A. B. CremersandH.-P.Kriegel, editors,Proc.6. Gl-Fachtagundtr Theoretisch
Informatik, LNCS 145,pagesl41-151Berlin, 1983.Springer—Verlag

ALGEBRAIC AND OPERATIONAL SEMANTICS OF EXCEPTIONS AND ERRORS

M.Gogolla.K.Drosten,U.Lipeck
Abteilung Informatik, Universitidt Dortmund
Postfach 500500, D~-4600 Dortmund 50

H.D.Ehrich
Lehrstuhl B fir Informatik, TU Braunschweig
Postfach 33293, D-3300 Braunschweig

Abstract

The specification of abstract data types requires the possibility to
treat exceptions and errors. We present an approach allowing all forms

of error handling : error introduction, error propagation and error
recovery. The algebraic semantics of our method and a new correctness
criterion is given. We also introduce an operational semantics of a

subclass of our specifications which <coincides with the algebraic
semantics.

Key Words
Specification of abstract data types, error and exception handling,
algebraic semantics , correctness of specifications |, operational
semantics.

1. Introduction

Abstract data types offer promising tools for the specification and
implementation of programs. Research in this field has been initiated
by [Gu 75, LZ 74 1. Pleasant features of the method are that it is
well-founded algebraically [ADJ 78, Eh 79, EKTWW B1, WPPDB 80] and
operationally [Ro 73, Hu 77, 0'D 77, Wa 77 1 and that it is a sound
basis for specification languages.

The problem of handling exceptions and errors in abstract data types
has been studied in [GHM 77, ADJ 78, Go 7B.1, Go 78.2, Ma 79, Bl 80 1]
and an operational treatment has been given in [EPE 81 1.

We here modify the approach of [EPE 81] and study the algebraic and
operational semantics of specifications allowing error and exception
handling. We distinguish syntactically between error introducing and
normal functions and allow two different types of variables for the
same sort. Thus all forms of error and exception handling, i.e. error
intreduction, error propagation and error recovery, may be treated. We
avoid the strict propagation of errors as in [ADJ 78,Go 78.1,Ma 79 1,
the +transformation of axioms via new operations as in [ADJ 78] and
the introduction of a semi-lattice structure on the set of sorts as in
[Go 78.2 1.

Section 2 gives an informal introduction to our method. In sections 3
and &4 we present the algebraic semantics of our specifications.
Section 5 gives a new correctness criterion and section 6 introduces
the operational semantics of a subclass of our specifications and
shows that it coincides with the algebraic semantics. Because of
space limitations, we omit the proofs.

2. The basic idea

The natural numbers are an example of a simple data type, which needs
error and exception handling. We are going to use the natural numbers
in different versions throughout the paper.

HDEhrich
Schreibmaschinentext
A. B. Cremers and H.-P. Kriegel, editors, Proc. 6. GI-Fachtagung für Theoretische Informatik, LNCS 145, pages 141–151, Berlin, 1983. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

142

Example 2.1
To specify the natural numbers we need the following functions

6 : ---> nat
pred, succ : nat ---> nat
add, times : nat x nat ---> nat

The axioms are given by :
pred{succ{n))=n { 1)
pred(0)=zerror (2
add{(0,n}=n (3)
add{succi{n),m)=succ{add{n,m}} (&)
times(0,n)=0 (5 1)
times{succ{n) , my=add{times{n.m},n) (&8)

But what is the semantics of an axiom like pred(0)=zerror ? If we treat
‘error’ as an extra constant in nat, we will find times{0,predf{0)) =
times(0,error} = 0 and so the introduced error has heen forgotten by
axiom (5). This might suggest the idea that errors should propagate
and so we could add the following axioms :
succ{error)=error (E1
pred(error)=error (E2
add(error,n)=errorxr (E3
add(n,error)=error (E&
(
(

e e

times{(error,n)=error ES
times(n,error)=error EE)
But wunfortunately we didn't really specify what we had intended,
because unwanted contradictions occur. 6 = times(0,error) = error
holds due to equations (5) and (EB) and so succ™(0) = error for
every n e Ny due to (E1).
There are other reasons which don’'t support the idea of strict error
propagation. For example consider a straightforward specification of
the factorial function on the natural numbers
fac(n) = if(eq(n,D),succ(D),times(n,fac({predi(n})))
With the error propagation idea in mind we will find :
fac(Q) if{eq(0,0),succ(0),times(0,Ffac(pred(D}}})
= if(true,succ(0),times(0,facl(error)})
= if(true,succ(0),times(0,error))
= if(true,succ(0),error) = error LER

]

We present an approach which allows all forms of error handling, i.e.

error introduction, error propagation and error recovery, to be

treated in an easy way and which avoids difficulties like the above.

Our main instruments are :

- the partition of the carrier sets into a normal and an error part,

- the gyntactical classification of functions into those which intro-
duce errors in normal situations and those which preserve ok
states and

-~ the introduction of two types of variables. The first type will
serve for non error situations only, the other for ok and excep-~
tional states as well.

Example 2.2
We give a specification for +the intended natural number algebra

including an error constant.

0 : ---> nat

succ : nat ---> nat

pred : nat ---> nat : unsafe

add , times : nat x nat --->» nat

error : ~--->» nat : unsafe

143

Functions, which might introduce errors and error constants, unsafe
functions as we call them, are indicated in the signature by ': unsafe’
The other functions are called ok functions.

The signature gives a classification for all terms t. If an unsafe
function occurs in t, it is not known whether an error might be intro-
duced or not and so t is viewed as a possible error and called unsafe
term. If only ok functions occur in t, we know t corresponds to a
natural number. In this case t is called an ok term.

We mark pred as an unsafe funétion. because it introduces an error
when applied to the ok value 0. For the functions succ, add and times
we know that they will return ok values when they are applied to
such ones.

The gk part of the intended carrier set are terms of the form succ™(a)
with neNg corresponding to the natural numbers. The error part of the
carrier set are terms in which the function symbol ‘error’ occurs.
These terms can be seen as error messages informing about illegal
application of pred to 0.

We now use ok variables n_and m which means they serve for non error
situations only, i.e. only for ok terms. The axioms are exactly (1 }
- { 68 } of example 2.1, but there are semantical differences. It is
not allowed to substitute for example the term 'error’ for variable n
in axiom (5} and therefore the difficulties described in example 2.1
do not occur.

Now the following identities hold :

-~ pred{succ{succ{pred{succ{0}})}) = pred{succi{succ(0})) = succ(Q)
Please note it 1is not allowed to substitute succ{pred{succ(0})}
into the ok variable n in axiom {(1), but we may substitute the
semantically equivalent term succ{0). This will be clarified later.

- times({0,pred(0)) = times{D,error)

No further simplifications can be made on the last term, because
axiom (5) cannot be applied. The term can be seen as an error
message within its environment. * ok k

3. Algebras with ok predicates

In this and the following two sections we show how the results of
[AD2 78 1 carry over to our notion of algebra. The syntax of our
many-sorted algebras with ok predicates is defined via a signature,
which gives names corresponding to the sorts of the carrier sets and
to the operations on these sets. Our carrier sets are not homogeneous,
because we want to distinguish between normal situations and
exceptions. For this reason we already mark in the signature those
function symbols, which correspond to operations introducing errors in
normal situations.

Definition 3.1

A signature (with ok predicate) is a guintupel (S,E,arity,sort,ok[),
where

{ 1) S is a set { of sorts) , [is a set { of function symbols)} and
{ 2) arity , sort and oky are mappings :
arity : L ---> s*, sort : L ---> S and oky : [---> BOOL.
- A signature {s,L,arity,sort,oky) will often be denoted by I only.
~ Given a function symbol o, arity{o)=zst...sn denotes the sorts of the
arguments, sort{c) = s gives the 7result sort. This is written as

G : 81 X ... %X sn ~==~> s,

144

- ok[(a)zTRUE means o 13 an ok function symbol, while ok[(c)=FALSE
indicates an unsafe function symbol. The notion of ok and unsafe
functions will be made clear by the following definition.

Definition 3,2

tet signature I be given. A I-algebra (with ok predicates } is a
triple (A,F,okA), where

1) A=<As>ses is an S-indexed family of sets,

(2 F=do,>, .y 18 a L-indexed family of functions, far every function

symbel ¢ : s1 %X ... % sn ---> s we have a function
Op @ AS1 X v X ASn - As and

{3) okp=<ok.>,.¢ 1S an S-indexed family of predicates,
oks : A5 ~=-=-> BOOL such that

{ 4) for every function symbol o : st x ... %X sn ---> s with ok[(o)z
TRUE and (al1,...,an) € Agqy X oo XA with oksi(ai)=TRUE for
i=t1,...,n, we have oks(uA(a1,...,an))=TRUE.

- A I-algebra (A,F,okA) will often be denoted by A only. Whenever no
ambiguity arises, we will omit indices of the predicates : for a
function symbol o ok(o) means ok[(a) and for asAg ok{a) means
oks(a). If ok{g)=TRUE hclds, we call g, an ok function, otherwise an

unsafe function.
- For aeAs oks(a)=TRUE will mean a is an ok element of As' otherwise
it is called error element. The ok predicates split the carrier sets
intoc an ok part A,y and an error part A

err”

Aok SAgk,a Yses » Pok.s { agA | ok (a)=TRUE }

Aerr®<Aerr,s”ses + Perr,s- | 28Ag !_Oks(a)sFALSE ¥

For the application we have in mind the ok elements correspond to
normal situations, while the error elements indicate exceptional
states.

-~ Part (4) of the definition requires that ok functions vield ok
values for ok arguments, or in other words, only unsafe functions
may introduce errors when applied to normal situations. Because we
have to treat these unsafe functions carefully, we already dis-
tinguish them syntactically from ok functions. This garantees that
whenever an expression consisting only of ok functions is applied
to ok arguments, this will result in an ok element. For expressions
including unsafe functions this is not knoawn.

- Every algebra with ok predicates can also be interpreted as a con-
ventional algebra without ok predicates by just omitting the predi-
cates. On the other hand every conventional algebra without ok pre-
dicates can be made into an algebra with ok predicates by demanding
all functions to be ok functions and all elements to be ok elements.
The same holds for signatures.

Example 3.3
We describe the natural numbers together with an extra error element,

which 1is introduced because we want to apply the predecessor function

to 0. Let S = { bool,nat } be the set of sorts. Unsafe function
symbols will be indicated by ': unsafe'.

false,true : ~~--> bool

g : ---> nat

succ : nat -~~->» nat

pred : nat ---> nat : unsafe

negative : ~-~> nat : unsafe

if : bool x nat x nat ---> nat

145

The carrier sets and the ok predicates on them are given by :

Apocol * { f, t1} 0Kpgoytb) = TRUE
nat = Ng * L eqae !} oKpatg (N1 = (neNg)
The functions corresponding to the function symbols are defined by :
false, : J===> f 0, : }---> 0
true, : |--->t negative, : }---> e,
n+1 if neNG
succ, : n fome> .
®hat if N=€nat
n-1 if neN
pred, : n fom>)
€hat if n=0 or n=e .t
n1 if b=t
if, « (b,n1,n2) j===> .
n2 if bs=sf

predA is an unsafe fupction, because only for some ok arguments it
yvields ok results, for the ok value 0 it returns the error element

* %
®hat- *
For every signature [we define the term algebra with ok predicates in
the following way.

Definition 3.4
Let signature [be given. The [~term algebra (T[,F[,okT} is defined
by :
¢ 1) (Tg.Fg) is the usual term algebra. Tg=<T, > ..
{ 2) okp=<ok >, c. For teT ok, is given by :
ok (t).ﬁ(fALSE if an unsafe function symbol occurs in t
s

Fr=<Oy>5er-

TRUE otherwise
- A term is an ok term, if and only if all function symbols cccurring
in the term are ok function symbols.
- Our term algebras are well defined, that means T[is a L[-algebra
with ok predicates satisfying part { 4 } of definition 3.2.

Example 3.5

Looking at the signature in example 3.3 we find if{true,D,succ(0})
is an ok term and pred{succ{0})), pred{0) or if{true,0,negative) are
error elements in the term algebra. LR

I~algebras with ok predicates may be compared by structure preserving
mappings called I-algebra morphisms.

Definition 3.6

Let L-algebras (A1,F1,okA1),(A2,F2,okA2) be given. An S-indexed family
of functions h=<h >, cc0 By @ Al ~--> A2, is called I-algebra morphism
if

{1} h dis a merphism from A1 to A2 taken without ok predicates and
(2) for seS and asAl, okA1(a) implies okAz(hs(a)).

A morphism is called injective respectively surdjective, if every hy is
injective respectively surjective.

A morphism is called strict, if for seS and aeAl okA1(a)=okA2(hs(a)).

- Because of the additional predicate structure on signatures and
algebras we Trequire in part (2) that no ok element may be mapped
onto an error element or in other words that the ok property for
elements is preserved by our morphisms.

- The isomorphisms are the injective, surjective and strict morphisms.
The strictness property is necessary,because we do not only want the
operational structure but also the predicate structure to be respec~
ted by isomorphisms.

146

- hgy and h,... denote the restrictions of h to ok and error elements.
bok =<Nok,s ”ses * Pok,s Alok,s ~77> A4k g
herr=<h¢rr,s>ses ¢ Marp,s * Alary,s 77> AZg
For strict morphisms we can denote h_ . _ of course by :
Perr,s * Alerr,s “777 A2qyryr,5-

Example 3.7

The following is an example of a morphism between algebras with ok
predicates and a motivation for the freedom of allowing error elements
to be mapped to ok _elements. We give a morphism from the term algebra
of example 3.5 into the algebra of example 3.3. It is the uniquely
determined morphism between these algebras taken without ok predicates.

Phool * Tbool ~~ "> Pbool
false |---> f
true |---> t
Mhat * That ==> Apat
|---> 10
negative --=> €nat
succ{t) J-==> succytho L ()]
pred{t) J===> pred,(h . (t))
if{b,t1,t2) |--~-> 1fA(hb°ol(b),hnat(t1),hnat(t2))
Obviously, h respects the operations and h preserves ok elements. It

sends esach term to the result of the corresponding evaluation in A. So
succ{succ{0}) will naturally be mapped to 2 and of course the error
{or unsafe) terms pred{succ{succ{0})), if{true,0,negative) and pred(0)
will result in 1, 0 and e, ., respectively.

The next theorem confirms that this morphism is the only morphism
between such algebras, i.e. our term algebras are initial. Xk *

Theorem 3.8

tet signature I, term algebra Tg and L-algebra A be given. Then there
exists a unique morphism h : Tp --> A, or in other words, Tr is ini-
tial in the class of all L[-algebras.

4. Specifications

An important difference between our specification technique and the
usual algebraic specification without error handling is that we intro-
duce two different types of variables for the same sort. Variables
of the first type will serve for the ok part of the corresponding
carrier set only, variables of the second type for the whole carrier
set.

Definition 4.1

Let signature I be given. A pair (V,okv) is called a set of variables
(with ok predicates) for L[, if

(1) vaev, > ¢ is an S-indexed, pairwise disjoint family of sets { of

s’se
variables } , each V_ disjoint from I and
{ 2 OkV=<°kV,s>seS' °kv,s TV, - BooL is an S-indexed family of

predicates.

~ Again, a set of variables (V,okv) is often denoted by V only.

- When no ambiguity arises, ok{v) means Okv,s(V) for vev, . In analogy
to ok and unsafe functions we use the notions of gk and unsafe
variables.

147

Definition 4.2

Let signature [, f-algebra A and variables V be given. An assignment
to (or interpretation of } the wvariables is an S-indexed family of
functions I=<1 >,.5 I, : Vg --=> A such that okv’s(v) implies
ks(Is(v)) for seS and veV,.

- If ok{(v)}=TRUE holds, it is not allowed to assign an error element to
v, ok{v)=FALSE indicates that v may hold ok or error values.

Also, for our notions of algebra and morphism there always exist free
algebras.

Lemma 4.3

tet signature [, variables V, L[-algebra A and assignment I : V -~-> A
be given. Then there exists a E-algebra Ty(V), such that there is a
unique I-algebra morphism I : T[(V) --=-> A, extending I in the sense

that I _(v)=1I_(v) for seS and vev_.

The notions of L[-eguation, of equations satisfied by a L-algebra and
of congruence relation on an algebra are defined as usual.

But please note, our definition of assignment implies that there is a
restriction to the substitution of variables. An equation may be valid
although it does not hold for error elements substituted for ok
variables.

Example 4.4
Let n, ni+ and n2+ be variables of sort nat with ok{n)=TRUE and

ok{n1+}=0ok{n2+)=FALSE. Then the algebra of example 3.3 satisfies the
following eguations (among others }.

pred{succi{n)}=n { 1) pred(0)=negative (2
if(false,nt+,n2+}=n2+ {(3 if(true,n1+,n2+)=n1+ { &)
succ{negative)=negative (5) pred{negative)=negative (6)}

But, for example the equation
succ{pred{(n))=n

does not hold, because succA(predA(O))=succA(enat)=enat. LR
Given a L-algebra A and a congruence relation = on it, the guotient
A/= of A by & can be made into a I[-algebra with ok predicates by

defining the carrier sets and operations in the usual way and by
letting a class be ok, if and only if there is an ok element of the
algebra in it. In this sense TRUE dominates FALSE with respect to the
ok predicate of a class.

Defintion 4.5
Let signature I, I-algebra A and congruenhce = = <2.>ggg be given.
(1) (A/, Fass }) denotes the wusual quotient of an algebra by a
congruence relation on it.
{2 OkAIE=(°k§,s>seS is an S-indexed family of predicates.
TRUE if there is a belal with ok (b)=TRUE
°k5,s([a“='{

FALSE otherwise

A,s

- (A/E,FA/=.okA/:) is a L[-algebra with ok predicates satisfying
part (&) of our definition for algebra.

For a given set of equations E with variables the induced set of
constant equations E(T[) and the generated least congruence relation

denoted by =g = < 5 | > .g are defined in the usual way. There always
exists such a =g, since we know that there always is a least
congruence generated by a given relation, if we deal only with

algebras without ok predicates and our congruence definition didn’t

148

invelve the predicates. For brevity we oaften denote =g by = and

a g o b by a = b, if no ambiguities arise.

Example & .6

If we look at the equations of example 4.4, we find the following

pairs are in E(T[)nat due to the first equation :
<pred(succ(0}),0>
<pred{succ{succ({0}})},succ{0)>

But the following pairs are not in E(T[)
<pred{succ({negative)),negative>
<pred{succ(pred(succ(0}}}},predlsucc(0)}}>

On the other hand, the last pair is in the congruence relation gene-

rated by E(T[) :

nat*

<pred(succ(D))},0> e E(Tg) , ===> pred(succ{0)} = 0 ===>
succ(pred(succ{D))) = succ(D) ===>
pred(succ{pred(succ(0}}}) & pred(sucec{D}} = 0 EEE

The pleasant thing about our approach to error and exception handling
is that the fundamental initiality result of [ADJI 78] is still
valid.

Theorem 4.7

T[/sE is initial in the class of all IL-algebras satisfying E, i.e.

given a LIL-~algebra A, which satisfies E, we have a unigque morphism
g T[/EE ——-> AL

Remark

T[/§E is denoted by T[E and called the guotient term algebra.

Example 4.8

The quotient of Tr in example 3.5 by the equations in example 4.4 is
isomorphic to the algebra of natural numbers in example 3.3. * k&

We now know that for given signature L[, variables V and equations E,
there always exists an initial I-algebra which can be chosen as a
standard semantics. So we put together signatures, variables and
equations as usual, getting a specification.

Pefinition 4.9
A specification is a triple (L,V,E}, where [is a signature with ok
predicate, V is a set of variables with ok predicates and E is a set
of E~equations.

5. Correctness of specifications

The usual notian of correctness of specifications - the isomorphism
between the specified algebra and the given model - is somewhat too
strong for our purpose. Our main interest lies in the ok part of the
carrier sets. The eruical point 1is that terms like succl(error} and
pred{error} in example 2.2 are erraor elements, but it is not impertant
here that they are different. So we allow different error elements of
the specified algebra to be identified in our model.

Pefinition 5.1
Let specification (L,V,E} and I-algebra A bhe given. (L,V,E} is called
correct with respect to A, if

(1) there is a strict morphism h : Tg g ---> A such that
(2) hg T[,E.ok -=> Aok %3 bijgctiye and
(3) hgpy T[,E,err -=-> A py 1is surjective.

({L,V,E} is strongly correct with respect to A, if it is caorrect with
respect to A and the morphism h is an isomorphism.

149

~ The conventional notion of correctness of specifications for al-
gebras without ok predicates may be embedded into this correctness
criterion, because then we only deal with ok functions and ok
elements and so T[,E.err = A = .

err
Example 5.2
We give a correct specification for the algebra A defined in example

3.3. The axioms E are identical to eguations (1} - (4} of example 4.4.
T[E is described by a canonical term algebra using the context-free
languages defined by the following productions.

<bool> ::= false | true

<nat> ::= <nat-ok> | <nat-err>

<nat-ok> ::= D | succ(<nat-ok> }

<nat-err> ::= negative | succ({ <nat-err> } | pred(<nat-err>)
T[,E,bool = L (<bool>) okbool(b)=TRUE
T[,E,nat L { <nat>) oK . ¢ (n)={(neL(<nat-ok>} }

The operations in T[g are defined in the usual way, e.gd.
suce™ V(o) if t=succ™(0) and n>0

predy p @ t |--->4€ negative if t=0
pred(t} if teL{<nat-err>)
We npow define a mapping h : T[E ~—"> A.
Mool * Tr,E.bool "~~~ Abool
true -—-=> t
false f=-=> F
"nat * T, E.nat ~~~> Apat n
| n if telL{<nat-ok>), t=succ (0)
t -—=>

€hat if teL{<nat-err>)
To prove that h is a strict morphism, we have to show :
(1) h(cEJE(a1,...,an)):cA(h(a1),.‘.,h(an)) holds for every oel.
(2) ok['E(a)=okA(h(a)) for sesS and aeA_.
It is easy to see that the mapping h respects the operations.
The strictness of h, its bijectivity on the ok part and its surjec-
tivity on the error part can be seen directly from its definition. The
specified algebra is correct with respect to the algebra A of example

3.3 , although all error elements are mapped to the one error element
in A, If we want to get a strongly correct specification, we have
to add equations {(5) and (6) of example &.4&. ** *

6. Operational semantics of specifications

A set of equations can be viewed as a set of rewrite rules inter-
preting equations from left to right. By substituting constant terms
for the variables we get a set of constant rewrite rules. These rules
determine a reduction process on terms which stops if none of the
axioms can be applied further. In this way we give an gperational
semantics for specifications which is well-defined if the set of
constant rewrite rules has the finite church-rosser property.

Definition 6.1

Let specification (L,V,E) and the set of constant equations E(T[) be
given
RS b U SN is the family of relations on Ty defined by :
(1) IFf <t,t'>» ¢ E(T[)s, then t -—>S t.
(2) IFf 0 : 81 x ... X sn --~> g, tieT ; for i = 1,....n and

e {1,....,n} with tJ -->45 tJ’' are given, then

olt1,...,t3,...,tn) -=> olt1,...,t3',...,tn)

150

-—>E = < —->; >aes is the reflexive and transitive closure of -=>F
and called the family of subterm replacements induced by E.
A term t of sort s has the normal form t', if t ——>: t’ and there is

no t' -->_ T. This is denoted by nflti=t’.

Example 6.2
The normal forms of example 5.2 are identical to the elements of the
carrier set of the given canonical term algebra. * k%

Definition 6.3
* - .
——>E is called finite church-rosser, if every term t of sort s has a

normal form, and if t ——>: T and t —->: T' , then there is a t' with
T —~>: t' and T ~->: t.

* - .
- If ”'>E is finite church-raosser, each term has a uhigue normal form.

Example 6 4
For the specificgtions in examples 2.2 and 5.2 the families of subterm
replacements -~>g are finite church-rosser. * k%

Definition 6.5

Let specification (L,V,E) with finite church-rosser ——>E be given.
The naormal form algebra (NF,FNF,okNF) is defined by :

{1) NF = < NF_ > NF, are the normal forms of sort s.

seS”

{ 23 FNF = < Oy >Ua[’ For o : 81 % ... %x sh ~--> s and normal forms
ti of sort si Ffor i=1,...,n , the function ONF is given by :
GNF(t1,....tn) = nf{o{tl,...,tn}).

{ 3) okNF = < OKNF,s >seg- For a normal form t of sort s OKNF,s is

defined by :

.{TRUE if there is an ok term t' with nf(t’')=t

ok (t) =

WF,s FALSE otherwise

- (NF,FNF,okNF) is a L-algebra with ok predicates satisfying part (4}
of our definition for algebra.

- A normal Fform t is ok in the normal form algebra if and only if
there is an ok term t’' which has t as its normal from. In this sense
the ok terms dominate the error terms, or in other words if an error
term is equivalent to an ok term this 'heals’ the error term. If the
rules are ok term preserving, which means there is no <t,t’'> e E(T[)
with ok{t)}=TRUE and ok{t')=FALSE, the ok predicates in the normal
form algebra are determined by the normal forms themselves.

Example 6.6
If we compare the normal form algebra and the guotient term algebra of
example 5.2, we find they are isomorphic. X k%

Theorem 6.7

Let specificatian (L,V,E} with finite church-rosser —~>; be given.
Then the quotient term algebra T[,E and the normal form algebra NF
are isomorphic.

Acknowledgements

We thank Udo Pletat and especially Gregor Engels for their earlier
work in the field and many fruitful discussions.

151

References

ADJ 78

Bl 80

Eh 79

EKTWW 81

EPE 81

GDLE 82

GHM 17

Hu 77

LZ 74

o'D 77

Ro 73

Wa 77

WPPDB 80

Goguen,J.A./Thatcher,J.W./Wagner ,E.G. : An Initial Algebra
Approach to the Specification, Correctness and Implementation
of Abstract Data Types. Current Trends in Programming Metho-

dology, vol. 1V { R.T.Yeh, ed. 1}. Prentice Hall, Englewood
Cliffs, 1978, pp. B0-149.

Black,A.P.: Exception Handling and Data Abstraction. IBM
Research Report RC 8059, 1980.

Ehrich,H.~D.: On the Theory of Specification, Implementation

and Parametrisation of Abstract Data Types. Journal ACM,
Vol.29, 1982, pp. 206 - 227.
Ehrig,H./Kreowski,H.-J./Thatcher,J.W./Wagner ,E.G./Wright,J.8B.
Parameter Passing in Algebraic Specification Languages. Proc.
Workshop on Algebraic Specification, Aarhus, 13981.
Engels,G./Pletat,U./Ehrich,H.-D.: Handling Errors and Excep-
tions in the Algebraic Specification of Data Types. Osna-
bricker Schriften zur Mathematik, Reihe Informatik, Heft 3,
Univ. Osnabrdck, 1981.

Gogolla.M./Drosten ,K./Lipeck,U./Ehrich,H.D. : Algebraic and
Operational Semantics of Specifications Allowing Exceptions
and Errors. Forschungsbericht Nr. 140, Abteilung Informatik,

Univ. Dortmund, 1982. [Long Version of this Paper including
the Proofs).
Guttag.,Jl.v./Horowitz,E./Musser ,D.R.: Some Extensions to Alge-

braic Specifications. SIGPLAN Notices, Vol. 12, No. 3, March
1977, pp. 63-6T7.

Goguen,J.A.: Abstract . Errors for Abstract Data Types. Proc.
Canf. on Formal Description of Programming Concepts (E.J.
Neuhold, ed.), North-Holland, Amsterdam, 1978.

Goguen,J.A.: Order Sorted Algebras : Exception and Error
sorts, Coercions and Overloaded Operators. Semantics and
Theory of Computation Report No. 14, University of California,
Los Angeles, Dec. 1978. .

Guttag,Jl.V.: The Specification and Application to Programming
of Abstract Data Types. Techn. Report CSRG~-59, Univ. of
Teronto, 1975.

Huet.,G.: Confluent Reductions: Abstract Properties and Appli
cations to Term Rewriting Systems. Proc. 18th IEEE Symp. on
Foundations of Computer Science, 1977, pp. 30~45.

Liskov,B./Zilles,S.: Programming with Abstract Data Types.
SIGPLAN Notices Vol. 9, No. &4, April 1974, pp. S0-59.

Majster ,M.E.: Treatment of Partial Operations in the Alge-
braic Specification Technique. Proc. Specifications of
Reliable Software, IEEE, 1979, pp. 190-197.

0'Donnell ,M.J.: Computing in Systems Described by Equations.
LNCS 58, Springer Verlag, New York, 1977.

Rosen, B.X. : Tree~Manipulating Systems and Church-Rosser
Theorems. Journal ACM, Vol. 20, 1973, pp. 160-187.

Wand,M.: Algebraic Theories and Tree Rewriting Systems. Tech-
nical Report No. 66, Indiana Univ., Bloomington, Indiana,
July 1977.

Wirsing,M. / Pepper,P. / Partsch,H. / Dosch,W./ Broy,M. : an

Hierachies of Abstract Data Types. Bericht TUM-18007,Institut
flr Informatik, Technische Univ. Mlnchen, Mai t1980.

