
ALGEBRAIC AND OPERATIONAL SEMANTICS OF EXCEPTIONS AND ERRORS

M . G o g o l l a , K . D r o s t e n , U . L l p e c k

A b t e i l u n g I n f o r m a t i k , U n i v e r s i t A t Dortmund

P o s t f a c h 5D0500, D-4600 Dortmund 50

H . D . E h r i c h

L e h r s t u h l B f o r I n f o r m a t i k , TU Braunschweig

P o s t f a c h 3329, D-33DO Braunschweig

Abstract

The specification of abstract data types requires the possibility to

treat exceptions and errors. We present an approach allowing all forms

of error handling : error introduction, error propagation and error

recovery. The algebraic semantics Of our method and a new correctness

criterion is given. We also introduce an operational semantics of a

subclass of our specifications which coincides with the algebraic

semantics.

Key Words

Specification of abstract data types, error and exception handling,

algebraic semantics , correctness of specifications operational

semantics.

I. I n t r o d u c t i o n

Abstract data types offer promising tools for the specification and

implementation of programs. Research in this field has been initiated

by [Gu 75, LZ 7&]. Pleasant features of the method are that it is

well-founded algebraically [AD3 78, £h 79, EKTWW 81, WPPDB 80] and

operationally [Ro 73, Hu 77, O'D 77, Wa 77] and that it is a sound

basis for specification languages.

The problem of handling exceptions and errors in abstract data types

has been studied in [GHM 77, AD3 78, Go 78.I, Go 78.2, Ma 79, B1 BO]

and an operational treatment has been given in [EP£ B1].

We here modify the approach of [EPE 81] and study the algebraic and

operational semantics of specifications allowing error and exception

handling. We distinguish syntactically between error introducing and

normal functions and allow two different types of variables for the

same sort. Thus all forms of error and exception handling, i.e. error

introduction, error propagation and error recovery, may be treated. We

avoid the strict propagation of errors as in [AD3 78,Go 78.I,Ma 79],

the transformation of axioms via new operations as in [AD3 78] and

the introduction of a semi-lattice structure on the set of sorts as in

[Go ?S.2] .

S e c t i o n 2 g i v e s an i n f o r m a l i n t r o d u c t i o n t o our method. In s e c t i o n s 3

and 4 we present the algebraic semantics of our specifications.

Section 5 gives a new correctness criterion and section B introduces

the operational semantics of a subclass of our specifications and

shows that it coincides with the algebraic semantics. Because of

spa~e limitations, we omit the proofs.

2. The basic idea

The n a t u r a l numbers are an example o f a s imp le da ta t y p e , which needs

e r r o r and e x c e p t i o n h a n d l i n g . We are go ing t o use the n a t u r a l numbers
i n d i f f e r e n t v e r s i o n s t h r o u g h o u t the paper .

HDEhrich
Schreibmaschinentext
A. B. Cremers and H.-P. Kriegel, editors, Proc. 6. GI-Fachtagung für Theoretische Informatik, LNCS 145, pages 141–151, Berlin, 1983. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

142

Example 2.1

To specify the natural numbers we need the following functions :

0 : ---> nat

pred, succ : nat ---> nat

add, times : nat x nat ---> nat

The axioms are given by :

pred(succ(n))=n (I

pred(0)=error (2

a d d (O , n) = n (3

a d d (s u e t (n) , m) = s u c c (a d d (n , m)) (&

times(O,n):O (5

times(succ(n),m)=add(times(n,m),n) (6

But what is the semantics Of an axiom like pred(D)=error ? If we treat

'error' as an extra constant in nat, we will find times(0,pred(0)) =

times(O,error) : 0 and so the introduced error has been forgotten by

axiom (5). This might suggest the idea that errors should propagate

and so we could add the following axioms :

succ(error)=error (El)

pred(error)=error (E2)

add(error,n)=error (E3)

add(n,error)=error (E&)

times(error,n)=error (E5)

timWs(n,error)=error (E5)

B u t u n f o r t u n a t e l y we d i d n ' t r e a l l y s p e c i f y w h a t we h a d i n t e n d e d ,

because unwanted contradictions occur. O = times(O,error) = error

holds due to equations (5) and (E6) and so succn(0) = error for

every n e N 0 due to (El).

There are other reasons which don't support the idea of strict error

propagation. For example consider a straightforward specification of

the factorial function on the natural numbers :

fac(n) = if(eq(n,0),succ(O),times(n,fac(pred(n))))

With the error propagation idea in mind we will find :

fac(0) = if(eq(0,0),succ(O),times(O,fac(pred(O))))

= if(true,succ(O),times(O,fac(error)))

= if(true,succ(O) ,times(O,error))

= if(true,succ(0),error) = error ***

We present an approach which allows all forms of error handling, i.e.

error introduction, error propagation and error recovery, to be

treated in an easy way and Which avoids difficulties like the above.

Our main instruments are :

the partition of the carrier sets into a normal and an error part,

- the syntactical classification of functions into those which intro-

duce errors in normal situations and those which preserve ok

states and

the introduction of two types of variables. The first type will

serve for non error situations only, the other for ok and excep-

tional states as well.

Example 2 . 2
We give a specification for the intended natural number algebra

including an error constant.

0 : ---> nat

succ : nat ---> nat

pred : nat ---> nat : unsafe

add , times : nat x nat ---> nat

error : ---> nat : unsafe

143

Functions, which might introduce errors and error constants, unsafe

functioDs as we call them, are indicated in the signature by : unsafe'

The other functions are called oR functions.

The signature gives a classification for all terms t. If an unsafe

function occurs in t, it is not known whether an error might be intro-

duced or not and so t is viewed as a possible error and called unsafe

term. If only ok functions occur in t, we know t corresponds to a

natural number. In this case t is called an ok term.

We mark pred as an unsafe function, because it introduces an error

when applied to the ok value 0. For the functions succ, add and times

we know that they will return ok values when they are applied to

such ones.

The ok part of the intended carrier set are terms of the form succn(0)

with heN o corresponding to the natural numbers. The error part of the

carrier set are terms in which the Sunction symbol "error' occurs.

These terms can be seen as error messages informing about illegal

application of pred to 0.

We now use ok variables n and m which means they serve for non error

situations only, i.e. only for ok terms. The axioms are exactly (I)

(5) Of example 2.1, but there are semantical differences. It is

not allowed to substitute for example the term 'error' for variable n

in axiom (5) and therefore the difficulties described in example 2.1

do not occu r .

Now the following identities hold :

pred(succ(succ(pred(succ(O))))) = pred(succ(succ(O))) = succ(0)

Please note it is not allowed to substitute succ(pred(succ(0)))

into the ok variable n in axiom (I), but we may substitute the

semantically equivalent term suet(0). This will be clarified later.

- times(0,pred(D)) = times(0,error)

No further simplifications can be made on the last term, because

axiom (5) cannot be applied. The term can be seen as an error

message within its environment. ***

3. A iBebras w i t h ok p r e d i c a t e s

In t h i s and the f o l l o w i n g two s e c t i o n s we show how the r e s u l t s o f

[AD3 ?B] c a r r y ove r t o our n o t i o n o f a l g e b r a . The s y n t a x o f our

many -so r ted a l g e b r a s w i t h ok p r e d i c a t e s i s d e f i n e d v i a a s i g n a t u r e ,

wh ich g i v e s names c o r r e s p o n d i n g t o the s o r t s o f t he c a r r i e r se ts and

t o the o p e r a t i o n s on these s e t s . Our c a r r i e r se ts are not homogeneous,

b e c a u s e we w a n t t o d i s t i n g u i s h b e t w e e n n o r m a l s i t u a t i o n s a n d

e x c e p t i o n s . F o r t h i s r e a s o n we a l r e a d y m a r k i n t h e s i g n a t u r e t h o s e

f u n c t i o n s y m b o l s , w h i c h c o r r e s p o n d t o o p e r a t i o n s i n t r o d u c i n g e r r o r s i n
normal situations.

Definition 3.1

A signature with oR predicate) is a quintupel (S,[,arity,sort,ok[),

where

(I) S is a set (of sorts) , [is a set (of function symbols) and

(2) arity sort and ok[are mappings :

arity [---> S*, sort : Z ---> $ and ok[: [---> BOOL.

- A signature (S,[,arity,sort,ok[) will often be denoted by [only.

- Given a function symbol o, arity(o)=s1...sn denotes the sorts of the

arguments, sort(o) = s gives the result sort. This is written as

o : sl x ... x sn ---> s.

144

- o k E (o) = T R U E m e a n s o i s an Ok { u n c t i o n s y m b o l , w h i l e o k E (a) = F A L S E

i n d i c a t e s an u , n s a f e f u n c t i o n s y m b o l . T h e n o t i o n o { ok and u n s a f e

{ u n c t i o n s w i l l be made c l e a r by t h e f o l l o w i n g d e f i n i t i o n .

Definition 3 , 2

Let signature Z be given. A E-algebra (with ok predicates) is a

triple (A,F,OkA) , where

(1) A = < A s > s e S i s an S - i n d e x e d f a m i l y O f s e t s ,

(2) F=<aA>oe E is a E-indexed family of {unctions, {or every function

s y m b o l o : s l x . . . x sn - - - > s we h a v e a f u n c t i o n

o A : As1 x . . . x Ash - - - > A s and
(3) O k A = < O k s > s e S i s an S - i n d e x e d f a m i l y o f p r e d i c a t e s ,

o k s : A s - - - > BOOL s u c h t h a t
(#) f o r e v e r y f u n c t i o n s y m b o l o : s l x . . . x sn - - - > s w i t h o k [(o) =

TRUE and (a l a n) ~ As1 x . . . x Ash w i t h o k s i (a i) = T R U E { o r

i = 1 n, we h a v e O k s (O A (a l a n)) = T R U E .

- A E - a l g e b r a (A , F , o k A) w i l l o f t e n be d e n o t e d b y A o n l y . N h e n e v e r no

ambiguity arises, we will omit indices of the predicates : {or a

function symbol o ok(o) means okE(a) and {or aeA s ok(a) means

oks(a). If ok(o)=TRUE holds, we call o A an ok {unction, otherwise an

unsafe function.

For BoA s Oks(a)=TRUE will mean a is an ok element of As, otherwise

it is called error element. The ok predicates split the carrier sets

into an ok part Aok and an error part Aerr.

Aok = < A o k , s > s e S A o k , s = { a e A s J ° k s (a) = T R U E }

Aerr=<Aerr,s>sgS Aerr,s = { aeA s I Oks(a)=FALSE }
For the application we have in mind the ok elements correspond to

normal situations, while the error elements indicate exceptional

states.

Part (4) of the definition requires that ok {unctions yield ok

values for ok arguments, or in other words, only unsafe functions

may introduce errors when applied to normal situations. Because we

have to treat these unsafe functions carefully, we already dis-

tinguish them syntactically from ok {unctions. This garantees that

whenever an expression consisting only Of ok functions is applied

to ok arguments, this will result in an ok element. For expressions

including unsafe functions this is not known.

Every algebra with ok predicates can also be interpreted as a con-

ventional algebra without ok predicates by just omitting the predi-

cates. On the other hand every conventional algebra without ok pre-

dicates can be made into an algebra with ok predicates by demanding

all functions to be ok {unctions and all elements to be ok elements.

The same holds {or signatures.

E x a m p l e 3 . 3
We describe the natural numbers together with an extra error element,

which is introduced because we want to apply the predecessor {unction

to O. Let S : { bool,nat } be the set of sorts. Unsafe {unction

symbols will be indicated by ' : unsafe' .

false,true : ---> bool

0 : ---> nat

s u c c : n a t - - - > n a t

p r e d : n a t - - - > n a t : u n s a f e

n e g a t i v e : - - - > n a t : u n s a f e

if : bool x nat x nat ---> nat

145

The Carrier sets and the ok predicates on them are given by :

A b o o l = { f t } O k b o o l (b) = TRUE
Ana t = N O + { ena t } Okna t (n) = (neN D)

The f u n c t i o n s c o r r e s p o n d i n g t o t h e f u n c t i o n symbo ls a r e d e f i n e d by :

false A : I---> f 0 A : I---> 0

true A : I---> t negative A : I---> ena t

n+ l if neNO
s u c c A : n I - - - >

~ena t if n : e n a t

~ n-1 if neN
pred A : n I--->

L enat if n=0 or n=ena t

In1 if b=t
i f A : (b , n l , n 2) 1 - - - >

L n2 i f b = f
p r e d A i s an u n s a f e f u n c t i o n , b e c a u s e o n l y f o r some ok a r g u m e n t s i t
yields ok results, for the ok value 0 it returns the error element

ena t . ***

For every signature Z we define the term algebra with ok predicates in

the following way.

Definition 3.&

Let signature [be given. The [.-term algebra (T[,F[,ok T) is defined

by :

(I) (T[,F[) is the usual term algebra. T[=<Ts>s~ S. F[=<aT>oe [.

(2) OkT:<Oks>se S. For teT s ok s is given by :

~F ALSE if an unsafe function symbol occurs in t

°ks(t) =LTRUE otherwise

A term is an ok term, if and only if all function symbols occurring

in the term are ok function symbols.

Our term algebras are well defined, that means TZ is a [-algebra

with Ok predicates satisfying part (&) of definition 3.2.

Example 3 . 5
L o o k i n g a t t h e s i g n a t u r e i n examp le 3 . 3 we f i n d i f (t r u e , O , s u c c (O))
i s an ok t e r m and p r e d (s u c c (O)) , p r e d (O) o r ± f (t r u e , O , n e g a t i v e) a r e
error elements in the term a l g e b r a , ***

[-algebras with ok predicates may be compared by structure preserving

mappings called [-algebra morphisms.

Definition 3.5

Let [-algebras (AI,FI,okAI) , (A2,F2,OkA2) be given. An S-indexed family

of functions h=<hs>seS, h S : AI s ---> A2 s is called [-algebra morphism ,

if

(I) h is a morphism from AI to A2 taken without ok predicates and

(2) for seS and aeA1 s OkA1(a) implies OkA2(hs(a)).

A morphism is called in3ective respectively Subjective, if every h s is

injective respectively surjective.

A morphism is called strict, if for seS and aeA1 s OkAl(a)=OkA2(hs(a)).

- Because of the additional predicate structure on signatures and

algebras we require in part (2) that no ok element may be mapped

onto an error element or in other words that the ok property for

elements is preserved by our morphisms.

The isomorphisms are the injective, sur3ective and strict morphisms.

The strictness property is necessary,because we do not only want the

operational structure but also the predicate structure to be respec-

ted by isomorphisms.

146

- hok and h e r r d e n o t e t h e r e s t r i c t i o n s o f h t o ok and e r r o r e l e m e n t s .

hok = < h o k , s >BeS ' h o k , s : A l o k , s - - - > A 2 o k , s
h e r r = K h e r r , s > s e S , h e r r , s : A l e r r , s - - - > A2 s .
F o r s t r i c t m o r p h i s m s we can d e n o t e h e r r , s o f c o u r s e by :

h e r r , s : A l e r r , s - - - > A 2 e r r , s .

E x a m p l e 3 . 7

The f o l l o w i n g i s an e x a m p l e o f a m o r p h i s m b e t w e e n a l g e b r a s w i t h ok
p r e d i c a t e s and a m o t i v a t i o n f o r t h e f r e e d o m o f a l l o w i n , q e r r o r e l e m e n t s

t o be mapped t o ok e l e m e n t s . We g i v e a m o r p h i s m f r o m t h e t e r m a l g e b r a
o f e x a m p l e 3 . 5 i n t o t h e a l g e b r a o f e x a m p l e 3 . 3 . I t i s t h e u n i q u e l y
d e t e r m i n e d m o r p h i s m b e t w e e n t h e s e a l g e b r a s t a k e n w i t h o u t ok p r e d i c a t e s .

h b o o l : T b o o l - - - > A b o o l
false ---> f
true ---> t

hna t : T n a t ---> Ana t
o I - - -> 0

n e g a t z v e I - - - > ena t
suet(t) ~---> succA(hnat (t))

pred(t) I---> predA(hnat(t))

i f (b , t l , t 2) I - - - > i f A (h b o o l (b) , h n a t (t l) , h n a t (t 2))

Obv ious l y , h r espec t s the o p e r a t i o n s and h p reserves ok e lements . I t

sends each term t o the r e s u l t o f the co r respond ing e v a l u a t i o n i n A. So
s u c c (s u c c (0)) w i l l n a t u r a l l y be mapped to 2 and o f course the e r r o r

(or unsafe) terms p r e d (s u c c (s u c c (0))) , i f (t r u e , 0 , n e g a t i v e) and pred(0)

w i l l r e s u l t in I , O and ena t , r e s p e c t i v e l y .
The nex t theorem con f i rms t h a t t h i s morphism i s the on ly morphism
between such algebras, i.e. our term al,Webras are initial. ***

Theorem 3.B

Let signature E° term algebra T Z and Z-algebra A be given. Then there

exists a unique morphism h : T Z ---> A, or in other words, T Z is ini-

tial in the class of all E-algebras.

~,~, Specifications

An important difference between our specification technique and the

usual algebraic specification w i t h o u t error handling is t h a t we intro-

duce two d i f f e r e n t t ypes o f v a r i a b l e s for the same s o r t . V a r i a b l e s
o f the f i r s t type w i l l serve f o r the ok p a r t o f the co r respond ing
carrier set only, variables of the second type for the whole carrier

s e t .

D e f i n i t i o n 4.1
Let s i g n a t u r e E be g i ven . A p a i r (V ,ok V) i s c a l l e d a se t o f v a r i a b l e s
(w i t h ok p r e d i c a t e s) f o r Z, i f
(1) V=<Vs>s~ S i s an S- indexed , p a i r w i s e d i s j o i n t f a m i l y o f sets (o f

v a r i a b l e s) e a c h V s d i s j o i n t f r o m E and

(2) o k v = < O k v , s > s e S, Okv , s : V s - - - > BOOL i s an S - i n d e x e d f a m i l y o f
predicates.

Again, a se t o f v a r i a b l e s (V,ok V) i s o f t e n denoted by V o n l y .
When no amb igu i t y a r i s e s , ok (v) means Okv,s (V) f o r veV s. In analogy
t o ok and unsafe f u n c t i o n s we use the n o t i o n s o f ok and unsafe

v a r i a b l e s .

147

D e f i n i t i o n 4 . 2
L e t s i g n a t u r e Z, E - a l g e b r a A and v a r i a b l e s V be g i v e n . An a s s i g n m e n t
t o (o r i n t e r p r e t a t i o n o f) t h e v a r i a b l e s i s an S - i n d e x e d f a m i l y o f

f u n c t i o n s I = < I s > s e S I s : V s - - - > A s s u c h t h a t o k v . s (V) i m p l i e s
O k s (I s (V)) for sES and vcV s-

I f ok(v)=TRUE h o l d s , i t i s no t a l l owed t o ass iBn an e.r..ror e lement t o

v , ok(v)=FALSE i n d i c a t e s t h a t v may ho ld ok or e r r o r v a l u e s .

Also, for our notions of algebra and morphism there always exist free

alge.bras.

Lemma & . 3
L e t s i g n a t u r e Z, v a r i a b l e s V, E - a l g e b r a A and a s s i g n m e n t I : V - - - > A
be g i v e n . T h e n t h e r e e x i s t s a E - a l g e b r a T z (V) , s u c h t h a t t h e r e i s a
u n i q u e E - a l g e b r a m o r p h i s m ! : T z (V) - - - > A, e x t e n d i n g I i n t h e s e n s e

t h a t I s (V) : ~ s (V) f o r s¢S and veV s.

The n o t i o n s o f Z - e q u a t i o n , o f e q u a t i o n s s a t i s f i e d by a Z - a l g e b r a and

o f c Q n g r u e n c e T e l a t i o n on an a l g e b r a a r e d e f i n e d as u s u a l .
B u t p l e a s e n o t e , o u r d e f i n i t i o n o f a s s i g n m e n t i m p l i e s t h a t t h e r e i s a
restriction to the substitution of variables. An equation may be valid

although it does not hold for error elements substituted for ok

variables.

Exampl e &.&

Let n, nl+ and n2+ be variables of sort nat with ok(n)=TRUE and

ok(n1+)=ok(n2+)=FALSE. Then the algebra of example 3.3 satisfies the

followin~ equations (among others).

pred(succ(n))=n (I) pred(0)=negative (2)

i f (f a l s e , n l + , n 2 +) = n 2 + (3) i f (t r u e , n l + , n 2 +) = n l + (4)
succ(negative):negative (5) pred(negative)=negative (6)

But, for example the equation

succ(pred(n))=n

does not hold, because succA(predA(0))=succA(enat)=enat . ***

Given a E-algebra A and a congruence relation ~ on it, the quotient

A/~ of A by ~ can be made into a E-algebra with ok predicates by

defining the carrier sets and operations in the usual way and by

letting a class be ok, if and only if there is an ok element o~ the

algebra in it. In this sense TRUE dominates FALSE with respect to the

ok predicate o f a class.

Defintion &.5

Let signature Z, Z-algebra A and congruence ~ = <~s>seS be given.

(I) (A/~ FA/~) denotes the usual quotient of an algebra by a

congruence relation on it.

(Z) OkA/m=<ok~,s>se S is an S-indexed family of predicates.

s ([a]) = I T R U E i f t h e r e i s a b e [a] w i t h O k A , s (b) = T R U E
ok_

= ' L F A L S E otherwise

- (A/~,FA/~,OkA/~) is a E-algebra with ok predicates satisfying

part (4) of our definition for a l g e b r a .

For a given set of equations E with variables the induced set o f
constant equations E(T Z) and the generated least congruence relation

denoted by ~E = < ~E,s >seS are defined in the usual way. There always

exists such a 5E' since we know that there always is a least

congruence generated by a given relation, if we deal only with

algebras without ok predicates and our congruence definition didn't

148

i n v o l v e t h e p r e d i c a t e s . F o r b r e v i t y we o { t e n d e n o t e ~E b y ~ a n d

a ~E,s b by a ~ b. if no ambiguities arise.

Exa,m,p,le &.6

If we look at the equations of example 4.¢, we find the following

pairs are in E(T[)na t due to the first equation :

<pred(succ(O)),8>

<pred(succ(succ(O))),succ(O)>

But the following pairs are not in E(TE)nat:

<pred(succ(negative)),negative>

<pred(succ(pred(succ(B)))),pred(succ(O))>

On the other hand, the last pair is in the congruence r.e!ation gene-

rated by E(T[) :

<pred(succ(O)),O> ¢ E(T[)na t ===> pred(succ(O)) ~ 0 ===>

succ(pred(succ(O))) ~ succ(O) ===>

pred(succ(pred(succ(O)))) ~ pred(succ(O)) ~ 0 ***

The pleasant thing about our approach to error and exception handling

is that the fundamental initiality result of [An3 78] is still

valid.

Theorem &.7

T[/~ E is initial in the class of all E-algebras satisfying E, i.e.

given a E-algebra A, which satisfies E, we have a unique morphism

g : T [/ ~ E ---> A.

Remark

T[/~ E is denoted by TE, E and called the quotient term algebra.

Example ¢.8

The quotient of T[in example 3.5 by the equations in example &.& is

isomorphic to the algebra of natural numbers in example 3.3. ***

We now know that for given signature [, variables V and equations E,

t h e r e a l w a y s e x i s t s an i n i t i a l E - a l g e b r a w h i c h c a n be c h o s e n as a

standard semantics. So we put together signatures, variables and

equations as usual, getting a specification.

Definition &.9

A specification is a triple (E,V.E), where [is a signature with ok

predicate, V is a set of variables with ok predicates and E is a set

of [-equations.

5. Correctness of specifications

The usual notion of correctness of specifications - the isomorphism

between the speci$ied algebra and the given model - is somewhat too

strong for our purpose. Our main interest lies in the ok part of the

carrier sets. The cruical point is that terms like succ(error) and

prod(error) in example 2.2 are error elements, but it is not important

here that they are dif{erent. So we allow different error elements of

the specified algebra to be identified in our model.

Definition 5. I

Let specification ([,V,E) and [-algebra A be given. ([,V,E) is called

correct with respect to A, if

(I) there is a strict morp.hism h : T[, E ---> A such that

(2) hok : T[,E,ok ---> Aok is bijective and

(3) her r : TE,E,er r ---> Aer r is surjective.
(E,V,E) is strongly correct with respect to A, if it is correct with

respect to A and the morphism h is an isomorphism.

149

The conventional notion of correctness of specifications for al-

gebras without ok predicates may be embedded into this correctness

criterion, because then we only deal with ok functions and ok

elements and so Tz,E,er r = Aer r = ~.

Example 5.2

We give a correct specification for the algebra A defined in example

3.3. The axioms E are identical to equations (I) (4) Of example &.&.

T[, E is described by a canonical term algebra using the context-free

languages defined by the following productions.

<bool> : := false J true

<nat> : := <nat-ok> 1 <nat-err>

<nat-ok> : := 0 I succ(<nat-ok>)

<nat-err> : := negative i succ(<nat-err>) I pred(<nat-err>

T[,E,bool = L (<bool>) Okbool(b)=TRUE

Tz,E,na t = L (<nat>) Okna t (n)=(neL(<nat-ok>))

The operations in T[, E are defined in the usual way, e.g.

r succn-1 (O) if t=succn(o) and n>O

p r e d E , E : t l - - - > ~ n e g a t i v e i f t = 0
/

L p r e d (t) i f t e L (< n a t - e r r >)
We now d e f i n e a m a p p i n g h : TE, E - - - > A.

h b o o l : T E , E , b o o l - - - > A b o o l
true I - - - > t

false I---> f

hna t : T z , E , n a t - - - > Ana t
i _ _ _ >] ' n i f t e L (< n a t - o k >) , t = s u c c n (o)

t
ena t if teL(<nat-err>)

To prove that h is a strict morphism, we have to show :

(I) h(o[,E(al an))=aA(h(al) h(an)) holds for every oe[.

(2) o k [, E (a) = O k A (h (a)) for seS and aeA s .
It is easy to see that the mapping h respects the operatlons.

The strictness of h, its bijectivity on the ok part and its surjec-

tivity on the error part can be seen directly from its definition. The

specified algebra is correct with respect to the algebra A of example

3.3 although all error elements are mapped to the one error element

in A. If we want to get a strongly correct specification, we have

to add equations (5) and (6) of example 4.4. ***

6- Operational semantics of specifications

A set of equations can be viewed as a set of rewrite rules inter-

preting equations from left to right. By substituting constant terms

for the variables we get a set of constant rewrite rules. These rules

determine a reduction process on terms which stops if none of the

axioms can be applied further. In this way we give an operational

semantics for specifications which is well-defined if the set of

constant rewrite rules has the finite church-tosser property.

Definition 5.1

Let specification ([,V,E) and the set of constant equations E(T[) be

g i v e n .

-->E = < -->s > seS is the family of relations on T[defined by :

(I) If <t,t'> £ E(TE)s, then t -->s t' .

(2) If o : sl x ... x sn ---> s, tieTsi for i = I n and

j e { I n } with tj -->sj tj' are given, then

o (t l t j t n) - - > s o (t l t 3 ' , t n)

150

- - > E = < - - > s > s e S i s t h e r e f l e x i v e a n d t r a n s i t i v e c l o s u r e o f - - > E
a n d c a l l e d t h e f a m i l y o f s u b t e r m r e p l a c e m e n t s i n d u c e d b y E.

has the normal form t', if t -->~ t' and there ks A term t of sort s

no t' -->s ~" This is denoted by nf(t)=t' .

E x a m p l e 6.2

T h e n o r m a l f o r m s o f e x a m p l e 5 . 2 a r e i d e n t i c a l t o t h e e l e m e n t s O f t h e

carrier set of the given canonical term algebra. ***

Definition 5.3

-->E is called finite church-rosser,, if. every term t of sort s has a

normal form, and if t -->~ ~ and t -->i ~' , then there is a t' with

- - , : t . sod t ' .

- I f - - > E i s f i n i t e c h u r c h - t o s s e r , e a c h ,,t,e,,rm h a s a , u n i q u e n o r m a l f o r m ,

E x a m p l e 6 . 4

For the specifications in examples 2.2 and 5.2 the families of subterm

replacements -->E are finite church-tosser. **~

Definition 6.5

Let specification ([,V,E) with finite church-tosser -->E be given.

The normal form alsebra (NF,FNF,OkNF) is defined by :

(I) NF : < NFs >soS" NF s are the normal forms of sort s.

(2) FNF = < °NF >oeE" For o : sl x ... x sn ---> s and normal forms

ti of sort si for i=I n , the function ONF is given by :

aNF(tl tn) = nf(a(tl tn)) .

(3) °kNF = < °kNF,s >szS" For a normal form t of sort s OkNF,s is

defined by :

~ TRUE if there is an ok term t' with nf(t')=t

°kNF,s (t) = LFALSE otherwise

- (NF,FNF,OkNF) is a E-algebra with ok predicates satisfying part (4)

of our definition for algebra.

A normal form t is ok in the normal form algebra if and only if

there is an ok term t' which has t as its normal from. In this sense

the ok terms dominate the error terms, or in other words if an error

term is equivalent to an ok term this 'heals' the error term. If the

rules are ok term preserv~ng, which means there is no <t,t'> e E(T[)

with ok(t)=TRUE and ok(t')=FALSE, the ok predicates in the normal

form algebra are determined by the normal forms themselves.

Exampl,e S. B

If we compare the normal form algebra and the quotient term algebra of

example 5.2, we find they are isomorphic. ***

Theorem 5.7

Let specification ([,V,E) with finite church-tosser -->~ be given.

Then the quotient term algebra TE, E and the normal form algebra NF

are isomorphic.

Acknowledgement,s,
We t h a n k Udo P l e t a t a n d e s p e c i a l l y G r e g o r E n g e l s f o r t h e i r e a r l i e r

w o r k i n t h e f i e l d a n d m a n y f r u i t f u l d i s c u s s i o n s .

151

R e f e r e n c e s

ADJ 78 G o g u e n , J . A . / T h a t c h e r , 3 . W . / W a g n e r , E . G . : An I n i t i a l A l g e b r a

A p p r o a c h t o t h e S p e c i f i c a t i o n , C o r r e c t n e s s and I m p l e m e n t a t i o n

o f A b s t r a c t D a t a T y p e s . C u r r e n t T r e n d s i n P r o g r a m m i n g M e t h o -
d o l o g y , V o l . I V (R . T . Y e h , e d .) . P r e n t i c e H a l l , E n g l e w o o d
Cliffs, 1 9 7 8 , p p . 8 g - t 4 g .

B1 80 Black,A.P.: Exception Handling and Data Abstraction. IBM

Research Report RC 8059, 1980.

Eh 79 Ehrich,H.-D. : On the Theory of Specification, Implementation

and Parametrisation of Abstract Data Types. 3ournal ACM,

V o l . 2 9 , 1 9 8 2 , p p . 205 - 2 2 7 .
EKTWW 81 E h r i g , H . / K r e o w s k i , H . - J . / T h a t c h e r , 3 . W . / N a g n e r , E . G , / W r i g h t , J . B . :

Parameter Passing in Algebraic Specification Languages. Proc.

Workshop on Algebraic Specification, Aarhus, 1981.

EPE 81 E n g e l s , G . / P l e t a t , U . / E h r i c h , H . - D . : H a n d l i n g E r r o r s and E x c e p -
t i o n s in the Algebraic Specification of D a t a Types. Osna-

brQcker Schriften zur Mathematik, Reihe Informatik, Heft 3,

Univ. OsnabrQck, 1981.

GDLE 82 Gogolla,M./Drosten=K./tipeck,U./Ehrich,H.D. : Algebraic and

Operational Semantics o f Specifications Allowing Exceptions

and Errors. Forschungsbericht Nr. 1&O, Abteilung Informatik,

Univ. Dortmund, 1982. [Long Version of this Paper including

the Proofs].

GHM 77 Guttag,3.V./Horowitz,E./Musser,D.R. : Some Extensions to Alge-

braic Specifications. SIGPLAN Notices, Vol. 12, No. 3, March

1977, pp. 53-57.

Go 78.1 Goguen,3.A. : Abstract • Errors for Abstract Data Types. Proc.

Conf. on Formal Description of Programming Concepts (E.3.

Neuhold, ed.) , North-Holland, Amsterdam, 1978.

Go 78.2 Goguen,3.A. : Order Sorted Algebras : Exception and Error

sorts, Coercions and Overloaded Operators. Semantics and

Theory of Computation Report No. 14, University of California,

Los Angeles, Dec. 1978.

Gu 75 Guttag,3.V. : The Specification and Application to Programming

o f A b s t r a c t D a t a T y p e s . T e c h n . R e p o r t C S R G - 5 9 , U n i v . o f
Toronto, 1975.

Hu 77 Huet,G. : Confluent Reductions: Abstract Properties and Appli-

cations to Term Rewriting Systems. P r o c . l a t h I E E E Symp. on

Foundations of Computer Science, 1977, pp. 30-&5.

LZ 74 Liskov,B./Zilles,S. : Programming with Abstract Data Types.

SIGPLAN Notices Vol. 9, No. &, April 1974, pp. 50-59.

Ma 79 Majster,M.£. : Treatment o f Partial Operations in the Alge-

braic Specification Technique. Proc. Specifications of

Reliable Software, IEEE, 1979, pp. 190-197.

O'D 77 O'Donnell,M.3.: Computing in Systems Described by Equations.

LNCS 5 8 , S p r i n g e r V e r l a g , New Y o r k , 1 9 7 7 .

Ro 73 R o s e n , B . K . : T r e e - M a n i p u l a t i n g S y s t e m s and C h u r c h - R o s s e r
T h e o r e m s . 3 o u r n a l ACM, V o l . 2 0 , 1 9 7 3 , p p . 1 6 0 - 1 8 7 .

Wa 77 Wand,M. : Algebraic Theories and Tree Rewriting Systems. Tech-

nical Report No. 65, Indiana Univ., Bloomington, Indiana,

July 1 9 7 7 .

WPPDB 80 N i r s i n g , M . / P e p p e r , P . / P a r t s c h , H . / D o s c h , W . / B r o y , M . : On
Hierachies of Abstract Data Types. Bericht TUM-IaOO7,Institut

fSr Informatik, Technische Univ. Munchen, Mai 1980.

