o r  and e x c e p t i o n  h a n d l i n g .  We are go ing  t o  use the  n a t u r a l  numbers 
i n  d i f f e r e n t  v e r s i o n s  t h r o u g h o u t  the  paper .  
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Example 2.1 

To specify the natural numbers we need the following functions : 

0 : ---> nat 

pred, succ : nat ---> nat 

add, times : nat x nat ---> nat 

The axioms are given by : 

pred(succ(n))=n ( I 

pred(0)=error ( 2 

a d d ( O , n ) = n  ( 3 

a d d ( s u e t ( n )  , m ) = s u c c ( a d d ( n , m )  ) ( & 

times(O,n):O ( 5 

times(succ(n),m)=add(times(n,m),n) ( 6 

But what is the semantics Of an axiom like pred(D)=error ? If we treat 

'error' as an extra constant in nat, we will find times(0,pred(0)) = 

times(O,error) : 0 and so the introduced error has been forgotten by 

axiom ( 5 ). This might suggest the idea that errors should propagate 

and so we could add the following axioms : 

succ(error)=error ( El ) 

pred(error)=error ( E2 ) 

add(error,n)=error ( E3 ) 

add(n,error)=error ( E& ) 

times(error,n)=error ( E5 ) 

timWs(n,error)=error ( E5 ) 

B u t  u n f o r t u n a t e l y  we d i d n ' t  r e a l l y  s p e c i f y  w h a t  we h a d  i n t e n d e d ,  

because unwanted contradictions occur. O = times(O,error) = error 

holds due to equations ( 5 ) and ( E6 ) and so succn(0) = error for 

every n e N 0 due to ( El ). 

There are other reasons which don't support the idea of strict error 

propagation. For example consider a straightforward specification of 

the factorial function on the natural numbers : 

fac(n) = if(eq(n,0),succ(O),times(n,fac(pred(n)))) 

With the error propagation idea in mind we will find : 

fac(0) = if(eq(0,0),succ(O),times(O,fac(pred(O)))) 

= if(true,succ(O),times(O,fac(error))) 

= if(true,succ(O) ,times(O,error)) 

= if(true,succ(0),error) = error *** 

We present an approach which allows all forms of error handling, i.e. 

error introduction, error propagation and error recovery, to be 

treated in an easy way and Which avoids difficulties like the above. 

Our main instruments are : 

the partition of the carrier sets into a normal and an error part, 

- the syntactical classification of functions into those which intro- 

duce errors in normal situations and those which preserve ok 

states and 

the introduction of two types of variables. The first type will 

serve for non error situations only, the other for ok and excep- 

tional states as well. 

Example 2 . 2  
We give a specification for the intended natural number algebra 

including an error constant. 

0 : ---> nat 

succ : nat ---> nat 

pred : nat ---> nat : unsafe 

add , times : nat x nat ---> nat 

error : ---> nat : unsafe 



143 

Functions, which might introduce errors and error constants, unsafe 

functioDs as we call them, are indicated in the signature by : unsafe' 

The other functions are called oR functions. 

The signature gives a classification for all terms t. If an unsafe 

function occurs in t, it is not known whether an error might be intro- 

duced or not and so t is viewed as a possible error and called unsafe 

term. If only ok functions occur in t, we know t corresponds to a 

natural number. In this case t is called an ok term. 

We mark pred as an unsafe function, because it introduces an error 

when applied to the ok value 0. For the functions succ, add and times 

we know that they will return ok values when they are applied to 

such ones. 

The ok part of the intended carrier set are terms of the form succn(0) 

with heN o corresponding to the natural numbers. The error part of the 

carrier set are terms in which the Sunction symbol "error' occurs. 

These terms can be seen as error messages informing about illegal 

application of pred to 0. 

We now use ok variables n and m which means they serve for non error 

situations only, i.e. only for ok terms. The axioms are exactly ( I ) 

( 5 ) Of example 2.1, but there are semantical differences. It is 

not allowed to substitute for example the term 'error' for variable n 

in axiom (5) and therefore the difficulties described in example 2.1 

do not  occu r .  

Now the following identities hold : 

pred(succ(succ(pred(succ(O))))) = pred(succ(succ(O))) = succ(0) 

Please note it is not  allowed to substitute succ(pred(succ(0))) 

into the ok variable n in axiom ( I ), but we may substitute the 

semantically equivalent term suet(0). This will be clarified later. 

- times(0,pred(D)) = times(0,error) 

No further simplifications can be made on the last term, because 

axiom ( 5 ) cannot be applied. The term can be seen as an error 

message within its environment. *** 

3. A iBebras w i t h  ok p r e d i c a t e s  

In  t h i s  and the  f o l l o w i n g  two s e c t i o n s  we show how the  r e s u l t s  o f  

[ AD3 ?B ] c a r r y  ove r  t o  our n o t i o n  o f  a l g e b r a .  The s y n t a x  o f  our  

many -so r ted  a l g e b r a s  w i t h  ok p r e d i c a t e s  i s  d e f i n e d  v i a  a s i g n a t u r e ,  

wh ich g i v e s  names c o r r e s p o n d i n g  t o  the  s o r t s  o f  t he  c a r r i e r  se ts  and 

t o  the  o p e r a t i o n s  on these s e t s .  Our c a r r i e r  se ts  are not  homogeneous, 

b e c a u s e  we w a n t  t o  d i s t i n g u i s h  b e t w e e n  n o r m a l  s i t u a t i o n s  a n d  

e x c e p t i o n s .  F o r  t h i s  r e a s o n  we a l r e a d y  m a r k  i n  t h e  s i g n a t u r e  t h o s e  

f u n c t i o n  s y m b o l s ,  w h i c h  c o r r e s p o n d  t o  o p e r a t i o n s  i n t r o d u c i n g  e r r o r s  i n  
normal situations. 

Definition 3.1 

A signature with oR predicate ) is a quintupel (S,[,arity,sort,ok[), 

where 

( I ) S is a set ( of sorts ) , [ is a set ( of function symbols ) and 

( 2 ) arity sort and ok[ are mappings : 

arity [ ---> S*, sort : Z ---> $ and ok[ : [ ---> BOOL. 

- A signature (S,[,arity,sort,ok[) will often be denoted by [ only. 

- Given a function symbol o, arity(o)=s1...sn denotes the sorts of the 

arguments, sort(o) = s gives the result sort. This is written as 

o : sl x ... x sn ---> s. 
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- o k E ( o ) = T R U E  m e a n s  o i s  an Ok { u n c t i o n  s y m b o l ,  w h i l e  o k E ( a ) = F A L S E  

i n d i c a t e s  an u , n s a f e  f u n c t i o n  s y m b o l .  T h e  n o t i o n  o {  ok  and  u n s a f e  

{ u n c t i o n s  w i l l  be  made  c l e a r  by  t h e  f o l l o w i n g  d e f i n i t i o n .  

Definition 3 , 2  

Let signature Z be given. A E-algebra ( with ok predicates ) is a 

triple (A,F,OkA) , where 

( 1 ) A = < A s > s e  S i s  an S - i n d e x e d  f a m i l y  O f  s e t s ,  

( 2 ) F=<aA>oe E is a E-indexed family of {unctions, {or every function 

s y m b o l  o : s l  x . . .  x sn - - - >  s we h a v e  a f u n c t i o n  

o A : As1 x . . .  x Ash  - - - >  A s and  
( 3 ) O k A = < O k s > s e  S i s  an  S - i n d e x e d  f a m i l y  o f  p r e d i c a t e s ,  

o k  s : A s - - - >  BOOL s u c h  t h a t  
( # ) f o r  e v e r y  f u n c t i o n  s y m b o l  o : s l  x . . .  x sn - - - >  s w i t h  o k [ ( o ) =  

TRUE and  ( a l  . . . . .  a n )  ~ As1 x . . .  x Ash  w i t h  o k s i ( a i ) = T R U E  { o r  

i = 1  . . . . .  n,  we h a v e  O k s ( O A ( a l  . . . . .  a n ) ) = T R U E .  

- A E - a l g e b r a  ( A , F , o k  A)  w i l l  o f t e n  be  d e n o t e d  b y  A o n l y .  N h e n e v e r  no  

ambiguity arises, we will omit indices of the predicates : {or a 

function symbol o ok(o) means okE(a) and {or aeA s ok(a) means 

oks(a). If ok(o)=TRUE holds, we call o A an ok {unction, otherwise an 

unsafe function. 

For BoA s Oks(a)=TRUE will mean a is an ok element of As, otherwise 

it is called error element. The ok predicates split the carrier sets 

into an ok part Aok and an error part Aerr. 

Aok  = < A o k , s  > s e S  A o k , s  = { a e A s  J ° k s ( a ) = T R U E  } 

Aerr=<Aerr,s>sgS Aerr,s = { aeA s I Oks(a)=FALSE } 
For the application we have in mind the ok elements correspond to 

normal situations, while the error elements indicate exceptional 

states. 

Part (4) of the definition requires that ok {unctions yield ok 

values for ok arguments, or in other words, only unsafe functions 

may introduce errors when applied to normal situations. Because we 

have to treat these unsafe functions carefully, we already dis- 

tinguish them syntactically from ok {unctions. This garantees that 

whenever an expression consisting only Of ok functions is applied 

to ok arguments, this will result in an ok element. For expressions 

including unsafe functions this is not known. 

Every algebra with ok predicates can also be interpreted as a con- 

ventional algebra without ok predicates by just omitting the predi- 

cates. On the other hand every conventional algebra without ok pre- 

dicates can be made into an algebra with ok predicates by demanding 

all functions to be ok {unctions and all elements to be ok elements. 

The same holds {or signatures. 

E x a m p l e  3 . 3  
We describe the natural numbers together with an extra error element, 

which is introduced because we want to apply the predecessor {unction 

to O. Let S : { bool,nat } be the set of sorts. Unsafe {unction 

symbols will be indicated by ' : unsafe' . 

false,true : ---> bool 

0 : ---> nat 

s u c c  : n a t  - - - >  n a t  

p r e d  : n a t  - - - >  n a t  : u n s a f e  

n e g a t i v e  : - - - >  n a t  : u n s a f e  

if : bool x nat x nat ---> nat 
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The Carrier sets and the ok predicates on them are given by : 

A b o o l  = { f t } O k b o o l ( b )  = TRUE 
Ana t = N O + { ena t } Okna t (n)  = (neN D) 

The f u n c t i o n s  c o r r e s p o n d i n g  t o  t h e  f u n c t i o n  symbo ls  a r e  d e f i n e d  by : 

false A : I---> f 0 A : I---> 0 

true A : I---> t negative A : I---> ena t 

n+ l  if neNO 
s u c c  A : n I - - - >  

~ena t if n : e n a  t 

~ n-1 if neN 
pred A : n I---> 

L enat if n=0 or n=ena t 

In1 if b=t 
i f  A : ( b , n l , n 2 )  1 - - - >  

L n2 i f  b = f  
p r e d  A i s  an u n s a f e  f u n c t i o n ,  b e c a u s e  o n l y  f o r  some ok a r g u m e n t s  i t  
yields ok results, for the ok value 0 it returns the error element 

ena t . *** 

For every signature Z we define the term algebra with ok predicates in 

the following way. 

Definition 3.& 

Let signature [ be given. The [.-term algebra (T[,F[,ok T) is defined 

by : 

( I ) (T[,F[) is the usual term algebra. T[=<Ts>s~ S. F[=<aT>oe [. 

( 2 ) OkT:<Oks>se S. For teT s ok s is given by : 

~F ALSE if an unsafe function symbol occurs in t 

°ks(t) =LTRUE otherwise 

A term is an ok term, if and only if all function symbols occurring 

in the term are ok function symbols. 

Our term algebras are well defined, that means TZ is a [-algebra 

with Ok predicates satisfying part ( & ) of definition 3.2. 

Example 3 . 5  
L o o k i n g  a t  t h e  s i g n a t u r e  i n  examp le  3 . 3  we f i n d  i f ( t r u e , O , s u c c ( O ) )  
i s  an ok t e r m  and p r e d ( s u c c ( O ) ) ,  p r e d ( O )  o r  ± f ( t r u e , O , n e g a t i v e )  a r e  
error elements in the term a l g e b r a ,  *** 

[-algebras with ok predicates may be compared by structure preserving 

mappings called [-algebra morphisms. 

Definition 3.5 

Let [-algebras (AI,FI,okAI) , (A2,F2,OkA2) be given. An S-indexed family 

of functions h=<hs>seS, h S : AI s ---> A2 s is called [-algebra morphism , 

if 

( I ) h is a morphism from AI to A2 taken without ok predicates and 

( 2 ) for seS and aeA1 s OkA1(a) implies OkA2(hs(a)). 

A morphism is called in3ective respectively Subjective, if every h s is 

injective respectively surjective. 

A morphism is called strict, if for seS and aeA1 s OkAl(a)=OkA2(hs(a)). 

- Because of the additional predicate structure on signatures and 

algebras we require in part ( 2 ) that no ok element may be mapped 

onto an error element or in other words that the ok property for 

elements is preserved by our morphisms. 

The isomorphisms are the injective, sur3ective and strict morphisms. 

The strictness property is necessary,because we do not only want the 

operational structure but also the predicate structure to be respec- 

ted by isomorphisms. 
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- hok  and h e r  r d e n o t e  t h e  r e s t r i c t i o n s  o f  h t o  ok and e r r o r  e l e m e n t s .  

hok  = < h o k , s  >BeS ' h o k , s  : A l o k , s  - - - >  A 2 o k , s  
h e r r = K h e r r , s > s e S  , h e r r ,  s : A l e r r ,  s - - - >  A2 s . 
F o r  s t r i c t  m o r p h i s m s  we can  d e n o t e  h e r  r , s o f  c o u r s e  by : 

h e r r ,  s : A l e r r ,  s - - - >  A 2 e r r ,  s .  

E x a m p l e  3 . 7  

The f o l l o w i n g  i s  an e x a m p l e  o f  a m o r p h i s m  b e t w e e n  a l g e b r a s  w i t h  ok 
p r e d i c a t e s  and a m o t i v a t i o n  f o r  t h e  f r e e d o m  o f  a l l o w i n , q  e r r o r  e l e m e n t s  

t o  .... be mapped t o  ok e l e m e n t s .  We g i v e  a m o r p h i s m  f r o m  t h e  t e r m  a l g e b r a  
o f  e x a m p l e  3 . 5  i n t o  t h e  a l g e b r a  o f  e x a m p l e  3 . 3 .  I t  i s  t h e  u n i q u e l y  
d e t e r m i n e d  m o r p h i s m  b e t w e e n  t h e s e  a l g e b r a s  t a k e n  w i t h o u t  ok p r e d i c a t e s .  

h b o o l  : T b o o l  - - - >  A b o o l  
false ---> f 
true ---> t 

hna t : T n a t  ---> Ana t 
o I - - -> 0 

n e g a t z v e  I - - - >  ena t 
suet(t) ~---> succA(hnat (t)) 

pred(t) I---> predA(hnat(t) ) 

i f ( b , t l , t 2 )  I - - - >  i f A ( h b o o l ( b )  , h n a t ( t l )  , h n a t ( t 2 ) )  

Obv ious l y ,  h r espec t s  the o p e r a t i o n s  and h p reserves  ok e lements .  I t  

sends each term t o  the  r e s u l t  o f  the co r respond ing  e v a l u a t i o n  i n  A. So 
s u c c ( s u c c ( 0 ) )  w i l l  n a t u r a l l y  be mapped to  2 and o f  course the e r r o r  

(or  unsafe)  terms p r e d ( s u c c ( s u c c ( 0 ) ) )  , i f ( t r u e , 0 , n e g a t i v e )  and pred(0)  

w i l l  r e s u l t  in  I ,  O and ena t ,  r e s p e c t i v e l y .  
The nex t  theorem con f i rms  t h a t  t h i s  morphism i s  the on ly  morphism 
between such algebras, i.e. our term al,Webras are initial. *** 

Theorem 3.B 

Let signature E° term algebra T Z and Z-algebra A be given. Then there 

exists a unique morphism h : T Z ---> A, or in other words, T Z is ini- 

tial in the class of all E-algebras. 

~,~, Specifications 

An important difference between our specification technique and the 

usual algebraic specification w i t h o u t  error handling is t h a t  we intro- 

duce two d i f f e r e n t  t ypes  o f  v a r i a b l e s  for the  same s o r t .  V a r i a b l e s  
o f  the f i r s t  type w i l l  serve f o r  the  ok p a r t  o f  the co r respond ing  
carrier set only, variables of the second type for the whole carrier 

s e t .  

D e f i n i t i o n  4.1 
Let  s i g n a t u r e  E be g i ven .  A p a i r  (V ,ok  V) i s  c a l l e d  a se t  o f  v a r i a b l e s  
( w i t h  ok p r e d i c a t e s  ) f o r  Z, i f  
( 1 ) V=<Vs>s~ S i s  an S- indexed ,  p a i r w i s e  d i s j o i n t  f a m i l y  o f  sets  ( o f  

v a r i a b l e s  ) e a c h  V s d i s j o i n t  f r o m  E and 

( 2 ) o k v = < O k v , s > s e  S, Okv ,  s : V s - - - >  BOOL i s  an S - i n d e x e d  f a m i l y  o f  
predicates. 

Again,  a se t  o f  v a r i a b l e s  (V,ok V) i s  o f t e n  denoted by V o n l y .  
When no amb igu i t y  a r i s e s ,  ok (v )  means Okv,s (V)  f o r  veV s. In analogy 
t o  ok and unsafe f u n c t i o n s  we use the n o t i o n s  o f  ok and unsafe 

v a r i a b l e s .  
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D e f i n i t i o n  4 . 2  
L e t  s i g n a t u r e  Z, E - a l g e b r a  A and  v a r i a b l e s  V be g i v e n .  An a s s i g n m e n t  
t o  ( o r  i n t e r p r e t a t i o n  o f  ) t h e  v a r i a b l e s  i s  an S - i n d e x e d  f a m i l y  o f  

f u n c t i o n s  I = < I s > s e  S I s : V s - - - >  A s s u c h  t h a t  o k v . s ( V )  i m p l i e s  
O k s ( I s ( V ) )  for sES and vcV s- 

I f  ok(v)=TRUE h o l d s ,  i t  i s  no t  a l l owed  t o  ass iBn an e.r..ror e lement  t o  

v ,  ok(v)=FALSE i n d i c a t e s  t h a t  v may ho ld  ok or  e r r o r  v a l u e s .  

Also, for our notions of algebra and morphism there always exist free 

alge.bras. 

Lemma & . 3  
L e t  s i g n a t u r e  Z, v a r i a b l e s  V, E - a l g e b r a  A and a s s i g n m e n t  I : V - - - >  A 
be g i v e n .  T h e n  t h e r e  e x i s t s  a E - a l g e b r a  T z ( V ) ,  s u c h  t h a t  t h e r e  i s  a 
u n i q u e  E - a l g e b r a  m o r p h i s m  ! : T z ( V )  - - - >  A, e x t e n d i n g  I i n  t h e  s e n s e  

t h a t  I s ( V ) : ~ s ( V )  f o r  s¢S and veV s. 

The n o t i o n s  o f  Z - e q u a t i o n ,  o f  e q u a t i o n s  s a t i s f i e d  by a Z - a l g e b r a  and 

o f  c Q n g r u e n c e  T e l a t i o n  on an a l g e b r a  a r e  d e f i n e d  as  u s u a l .  
B u t  p l e a s e  n o t e ,  o u r  d e f i n i t i o n  o f  a s s i g n m e n t  i m p l i e s  t h a t  t h e r e  i s  a 
restriction to the substitution of variables. An equation may be valid 

although it does not hold for error elements substituted for ok 

variables. 

Exampl e &.& 

Let n, nl+ and n2+ be variables of sort nat with ok(n)=TRUE and 

ok(n1+)=ok(n2+)=FALSE. Then the algebra of example 3.3 satisfies the 

followin~ equations ( among others ). 

pred(succ(n))=n ( I ) pred(0)=negative ( 2 ) 

i f ( f a l s e , n l + , n 2 + ) = n 2 +  ( 3 ) i f ( t r u e , n l + , n 2 + ) = n l +  ( 4 ) 
succ(negative):negative ( 5 ) pred(negative)=negative ( 6 ) 

But, for example the equation 

succ(pred(n))=n 

does not hold, because succA(predA(0))=succA(enat)=enat . *** 

Given a E-algebra A and a congruence relation ~ on it, the quotient 

A/~ of A by ~ can be made into a E-algebra with ok predicates by 

defining the carrier sets and operations in the usual way  and by 

letting a class be ok, if and only if there is an ok element o~ the 

algebra in it. In this sense TRUE dominates FALSE with respect to the 

ok predicate o f  a class. 

Defintion &.5 

Let signature Z, Z-algebra A and congruence ~ = <~s>seS be given. 

( I ) ( A/~ FA/~ ) denotes the usual quotient of an algebra by a 

congruence relation on it. 

( Z ) OkA/m=<ok~,s>se S is an S-indexed family of predicates. 

s ( [ a ] ) = I T R U E  i f  t h e r e  i s  a b e [ a ]  w i t h  O k A , s ( b ) = T R U E  
ok_  

= '  L F A L S E  otherwise 

- (A/~,FA/~,OkA/~) is a E-algebra with ok predicates satisfying 

part ( 4 ) of our definition for a l g e b r a .  

For a given set of equations E with variables the induced set o f  
constant equations E(T Z) and the generated least congruence relation 

denoted by ~E = < ~E,s >seS are defined in the usual way. There always 

exists such a 5E' since we know that there always is a least 

congruence generated by a given relation, if we deal only with 

algebras without ok predicates and our congruence definition didn't 
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i n v o l v e  t h e  p r e d i c a t e s .  F o r  b r e v i t y  we o { t e n  d e n o t e  ~E b y  ~ a n d  

a ~E,s b by a ~ b. if no  ambiguities arise. 

Exa,m,p,le &.6 

If we look at the equations of example 4.¢, we find the following 

pairs are in E(T[)na t due to the first equation : 

<pred(succ(O)),8> 

<pred(succ(succ(O))),succ(O)> 

But the following pairs are not in E(TE)nat: 

<pred(succ(negative)),negative> 

<pred(succ(pred(succ(B)))),pred(succ(O))> 

On the other hand, the last pair is in the congruence r.e!ation gene- 

rated by E(T[) : 

<pred(succ(O)),O> ¢ E(T[)na t ===> pred(succ(O)) ~ 0 ===> 

succ(pred(succ(O))) ~ succ(O) ===> 

pred(succ(pred(succ(O)))) ~ pred(succ(O)) ~ 0 *** 

The pleasant thing about our approach to error and exception handling 

is that the fundamental initiality result of [ An3 78 ] is still 

valid. 

Theorem &.7 

T[/~ E is initial in the class of all E-algebras satisfying E, i.e. 

given a E-algebra A, which satisfies E, we have a unique morphism 

g : T [ / ~  E ---> A.  

Remark 

T[/~ E is denoted by TE, E and called the quotient term algebra. 

Example ¢.8 

The quotient of T[ in example 3.5 by the equations in example &.& is 

isomorphic to the algebra of natural numbers in example 3.3. *** 

We now know that for given signature [, variables V and equations E,  

t h e r e  a l w a y s  e x i s t s  an  i n i t i a l  E - a l g e b r a  w h i c h  c a n  be  c h o s e n  as  a 

standard semantics. So we put together signatures, variables and 

equations as usual, getting a specification. 

Definition &.9 

A specification is a triple (E,V.E), where [ is a signature with ok 

predicate, V is a set of variables with ok predicates and E is a set 

of [-equations. 

5. Correctness of specifications 

The usual notion of correctness of specifications - the isomorphism 

between the speci$ied algebra and the given model - is somewhat too 

strong for our purpose. Our main interest lies in the ok part of the 

carrier sets. The cruical point is that terms like succ(error) and 

prod(error) in example 2.2 are error elements, but it is not important 

here that they are dif{erent. So we allow different error elements of 

the specified algebra to be identified in our model. 

Definition 5. I 

Let specification ([,V,E) and [-algebra A be given. ([,V,E) is called 

correct with respect to A, if 

( I ) there is a strict morp.hism h : T[, E ---> A such that 

( 2 ) hok : T[,E,ok ---> Aok is bijective and 

( 3 ) her r : TE,E,er r ---> Aer r is surjective. 
(E,V,E) is strongly correct with respect to A, if it is correct with 

respect to A and the morphism h is an isomorphism. 
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The conventional notion of correctness of specifications for al- 

gebras without ok predicates may be embedded into this correctness 

criterion, because then we only deal with ok functions and ok 

elements and so Tz,E,er r = Aer r = ~. 

Example 5.2 

We give a correct specification for the algebra A defined in example 

3.3. The axioms E are identical to equations (I) (4) Of example &.&. 

T[, E is described by a canonical term algebra using the context-free 

languages defined by the following productions. 

<bool> : := false J true 

<nat> : := <nat-ok> 1 <nat-err> 

<nat-ok> : := 0 I succ( <nat-ok> ) 

<nat-err> : := negative i succ( <nat-err> ) I pred( <nat-err> 

T[,E,bool = L ( <bool> ) Okbool(b)=TRUE 

Tz,E,na t = L ( <nat> ) Okna t (n)=( neL(<nat-ok>) ) 

The operations in T[, E are defined in the usual way, e.g. 

r succn-1 (O) if t=succn(o) and n>O 

p r e d E ,  E : t l - - - > ~ n e g a t i v e  i f  t = 0  
/ 

L p r e d ( t )  i f  t e L ( < n a t - e r r > )  
We now d e f i n e  a m a p p i n g  h : TE, E - - - >  A. 

h b o o l  : T E , E , b o o l  - - - >  A b o o l  
true I - - - >  t 

false I---> f 

hna  t : T z , E , n a  t - - - >  Ana t 
i _ _ _ > ] ' n  i f  t e L ( < n a t - o k > ) ,  t = s u c c n ( o )  

t 
ena t if teL(<nat-err>) 

To prove that h is a strict morphism, we have to show : 

( I ) h(o[,E(al ..... an))=aA(h(al) ..... h(an)) holds for every oe[. 

( 2 ) o k [ , E ( a ) = O k A ( h ( a ) )  for seS and  aeA s .  
It is easy to see that the mapping h respects the operatlons. 

The strictness of h, its bijectivity on the ok part and its surjec- 

tivity on the error part can be seen directly from its definition. The 

specified algebra is correct with respect to the algebra A of example 

3.3 although all error elements are mapped to the one error element 

in A. If we want to get a strongly correct specification, we have 

to add equations ( 5 ) and ( 6 ) of example 4.4. *** 

6- Operational semantics of specifications 

A set of equations can be viewed as a set of rewrite rules inter- 

preting equations from left to right. By substituting constant terms 

for the variables we get a set of constant rewrite rules. These rules 

determine a reduction process on terms which stops if none of the 

axioms can be applied further. In this way we give an operational 

semantics for specifications which is well-defined if the set of 

constant rewrite rules has the finite church-tosser property. 

Definition 5.1 

Let specification ([,V,E) and the set of constant equations E(T[) be 

g i v e n .  

-->E = < -->s > seS is the family of relations on T[ defined by : 

( I ) If <t,t'> £ E(TE)s, then t -->s t' . 

( 2 ) If o : sl x ... x sn ---> s, tieTsi for i = I ..... n and 

j e { I ..... n } with tj -->sj tj' are given, then 

o ( t l  . . . . .  t j  . . . . .  t n )  - - > s  o ( t l  . . . . .  t 3 '  , . . . .  t n )  
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- - > E  = < - - > s  > s e S  i s  t h e  r e f l e x i v e  a n d  t r a n s i t i v e  c l o s u r e  o f  - - > E  
a n d  c a l l e d  t h e  f a m i l y  o f  s u b t e r m  r e p l a c e m e n t s  i n d u c e d  b y  E.  

has the normal form t', if t -->~ t' and there ks A term t of sort s 

no t' -->s ~" This is denoted by nf(t)=t' . 

E x a m p l e  6.2 

T h e  n o r m a l  f o r m s  o f  e x a m p l e  5 . 2  a r e  i d e n t i c a l  t o  t h e  e l e m e n t s  O f  t h e  

carrier set of the given canonical term algebra. *** 

Definition 5.3 

-->E is called finite church-rosser,, if. every term t of sort s has a 

normal form, and if t -->~ ~ and t -->i ~' , then there is a t' with 

- - , :  t .  sod t ' .  

- I f  - - > E  i s  f i n i t e  c h u r c h - t o s s e r ,  e a c h  ,,t,e,,rm h a s  a , u n i q u e  n o r m a l  f o r m ,  

E x a m p l e  6 . 4  

For the specifications in examples 2.2 and 5.2 the families of subterm 

replacements -->E are finite church-tosser. **~ 

Definition 6.5 

Let specification ([,V,E) with finite church-tosser -->E be given. 

The normal form alsebra (NF,FNF,OkNF) is defined by : 

( I ) NF : < NFs >soS" NF s are the normal forms of sort s. 

( 2 ) FNF = < °NF >oeE" For o : sl x ... x sn ---> s and normal forms 

ti of sort si for i=I ..... n , the function ONF is given by : 

aNF(tl ..... tn) = nf(a(tl ..... tn) ) . 

( 3 ) °kNF = < °kNF,s >szS" For a normal form t of sort s OkNF,s is 

defined by : 

~ TRUE if there is an ok term t' with nf(t' )=t 

°kNF,s (t) = LFALSE otherwise 

- (NF,FNF,OkNF) is a E-algebra with ok predicates satisfying part (4) 

of our definition for algebra. 

A normal form t is ok in the normal form algebra if and only if 

there is an ok term t' which has t as its normal from. In this sense 

the ok terms dominate the error terms, or in other words if an error 

term is equivalent to an ok term this 'heals' the error term. If the 

rules are ok term preserv~ng, which means there is no <t,t'> e E(T[) 

with ok(t)=TRUE and ok(t' )=FALSE, the ok predicates in the normal 

form algebra are determined by the normal forms themselves. 

Exampl,e S. B 

If we compare the normal form algebra and the quotient term algebra of 

example 5.2, we find they are isomorphic. *** 

Theorem 5.7 

Let specification ([,V,E) with finite church-tosser -->~ be given. 

Then the quotient term algebra TE, E and the normal form algebra NF 

are isomorphic. 
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