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A b s t r a c t  

Object-oriented concepts and constructions are explained in an informal 
and language-independent way. Various algebraic approaches for dealing with 
objects and their specification are examined, ADT-based ones as well a~ pro- 
cess-based ones. The conclusion is that the process view of objects seems to 
be more appropriate than the data type view. 

1 I n t r o d u c t i o n  

There  is a pecul iar  confusion around the notions of object  and abs t rac t  da t a  type  in 
practice: while the la t te r  has been made  mathemat ica l ly  precise as an isomorphism 
class of algebras,  pract i t ioners  tend to view an abs t rac t  da t a  type  as an encapsulated 
module export ing a set of procedures through which its da t a  can be accessed and 
manipula ted .  The bridge to the theory is to look at  the module 's  set of internal 
s tates  as a carrier,  and its procedures as operat ions of an algebra.  

The  problem with this view is tha t  it  blurs the dist inct ion between da ta  and 
objects.  

The  integers const i tute  a basic example of a da t a  type.  Another  popular  example 
is a stack. Pragmat ical ly ,  however, integers and stacks axe quite different. The  
integer d a t a  type  provides a supply of values which can be used, say, as actual  
parameters  in procedure  calls. A stack, on the other  hand, is a unit  of s t ructure  
and behavior:  its s ta tes  are  not  meant  to be used as actual  parameters  in procedure 
calls. Rather ,  the  s tack as a w h o l e  is subject  to operations.  An integer is added to 
another  integer to give a result which is a third integer. A stack entry, however, is 
pushed onto a stack, and we still  look at  the la t te r  as being the same stack, a l though 
its s ta te  has changed. 
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That is, a stack is an object, not a data type: it has an identity which persists 
through change. It seems that, for the most part, the practical success of abstract 
data types is one of object-orientation. 

There are many languages, systems, methods and approaches in computing 
which call themselves "object-oriented" by now, among them object-oriented pro- 
gramming languages like SmallTalk [GR83], C §  [St86] and Eiffel [Me88], object-  
oriented database systems like GemStone [BOS91], O2 [De91], IRIS [Fi87] and 
ORION [Ki88], and object:oriented system development methods like GOOD [SS86], 
MOOD [Ke88] and HOOD [Hei88]. 

High-level system specification languages and design methodologies are evolv- 
ing which are based on object-oriented concepts and techniques. [Ve91] gives an 
overview of recent work in this area. We are cooperating in the ESPRIT BRA 
Working Group IS-CORE where a graphical language [SGCS91, SRGS9], SSGRG91, 
SGGSR91] and a textual counterpart [JSS90, JHSS91, JSS91, JSHS91, SJ91] for de- 
signing, specifying and implementing object communities are being developed. 

But what precisely is an object? As we have seen, it has an internal state and 
a certain behavior reflected by its operations: it is a unit of structure and behavior 
- -  and it has an identity which persists through change. Moreover, dynamic objects 
somehow communicate with each other, they are classified by object types, collected 
into object classes, related by various forms of inheritance, and composed to form 
complex objects. 

This rich world of concepts and constructions seems to be very fertile: An enor- 
mous amount of work is being invested in developing object-oriented techniques for 
software engineering. Evidently, there is much hope that software production and 
maintenance can be made more effective, more productive, more adequate, and more 
reliable this way. Indeed, object-oriented languages and systems as well as design 
and implementation methods are invading all disciplines of software engineering. 

With all these practical developments, it is amazing that theoretical founda- 
tions for object-oriented concepts and constructions do not have found so wide 
attention yet. Matters are changing slowly: there are formal approaches to object- 
oriented programming language semantics [CP89], database concepts [Be91, GKS91], 
and specification languages [GW90]. Besides this, also language- and system- 
independent discussions of fundamental object-oriented issues are evolving [Cu91, 
HC89, LP90]. 

In the IS-CORE working group~ the first and third authors have been cooperating 
in the latter direction. Recent contributions to semantic fundamentals are lESS90, 
ES90, EGS91, CS91, CSS91, SE90, SEC90, SFSE89], emphasizing the process view 
of objects. In cooperation, logic fundamentals of object specification have been 
developed [FM91a, FM91b, FS91, FSMS90]. A first result harmonizing logics and 
semantics of object specification can be found in [FCSM91]. 

A systematic formalization of basic object-oriented concepts and constructions 
in terms of this theory has been published in [ES91] and, together with features of 
an object-oriented specification language and methodology, in [SJE91]. 

In the second section of this paper, we give an informal account of these ideas. 
In the third section, we examine various approaches for dealing with objects and 
their specification, ADT-based ones as well as process-based ones. The conclusion 
is tha t  the process view of objects seems to be .more appropriate than the data type 
view. 
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2 Object-Oriented Concepts and Constructions 

In this section, we give an informal account of our view of objec t -or ien ted  concepts 
and constructions.  The purpose is to establish requirements for formalizat ion of 
objec t -or ienta t ion ,  not a formalization itself: we declare the  intui t ive basis on which 
to evaluate formal approaches.  Fi rs t  steps towards formalizat ion are discussed in 
section 3. 

We feel tha t  i t  is necessary to discuss the intui t ive background at  some length, 
because of the confusion and disagreement on fundamental  terms in this area. We 
took some pain  to make the definitions precise enough to serve their  purpose,  but  
they are not  meant  to be a formalizat ion yet. 

In order to be short  and concise, we present one par t icular  view ra ther  than  
giving a review of a l ternat ive opinions and philosophies. Whenever  appropr ia te ,  
however, we drop a hint at  other  viewpoints. 

2 . 1  T e m p l a t e s  

In na tura l  language, we refer to objects  by substant ives ,  but  we use the same sub- 
s tant ive in two different ways: with the definite art icle t h e  (or words like t h i s  or 
t h a t )  for referring to specific individual  objects,  and with the indefinite art icle a for 
referring to generic terms. 

The  dist inct ion between individual  objects  and generic terms is somewhat sloppy 
in na tu ra l  language. Consider, for example,  the sentence 

�9 This computer is a SUN workstation; it works quite well. 

Does the speaker  want to say tha t  the specific SUN workstat ion referred to by this 
works quite well, or does she want to say tha t  SUN workstat ions in general work 
quite well? T h e  first meaning is probably  more obvious, but  you can hear people 
ta lk  like this with the second meaning in mind. 

In computing,  we have to be very specific about  this distinction. For generic 
terms, the word type is often used, but  this word is overloaded with too many 
connotations.  We avoid it and prefer to speak of object templates if we mean generic 
objects  without  individual  identity. The notion of an object class is easily confused 
with this, but  it means something else, namely a t ime-vary ing  collection of objects! 
We will be back to this. 

An object  templa te  represents the common s t ructure  and behavior  pa t t e rn  of 
some kind of object .  

The  basic ingredients of s t ructure  and behavior  are observations and actions. For 
instance, for a queue object  with integer entries, we might have 

�9 observations f r o n t = 7 ,  r e a r = 2 ,  s i z e = 3 ,  . . .  

�9 actions c r e a t e  , e n t e r ( 7 )  , l e a v e  , . . .  
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with obvious meanings. It is essential that we are general enough to allow for 
concurrency.  In a nonempty queue, for instance, enter(4)  and l eave  may occur 
simultaneously, and this simultaneous occurrence can be considered as one composite 
action enter(4)l[ leave.  Moreover, also actions and observations can occur at the 
same time, giving rise to expressions like enter (4) [ [ f ront=7 or s•  H 
leave. 

But what do the latter expressions mean? They are neither pure actions nor 

pure observations. In order to make sense of this, we introduce the concept of event 
as a generalization of actions and observations: 

�9 an event is anything which can occur in one instant  of  t ime. 

Let E be a given set of events including atomic actions, atomic observations, and 
simultaneous combinations of finitely many of these. Obviously, we have a binary 
operation II on E which should be associative, commutative and idempotent, and it 
should satisfy the cancellation law. Adding, for completeness and convenience, a 
neutral element 1 standing for nothing happens (or, rather, nothing visible happens, 
i.e., it might represent a hidden event), we obtain an 

�9 event  monoid  E = (E,H , 1) 

with the above properties as the basic event structure to work with. 
An object template  has an event monoid associated with it, representing the 

events which can possibly happen to this kind of object. But, of course, it is not 
sufficient to know which events can happen, we need to know how-they  can happen 
in sequence or concurrently. 

A process is a well known concept" modelling precisely this. There are many 
process models and languages in the literature, including CSP, CCS, ACP, Petri nets, 
labelled transition systems, various trace models, etc. We cannot go into process 
theory here, and fortunately we need not: we are ready to accept any sufficiently 
powerful process model for modelling object template behavior. 

In order to help the reader's intuition, however, she might envisage labelled 
transition systems (Its) as an example process model: an object template has states, 
and it can move (non-deterministically) from state to state by transitions labelled 
by events (only actions will actually change state, observations will leave it fixed). A 
mathematical elaboration of this model can be found in [CSS91], and a more abstract 
denotational model is outlined in [ES91]. Other appropriate process categories are 
currently being investigated, denotational and operational ones [CS91, CSS91], and 
also logic-based ones [FM91a, FSMS90]. An interesting unifying approach can be 
found in [Me91]. 

Templates in isolation, however, are not enough for capturing the relevant object-  
oriented concepts: for studying inheritance and interaction, we have to deal with 
suitable relationships between templates. In this respect, process theory offers only 
rudimentary help. We found it necessary to develop a general and powerful notion 
of process morphism as some kind of "behavior preserving map" between processes 
[ES91, ESS90, ES90, SE90, SFSE89, SSE87]. Amazingly, one single concept turned 
out to be sufficient for dealing with inheritance as well as interaction! 

Templates and template morphisms constitute a well known mathematical struc- 
ture called a category. We have been able to find instances of process categories 
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where not  only the morphisms are appropr ia te  for modell ing inheri tance and inter- 
action, but  where also fundamental  process operations are reflected by basic cate- 
gorial constructions:  paral lel  composit ion by limits, and internal  choice by colimits 
[ES91, CS91]. 

In what  follows, we will need one special case of templa te  morphism in par t icular ,  
namely projection: a template  is projected to a par t  or an aspect  of itself by mapping 
all "global" s tates  to their  "local" par t  or aspect,  and correspondingly for transit ions.  
The events relevant for the par t  or aspect  are maintained,  while the remaining events 
are "hidden" by mapping them to 1. Please note tha t  nondeterminism might be 
introduced this way. 

For example,  let twoqueue be the templa te  for objects  consisting of two queues 
working in parallel,  without  any interact ion between them. The states  of twoqueue 
are all pairs (ql, q2) of s tates  of the two component  queues, whereas the events 
(labels) are given by the product  of the two event monoids, i.e., all events of the 
form el II e2 where el  is an event of the first queue and e2 is one of the second. 
Let queue be the  template  for jus t  one such queue. Then we have two obvious 
project ions Pi : twoqueue - ,  queue, i = 1,2, where p~ leaves the i - t h  queue fixed 
and '~orgets" the  other one by mapping all actions and all observations to 1. 

For another  example,  let queue be as above, and let deque (double-ended queue) 
be like a queue, but  with actions to enter  and to leave at  both  ends: there is an 
obvious "abstract ion" a : deque --~ queue leaving the states fixed but  '~orgetting" 
the addi t ional  actions. 

These examples demonst ra te  the twofold use of template  morphisms: for restr ict-  
ing to a const i tuent  pa r t  and for abs t rac t ing  an aspect.  

2 . 2  O b j e c t s  

Wha t  is an object  ? Its behavior  is a process, but  an object  is more than  its 
behavior:  there may be many objects  with the same behavior,  but  they are different 
as objects.  Tha t  is, an object  has an identity while a process has not. Only if we can 
distinguish clearly between individual  objects  is i t  possible to t rea t  object  concepts 
like inheri tance and interaction in a clean and sat isfactory way: interact ion is a 
relationship between different objects,  while inheri tance relates aspects  of the same 
object .  

Object identities are a tomic items whose principle purpose is to characterize 
objects  uniquely. Thus, the most impor tan t  propert ies  of identi t ies are the following: 
we should know which of them are equal and which are not, and we should have 
enough of them around to give all objects  of interest  a separa te  identity. Identi t ies 
are associated with templates  to represent individual  objects  - -  or, ra ther ,  aspects 
of objects,  as we will see. 

Given templates  and identities, we may combine them to pairs b.t (to be read 
"b as t") ,  expressing tha t  object  b has behavior pa t t e rn  t. But  there are objects  
with several behavior  pat terns!  For instance, a given person may be looked a t  as 
an employee, a pat ient ,  a car  driver, a person as such, or a combinat ion of all these 
aspects.  Indeed, this is a t  the heart  of inheritance: b.t denotes jus t  one aspect of an 
object - there may  be others with the same identity! 
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D e f i n i t i o n  2.1 : An  object aspect - or aspect for short  - is a pair  b.t where b is 
an ident i ty  and t is a template .  

D e f i n i t i o n  2.2 : Let b.t and c.u be two aspects,  and  let  h : t ~ u be a templa te  
morphism. Then we call h : b.t ~ c.u an aspect morphism. 

Aspect  morphisms are nothing else but  t empla te  morphisms with identi t ies at-  
tached. The  identities, however, are not  jus t  decoration: they give us the possibil i ty 
to make a fundamental  dist inction between the following two kinds of aspect  mor- 
phisms. 

D e f i n i t i o n  2.3 : An aspect  morphism h : b.t --. c.u is called an inheritance 
morphisms iff b = c. Otherwise, i t  is called an interaction morphism. 

The following example i l lustrates the notions introduced so far. 
E x a m p l e  2 .4  : Let  e l_dvs  be a behavior  t empla te  for electronic devices, 

and let computer  be a templa te  for computers.  Assuming tha t  each computer  IS An 
electronic device, there  is a t empla te  morphism h : computer  -~ e l _ d v i c e  (roughly 
speaking, the e l_dvs  par t  in computer  is left fixed, while the rest of computer  is 
projected to 1). 

If SUN denotes a par t icular  computer ,  i t  has the aspects  

SUN. computer  (SUN as a computer)  and 
SUN. e l _ d v i c e  (SUN as an electronic device), 

related by the inheri tance morphism h : SUN. computer  > SUN. e l _ d v i c e  . 
Let powsp ly  and cpu be templates  for power supplies and central  processing 

units,  respectively. Assuming tha t  each electronic device HAS A power supply and 
each computer  HAS A cpu, we have template morphisms ] : e l _ d v i c e ~ p o w s p l y  
and g : c o m p u t e r - *  cpu, respectively. "If PXX denotes a specific power supply and 
cYY denotes a specific cpu, we might have interaction morphisms iF' : SUN. e l _ d v i c e  
--* PXX.powsply and, say, g'  :SUN. computer  --~ CYY. cpu. ] '  expresses tha t  the  SUN 
computer  - as an electronic device - HAS THE PXX power supply, and g' expresses 
tha t  the SUN computer  HAS T H E  cpu CYY. 

These examples show special forms of interaction, namely between objects  (as- 
pects) and their  parts. More general  forms of interact ion are established via  shared 
parts. For example,  if the interaction between SUN's power supply and cpu is some 
specific cable CBZ, we can naively view the cable as an object  CBZ. c a b l e  which is 
par t  of both  PXX.powsply and CYY. cpu. This is expressed by a sharing diagram 

CYY. cpu ~ CBZ.cab le  r - PXX.powsply 

A more realistic way of modeling this would consider the  cable as a separa te  object  
not  contained in the cpu and not  in the power supply either. Rather ,  the  cable 
would share contacts with both.  o 

This shows tha t  objects  may appear  in different aspects,  all with the  same 
ident i ty  but  with different behavior  templates,  related by inheri tance morphisms.  
The  information which aspects  are  related by inheri tance morphisms is usually 
given by template morphisms prescribing inheritance. For example,  we specify 
h : c o m p u t e r ~  e l _ d v i c e  in order to express tha t  each computer  IS An electronic 
device, imposing tha t  whenever we have an instance computer ,  say SUN. computer ,  
then it necessarily IS THE electronic device SUN.e l_dvice  inheri ted by h as an 
aspect  morphisms, h : SUN. computer  - .  S U N . e l _ d v i c e .  
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D e f i n i t i o n  2 .5  : Template  morphisms intended to prescribe inheri tance are 
called inheritance schema morphisms. An inheritance schema is a collection of tem- 
plates related by inheri tance schema morphisms. 

E x a m p l e  2.{} : In the following inheri tance schema, arrowheads are  omit ted:  
the  morphisms go upward.  

t h i n g  

el_dviee calculator 

computer 

personal_c workstation mainframe 

Pract ica l ly  speaking, we create an object  by providing an identi ty b and a tem- 
plate t. Then this object  bJ has all aspects  obtained by relat ing the same ident i ty  b 
to all "derived" aspects t ~ for which there is an inheri tance schema morphisms t --* t '  
in the schema. 

Thus, an object  is an aspect  together  with all its derived aspects.  All  aspects  of 
one object  have the same identi ty - and no other aspect  should have this identity! 

But the la t te r  s ta tement  is not meaningful unless we say which aspects  are there, 
i.e., we can only talk about  objects  within a given collection of aspects. Of course, the 
collection will also contain aspect  morphisms expressing how its members interact ,  
we will be back to this. And if an aspect  is given, all its derived aspects  with respect  
to a given inheri tance schema should also be in the collection. 

D e f i n i t i o n  2 .7  : An aspect community is a collection of aspects  and interact ion 
morphisms. I t  is said to be closed with respect to a given inheri tance schema iff, 
whenever an aspect  a.t is in the  community  and an inheri tance morphism t --~ t '  is 
in the schema, then we also have a.t ~ in the community. 

D e f i n i t i o n  2.8 : An object community - or community for short  - consists of 
an inheri tance schema and an aspect  community which is closed with respect to it. 

D e f i n i t i o n  2.9 : Let an object  community be given, and let a be an object  
identity. The  aspect graph of a in tha t  community is the graph consisting of all 
aspects in the community with the  ident i ty  a as nodes, and all inheri tance morphisms 
lifted from the schema as edges. 

By lifting we mean tha t  whenever a.t and a.t ' are in the aspect  graph of object  
a and t --~ t r is in the  schema, then also a.t --* a.t ~ is in the  aspect  graph.  
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One could argue that  the object with identity a is the aspect graph of a. Intu- 
itively, an object with identity a is a collection of consistent aspects. But, as we will 
see, we take a simpler and more practical approach. 

E x a m p l e  2.10 : Consider an object community containing the inheritance 
schema in Example 2.6, a particular workstation named SUN, and a particular cal- 
culator named UPN. By inheritance, SUN automatically is a computer, an electronic 
device, a calculator, and a thing. Since UPN is a calculator, it is also a thing, etc. So 
we have the following object diagrams: 

SUN.thing 

SUN.el_dvice SUN.calculator 

SUN.computer 

I 
: SUN.workstation 

UPN.thing 

UPN.calculator 

In a given community, an object is usually constructed by picking a specific 
identity a and associating it with a'$pedfic template t, yielding a core aspect a.t for 
this object. Then the object diagram of a is determined by all aspects a t '  where 
t '  is related to t by an inheritance schema morphism t --* t ' .  Consequently, object 
diagrams have an inheritance morphism from the core aspect to any other aspect. 

Def in i t i on  2.11 : An object community is called regular iff each aspect graph 
of an object in it has a core aspect. 

While the notion of object should probably be taken as that  of its aspect graph in 
general, we can make things easier and closer to popular use in a regular community: 
here it is safe to identify objects with their core aspects. 

De f in i t i on  2.12 : In a regular community, an object b is the core aspect of its 
aspect graph. 

Clearly, from the core aspect and the inheritance schema we can recover the 
entire aspect graph. 

Since, according to this definition, objects a re  special aspects, we immediately 
have a notion of object morphism: it is an aspect morphism between objects. 

2.3 C las se s  

Objects rarely occur in isolation, they usually appear as members of classes. A 
warning is in order: the notion of class is subject to considerable confusion! Essen- 
tially, there seem to be two different schools. The first one says that  a class is a 
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sort  of abs t rac t ion  of pat terns ,  i.e., an intensional description of an invariant set of 
potent ia l  members .  The other one says tha t  a class is an extensional collection of 
objects  which may vary from state  to s ta te .  Both  notions are  needed. We capture  
the first one by templates, and we use the word class in the second sense. 

Tha t  is, a class is a t ime-vary ing  collection of objects  as members  - and this 
means tha t  a class is a par t icular  kind of object  itself! 

Or should we say aspects ra ther  than objects? Wi th  the dist inct ion between 
objects  and aspects made above, we have to be careful with what  can be a member  
of a given class, and whether a class is an aspect  or an object .  Let us first look at  
the  member  problem. 

E x a m p l e  2 .13 : Referring to the inheri tance schema in Example  2.6, let CEQ 
- the computer  equipment - be a class of computers  of some company Z. Let  MAC 
be a specific personal  computer  in Z, and let SUN be a specific workstat ion in Z. 
The question is: are the objects  MAC.personal_c and S U N . w o r k s t a t i o n  members  
of CEQ, or ra ther  their  aspects  MAC. computer  andSUN, computer?  o 

It  is easier t o  work with homogeneous classes where all members  have the same 
template ,  so we formally adopt  the second al ternative:  each class has a fixed member  
template .  We call this member  templa te  the type of the class. But,  since each aspect  
of an object  carries its ident i ty  and thus determines the object  uniquely~ there is no 
object ion to considering, for example,  the MAC.personal_c a member  of the  class 
CEQ. 

Therefore, while classes are  formally homogeneous, they have a heterogeneous 
- or polymorphic  - flavor when working with inheritance: each object  with an 
appropr ia te  aspect  whose template  is the  type  of the class can be a member  of tha t  
class! 

Classes can be specialized by inheritance. For example,  if we define a club as a 
class of persons, we might subsequently define special classes like a football  club, a 
motor  club, and a chess club. 

Therefore, we consider classes as aspects.  The class events are actions like insert- 
ing and delet ing members,  and observations are a t t r ibute-value  pairs with a t t r ibutes  
like the current  number  of members and the current set of (identities of) members.  
In most objec t -or ien ted  systems, s t andard  class events are  provided implicitly, they 
need not  be specified by the user. 

D e f i n i t i o n  2 .14  : Let t be a template .  An object class - or class for short  - of 
type  t is an aspect  C = ac. tc  where ac is the class name and tc  = (Ec,  Pc)  is the 
class template. H I D  is a given set of~dentities, the class events Ec  contain 

�9 actions insert(ID), delete(ID) 

�9 observations p o p u l a t i o n = s e t ( I D )  , #popula t ion-- - -na t  . 

The  class process Pc  describes the proper  dynamic  behavior  in terms of the  class 
events, o 

In practice,  we would probably  have the information in the environment which 
member  identi t ies can go with which class, i.e., some typing of identities. In this 
case, the  argument  ID in the above definition should be replaced by ID(C), the set of 
member  identit ies which can be used in class C, and the notion of class type  should 
comprise ID(C) along with the member  templa te  t. 



49 

Def in i t i on  2.15 : Let C = av. tc  be a class of type t. An aspect a.t is called 
a member of C if[ a is an element of the population of C. An object b.u is called a 
member of C iff it has an aspect b.t which is a member of C. 

This definition justifies our calling a class an object class, not an aspect class: the 
members may be considered to be the objects having the relevant aspects, empha- 
sizing the polymorphic viewpoint. 

Since classes are objects or aspects of objects, there is no difficulty in constructing 
meta-classes, i.e., classes of classes of . . .  

Def in i t i on  2.16 : A class C is called a meta-class iff its type is a class template. 
Since class templates tend to be homogeneous even if their types are not, a me ta -  

class may have classes of different types as members. For example, we could define 
the class of all clubs in a given city without generalizing the club member templates 
so as to provide an abstract and uniform one for all clubs. 

Sometimes, we might want to restrict the members of a meta-class to contain 
sub-populations of a given class. For example, we may devise classes CEQ (D) for 
the computer equipment of each department D of company Z, given the class CEQ of 
computers in the company (cf. Example 2.13). 

Def in i t i on  2.17 : Let C1 and C2 be classes. C1 is called a meta-class of C2 iff 
(1) the type of C1 is the template of C2, and (2) each member of C1 is a class whose 
population is a subset of that  of C2. 

Since classes are aspects, we immediately have a notion of class morphism: it is 
jhst an aspect morphism between classes. 

Please note that  the dynamic evolution of a class is completely separated from 
the dynamic behavior of its members. Typically, a class changes its state by inserting 
and deleting members, i.e., by changing its population. If the population does not 
change, then the state of the class does not change, even if some of its members 
change their state! Formally, this is' achieved by having only the member identities 
in the class. 

2.4  I n h e r i t a n c e  

When we build an object-oriented system, we must provide an inheritance schema 
(cf. Definition 2.5). Without  it, the very notion of object does not make sense. In 
this section, we investigate how to construct such an inheritance schema: which are 
the inheritance morphisms of interest, and how are they used to grow the schema 
step by step? 

The inheritance morphisms of interest seem to be special indeed: in all cases 
we found meaningful so far, the underlying event maps were surjective. Since they 
are total anyway, this means that  all events of both partners are involved in an 
inheritance relationship. And this makes sense: if we take a template and add 
features, we have to define how the inherited features are affected; and if we take a 
template and hide features, we have to take into account how the hidden features 
affect those inherited. 

For any reasonable process model, the template morphisms with surjective event 
maps will be the epimorphisms, i.e., those morphisms r having the property that  
whenever r;p = r;q,  then p -- q. We found a special case of epimorphism useful 
which reflects an especially well-behaved inheritance relationship where the smaller 
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aspect is "protected" in a certain sense: retractions. A retraction is a morphism 
r : t ~ u for which there is a reverse morphism q : u --~ t such that  q; r = ida. 
Retractions are always epimorphisms. 

Intuitively speaking, the target of a retraction, i.e., the smaller aspect, is not 
affected by events outside its scope, it is encapsulated. As a consequence, retractions 
maintain  the degree of nondeterminism: if the bigger aspect is deterministic, so is 
the smaller one. 

E x a m p l e  2.18 : Referring to Example 2.6, consider the inheritance schema 
morphism h : computer  -~ e l_dv ice  expressing that  each computer is an electronic 
device. Let e l_dv ice  have the following events: 

�9 actions swi t ch_on ,  swi tch_of f  

�9 observations is_on , i s _ o f f  

By inheritance, computer  has corresponding events switch_on_c, switch_off_c,  etc. 
h sends switch_on_c to switch_on expressing that  the switch_on_c of the computer 
is the switch_on inherited from e l_dvice ,  and similarly for the other events. But 
what about  the other events of computer, i.e., the ones not inherited? For example, 
there might be 

�9 actions p r e s s _ k e y ,  c l i ck_mouse ,  . . .  

�9 observations s c r een=da rk  ~ . . .  

Well, all these events are mapped to 1 indicating that  they are hidden when viewing 
a computer as an electronic device. 

Concerning the processes of the templates, we would expect that  a computer 's  
behavior "contains" that  of an e l_dvice :  also a computer is bound to the protocol 
of switching on before being able to switch off, etc. 

Naturally, the template morphism h : computer  ~ el_dvice is a retraction: 
there is also an embedding g : e l _ d v i c e  ~ computer  such that  g; ] is the identity 
on e l_dv ice .  Intuitively, this means that  the e l_dv i ce  aspect of a computer is 
protected in the sense that  it cannot be influenced by computer  events which are 
not  also e l_dv i ce  events: a computer  can only be switched off by its e l _ d v i c e  
switch. 

This would not be so if we had a strange computer which, say~ can be switched off 
by other means, not using the e l_dv ice  switch (perhaps by a software opt ion. . . ) .  
In this case, we would have side effects of the computer on its e l_dv ice  aspect: 
the lat ter  would change its state from is_on to i s_of f ,  but  would not be able to 
observe the reason for it locally: its swi tch_of f  was not used. In this case, the 
morphism h would still be an epimorphism, but  not a retraction. Please note how 
nondeterminism is introduced for the local e l_dv ice  aspect, o 

Let an inheritance schema be given. If we have a surjective inheritance morphism 
h : t --* u not (yet) in the schema, we can use it in two ways to enlarge the schema: 

�9 if t is already in the schema, we create u and connect it to the schema via 

h : t - * u ,  

�9 if u is already in the schema, we create t and connect it to the schema via 

h : t - - ~ u .  
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The  first construction step corresponds to specialization, the second one to abstrac- 
tion. 

The most popular  objec t -or ien ted  construct ion is specialization, construct ing 
the inheri tance schema in a top-down fashion, adding more and more details.  For 
example,  the inheri tance schema in Example  2.6 was constructed this way, moving 
from t h i n g  to e l _ d v i c e  and c a l c u l a t o r ,  etc. By "inheritance", many people mean 
just  specialization. 

The  reverse construction,  however, makes sense, too: abstraction means to grow 
the inheri tance schema upward, hiding details (but not forgett ing them: beware of 
side effects!). Taking our example inheri tance schema, if we find out la ter  on tha t  
computers  - among others - belong to the sensitive i tems in a company which require 
special safety measures,  we might consider introducing a templa te  s e n s i t i v e  as an 
abs t rac t ion  of computer .  

Both specialization and abs t rac t ion  may occur in multiple versions: we have 
several templates ,  say Ul , . . . , u ,~ ,  a l ready in the schema and construct  a new one, 
say t, by relat ing it to u l , . . . ,  u~ simultaneously. In the case of specialization, i.e., 
hi : t ~ ui for i = 1 , . . . ,  n, it  is common to speak of "multiple inheri tance".  In the  
case of abstract ion,  i.e., hi : ui --* t for i = 1 , . . . ,  n, we may speak of generalization. 

E x a m p l e  2.19 : Referring to Example  2.6 and assuming top-down construc- 
tion, the  templa te  for computer  is constructed by mult iple specialization (multiple 
inheritance) from e l _ d v i c e  and c a l c u l a t o r ,  o 

E x a m p l e  2 .20 : If we would have constructed the schema in Definition 2.6 in 
a b o t t o m - u p  way, we would have obtained t h i n g  as a generalizat ion of e l _ d v i c e  
and c a l c u l a t o r .  

A less contrived example of generalization, however, is the following: if we have 
templates  p e r s o n  and company in our schema, we might encounter the need to 
generalize both  to c o n t r a c t _ p a r t n e r ,  o 

We note in passing that ,  with respect  to objects,  we have two kinds of generaliza- 
tion. For a computer  c, its c . t h i n g  aspect  is a proper  generalizat ion of its c . e l _dv i c e  
and c . c a l c u l a t o r  aspects.  We would not expect to have an object ,  however, which 
is both  a person and a company. Thus, the proper  generalizat ion c o n t r a c t _ p a r t n e r  
of p e r s o n  and company in the schema would only appear  as single object  abstrac-  
tions p .pe r son  --* p . c o n t r a c t _ p a r t n e r  or c.company --* c . c o n t r a c t _ p a r t n e r  on the 
instance level, but  not as a proper  object  generalization. 

2 . 5  I n t e r a c t i o n  

When we build an objec t -or ien ted  system, we must  provide an object community 
(cf. Definition 2.8). Wi thou t  it, the very notion of object  does not make sense. In 
what  follows, we investigate how to construct  such an object  community:  which are 
the interact ion morphisms of interest,  and how are they used to grow the community  
s tep by step? 

The  basic mechanism of interact ion in our approach is sharing parts, as i l lustrated 
in example 2.4. In the simplest  case, the shared par t  may be a single action, modeling 
a "global" action which is seen by all objects  sharing it. In this case, the "part" 
plays the role of a communicat ion port, and the shared ports  can be seen as a 
communicat ion channel, allowing for symmetr ic  and synchronous communication.  
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Other forms of communication (asymmetric, asynchronous, . . .  ) can be modeled and 
explained on these grounds, but we cannot go into detail here. Please note that  
shared parts playing the role of communication channels are objects themselves! 
Thus, they may have static Structure (observable attributes) as well as dynamic 
behavior (the communication protocol). 

As with inheritance morphisms, we found that  interaction morphisms are epimor- 
phisms in all meaningful cases. And this makes sense, too. An interaction morphism 
h : a.t --* b.u tells that  the aspect a.t has the part  b.u, and how this part  is affected 
by its embedding into the whole: this has to be specified for all items in the part! 

As with inheritance morphisms, we found that  retractions model an especially 
meaningful case of par t -of  relationship, namely encapsulated parts which are not 
affected by events outside their scope. 

E x a m p l e  2.21 : Referring to Example 2.4, the interaction morphisms 

CYY.cpu ----* CBZ.cable ~ PXX.powsply 

express that  the cable CBZ is a shared part  of the cpu CYY and the power supply PXX. 
Suppose the events relevant for cables are voltage level observation and switch- 

on/switch-off  actions. The sharing expresses that,  if the power supply is switched 
on, the cable and the cpu are switched on at the same time, etc. If the cable's 
voltage level depends only on the shared switch actions, the cable is an encapsulated 
part  of both cpu and power supply, and the interaction morphisms are retractions. 
If, however, events from outside can influence the voltage level (say, by magnetic 
induction), then the sharing morphisms are just epimorphisms, no retractions, o 

Let an object community be given. If  we have a surjective interaction morphism 
h : a.t ~ b.u not (yet) in the community, we can use h in two ways to enlarge it: 

�9 if a.t is already in the community, we create b.u and connect it to the commu- 
nity via h : a,t --* b.u, 

* if b,u is already in the community, we create a.t and connect it to the commu- 
nity via h : a.t -~ b.u. 

After connecting the new morphism to the community, we have to close it with 
respect to the schema (cf. Definition 2.7), i.e., add all aspects derived from the new 
one by inheritance. 

By incorporation we mean the construction step of taking a part  and enlarging it 
by adding new items. Most often the multiple version of this is used, taking several 
parts and aggregating them. We will be back to this. 

The reverse construction is also quite often used in the single version, we call 
it interlacing. Interfacing is like abstraction, but it creates an object with a new 
identity. 

E x a m p l e  2.22 Consider the construction of a database view on top of a 
database: this is interfacing. Please note that  it is quite common to have non-  
encapsulated interaction: a non-updateable view would display many changes which 
cannot be explained from local actions! That  is, the interaction morphism from the 
database to its view is not a retraction, o 

Both incorporation and interfacing may occur in multiple versions: we have sev- 
eral objects, say b l .U l , . . . ,  b,~.u~, already in the community and construct a new one, 
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say a.t, by relating it to bl.Ul, . . . ,  b,~.u,~ simultaneously. In the case of incorporation, 
i.e., hi : a.t --+ bi.ui for i = 1 , . . . ,  n, we have aggregation as mentioned above. In the 
case of interfacing, i.e., hi : bi.ul --* a.t for i = 1, . . .  ,n, we have synchronization by 
sharing. 

The latter was illustrated above in Example 2.18 (cf. also Example 2.4). An 
example for aggregation is the following. 

E x a m p l e  2.23 : Referring again to Example 2.4, suppose that PXX.powsply 
and CYY. cpu have been constructed and we want to assemble them (and other parts 
which we ignore here) to form our SUN. computer. Then we have to aggregate the 
parts and provide the epimorphisms (retractions in this case?) f : SUN. computer 
PXX.powsply and g:SUN.computer --~ CYY.cpu showing the relationships to the 
parts. Please note that f sends the cpu items within the SUN to 1, while it sends the 
power supply items to themselves (modulo renaming). The same holds for g, with 
cpu taking the place of power supply, o 

It is remarkable how much symmetry the inheritance and interaction construc- 
tions display. Their mathematical core is the same, namely epimorphisms between 
aspects. Taking the constructions in either direction and considering single and 
multiple versions, we arrive at the following table: 

Object Constructs inheritance interaction 
small-to-big/single specialization incorporation 
small-to-big/multiple mult. specialization aggregation 
big-to-small/single abstraction interfacing 
big-to-small/multiple generalization synchronization 

For each of these cases, we also have the encapsulated variant where the epimor- 
phisms are retractions. 

3 Object-Oriented Specification Approaches 

3.1  F O O P S  

FOOPS [GM87, GW90] (Functional Object-Oriented Programming System) is an 
object-oriented programming system with a declarative functional style. It is de- 
signed to preserve the essence of both functional and object-oriented programming: 
functional programming provides abstract data types for object attribute values, 
while object-oriented programming limits access to an object's state via methods 
associated with the specific object. In FOOPS, data elements are unchanging enti- 
ties, while objects are persistent but changing entities. 

Among many other concepts, FOOPS knows functional and object modules. Very 
roughly speaking, functional modules correspond to definitions of abstract data types 
in OBJ3 [GW88]. The underlying logic employs conditional equations and a form 
of sort inheritance via subsorting. The semantics is constructed by initial algebras. 
Object modules allow to define specific methods and attributes by means of condi- 
tional equations. Objects modules with a distinguished object sort correspond to 
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classes. The state of an object - the attribues (or more generally the observable 
properties) - may change when certain methods are performed on it. Special meth- 
ods, new and remove for object creation and deletion, are provided with any object 
module. Object modules are allowed to have sub-modules, thus providing a form 
of class inheritance. Three different kinds of semantics have been proposed for the 
object level: 

A reflective semantics representing the FOOPS database and all object ma- 
nipulating methods as a functional module, i.e., as an abstract data type. 

A direct algebraic semantics employing hidden sorts to model states. 

A sheaf semantics modelling objects as sheaves and systems as collections of 
sheaves and sheaf morphisms. 

As an example we consider a FOOPS specification describing integer cells in an 
object-oriented fashion. An attribute get  and a method se t  are defined as follows 

omod CELL 

cl Cell 

pr INT 

at get : Cell -> Int 

me set : Cell Int -> Cell 

eq get(set(C,N)) = N 

endo 

\*  ob jec t  module *\  
\* c l a s s  *\  
\* p r o t e c t i n g  *\  
\* a t t r i b u t e  *\  
\* method *\  
\* equation *\ 

\* end object module *\ 

FOOPS has a sophisticated user-defined syntax and therefore it is possible to 
denote this specification in the more readable form given below. Additionally, an 
operation declare_:  I n t e g e r  for the declaration of variables is introduced. The 
definition of this operation employs the method new provided automatically with 
each class. 

omod CELL \* object module *\ 

cl Cell \* class *\ 

pr INT \* protecting *\ 

at : Cell -> Int \*  attribute *\  
me _:=_ : Cell Int -> Cell \* method *\ 

eq C := N = N \*  equation *\  
op (declare_: Integer) : Id -> Cell \* operation *\ 

eq declare I : Integer = new(I) \*  equation *\  
endo \* end object module *\ 

Using this definition of CELL, one can create new cell objects and apply methods 
to them in a convenient way. For example, FOOPS can evaluate the following lines. 

declare x : Integer ; 

declare y : Integer ; 

x :=5 ; 

y := X �9 



55 

Generally speaking, object modules like those given above denote theories which 
specify "templates" as introduced in section 2. The power of specifying object dy- 
namics, i.e. processes, is not quite clear, but there seem to be limitations, especially 
concerning the capability to specify infinite (non-terminating) behavior and full 
concurrency. 

In the hidden-sorted algebra approach to semantics (cf. [Go91], object identi- 
ties are associated with particular models of theories where each such model is a 
particular algebra of possible process states. The permissible algebras are given by 
observational equivalence. 

Inheritance relationships are modeled at the syntactic level, by theory mor- 
phisms. The corresponding semantic relationship between aspects of the same object 
is not discussed in the FOOPS literature, but it seems that "cryptomorphisms" as 
introduced in [TBG89] (or, rather, their opposites) can do the job [Go92]. 

Using cryptomorphisms, it is also possible to model interaction along the lines 
outlined in section 2 [Go92]. So far, this point has not been emphasized in the 
FOOPS literature. 

In conclusion, barring details which still have to be worked out, FOOPS has the 
potential of expressing all object-oriented concepts and constructions as outlined in 
section 2. 

3.2 Entity Algebras 
Entity algebras IRe91] provide models for data types, processes, and objects. They 
are special partial algebras with predicates [BW82] including the following features: 

�9 The elements of certain sorts represent dynamic elements, called entities. Their 
dynamics is realized by allowing to perform labelled transitions. 

�9 Entities may have subcomponents. The structure of these subcomponent enti- 
ties is not fixed but can be defined by appropriate operations and axioms. 

�9 Entities are given identities so that subcomponents can be retrieved and shar- 
ing of subcomponents can be described. 

The entity algebra approach is based on previous work by the Genova and Passau 
Abstract Data Type groups (see for instance [AR87a, AR87b, AGRZ89, BZ89]). 
Another feature is that the approach distinguishes between specifications-in-the- 
small corresponding to usual specifications of dynamic systems as abstract data 
types and specifications-in-the-large suitable for expressing abstract properties of 
classes of dynamic systems. 

Entity specifications distinguish between static sorts (like i n t  or bool)  and dy- 
namic sorts (like queue -wi th - s t a t e ) .  For each dynamic sort s providing the val- 
ues of sort s, there axe additionally sorts i d e n t ( s )  and e n t ( s ) .  The elements in 
iden t  (s) are the identities for sort s and ent  (s) represents the entities of sort s. 
Consequently, there is an operation 

_:_ : i d e n t ( s )  x s -~ e n t ( s )  
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for the construction of entities. Dynamics is realized by providing a sort l ab(s )  
where the possible transitions (or labels) for entities are collected (e.g., labels like 
remove or put for entity sort queue-wi th-s ta te ) .  The concrete behavior of entities 
is specified by axioms for predicates of the form 

_ ---_---> _ : ent(s) X lab(s) • ent(s) 

Thus, the process model in this approach is labelled transition systems�9 Please 
note that the entities (or objects) are constructed by giving an identity and a current 
value for the object state. Therefore, elements in dynamic sorts are object states 
rather than (abstract) objects�9 The same holds for the object-oriented algebraic 
specification language OS introduced by Ruth Breu [Bre91]. 

The following specification defines an object-oriented version of data type queue. 
The entities of sort ent (queue) represent the objects of the class queue, the elements 
in ident  (queue) are the identifiers for queues. 

enrich INT by 
dsorts queue 

opns 
Empty : -> queue total 

Get : queue-> ident(int) 

Remove : ent (queue) -> ent (queue) 
Put : ent(int) x queue -> queue 
A, B, ..., ABC, ... -> ident(queue) 

_.Empty : ident(queue) -> lab(queue) total 

=_.Get : ident(int) x ident(queue) -> lab(queue) total 

.Remove : ident(queue) -> lab(queue) total 

_.Put(_) : ident(queue) x ent(int) -> lab(queue) total 

preds 

Diff : ident(queue) x ident (queue) 

Unused : ident(int) x queue 

axioms 

A Diff B ... A Diff ABC ... 
Get(Put(id:i,Empty)) = id 
DEF(Get(q)) => Get(Put(el,q)) = Get(q) 

Remove(id:Put(ei,Empty)) = id:Empty 
Remove (id: q) =eq => Remove (id, P~t (el, q) ) =eq 

Unused (id, Empty) 
id Diff id' ~ Unused(id,q) => Unused(id,Put(id' :i,q)) 

Unused (id, q) => DEF (Put (id: i ,q)) 
id: q ---id. Empty---> id: Empty 
DEF(Put(ei,q)) => ( id:q---id.Put(ei)---> id:Put(ei,q) ) 
DEF(Remove (q)) => ( id: q ---id.Remove---> id:Remove (q)) 

end enrich 

Operations which have the sorts queue or ent (queue) as argument or result 
sorts - in this case Empty, Put, Remove, and Get - define the methods of class 
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queue. The application of methods is specified by giving axioms for the transi- 
tion predicate. Transitions are labelled by sending appropriate messages. If we 
now have the queue object MYQUEUE: Put (INT_ENT1, Put (INT_ENT2, Empty) ) (pro- 
vided i n t  objects INT_ENT1 and INT_ENT2 are  g iven) ,  the application of the meth- 
ods MYQUEUE. Remove and MYQUEUE. Empty yield MYQUEUE: Put (INT_ENTI, Empty) and 
MYQUEUE: Empty, respectively. 

Based on the algebraic semantics of processes as developed in [AR87a, AR87b], 
the semantics can he given by various observational equivalences, for example (gen- 
eralized) bisimulation. 

The literature on entity algebras does not address inheritance and interaction 
explicitly. A concept which compares with template (aspect) morphisms a:s described 
in section 2 is missing, but inheritance and interaction can probably be handled 
by different means and on different levels of abstraction. However, it would be 
interesting to see whether the entity algebra approach can be extended to include 
inheritance and interaction on the abstraction level of section 2. 

Entity algebras do have a concept for subcomponents which can be shared, pro- 
viding a means of symmetric and synchronous interaction as described in section 2. 
Together with the algebraic approach to concurrency invented in [AR87a], powerful 
means for expressing interaction of processes are available, with different kinds of 
parallelism and even with higher-order processes. 

3.30BLOG 

The languages OBLOG [CSS89] (OBject LOGic) and its successor TROLL [JHSS91] 
(Textual Representation of an Object Logic Language) were developed hand in hand 
with the conceptual framework outlined in section 2. Information systems are de- 
scribed as communities of interacting objects. Object templates specify processes 
and observations on these processes. 

The languages employ features of equational logic for the specification of data, 
events, and identities and they use elements of temporal, dynamic, and deontic logic 
for system behavior and abstract system properties. Object templates introduce the 
objects' attributes characterising the objects' state and define the actions (called 
"events" in the language) modifying these attributes. The effect of performing ac- 
tions is described by valuation rules. Additionally, safety and liveness properties can 
be specified. 

As a specification example for the TROLL language, we consider a bank account. 
After importing the data types used, the attribute section determines the observable 
properties of accounts. The events (i.e., actions) specify the possible state transi- 
tions. Both, attribute values and state transitions have to satisfy the conditions 
given in the constraints part. The valuation section defines the effect of events, and 
the behavior part states permissions and obligations for events to occur, employing 
a deontic logic. 

TEMPLATE account 
DATA TYPES lBankCustomer I, money, bool, UpdateType 
ATTRIBUTES 

CONSTANT Holder: I BankCustomer [ 
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CONSTANT Type:{checking,saving} 

Balance:money 

CreditLimit:money 
DERIVED MaxWithdrawal:money 

EVENTS 
BIRTH open(Holder:IBankCustomerl, Type:{checking,saving}) 

DEATH close 

new_credit_limit(Amount:money) 
aceept_update(Type:UpdateType, Amount:money) 

update_failed 

withdrawal(Amount:money) 

deposit(Amount:money) 

CONSTRAINTS 
INITIAL CreditLimit = 0 

DERIVATION 
MaxWithdrawal = Balance + CreditLimit 

VALUATION 

VARIABLES m:money 
[new_credit_limit(m)] CreditLimit = m 

[withdrawal(m)] Balance = Balance - m 

[deposit(m)] Balance = Balance + m 

BEHAVIOR 
PERMISSIONS 

VARIABLES t,tl:UpdateType; m,ml,m2:money 

{ Balance = 0 } close 

{ NOT SOMETIME(AFTER(accept_update(tl,ml))) 

SINCE LAST(AFTER(update_failed) OR 

AFTER(deposit(m2)) OR 
AFTER(withdrawal(m2))) } accept_update(t,m) 

�9 ~ �9 

OBLIGATIONS . . .  

END TEMPLATE account 

The semantics of such specifications is not fully worked out yet, but there are 
semantic models available which have been designed for this purpose, meeting all 
requirements described in section 2. 

Essentially, these models provide categorial process models which can be used for 
formalizing these conceps: processes formalizing templates, and process morphisms 
formalizing template morphisms. This way, there is a heavy emphasis on object 
dynamics�9 

In what follows, we briefly outline one particular such model (cf. [ES91] for more 

detail)�9 
The basic event structure is an event monoid/~ = (E,II, 1) which is associative, 

commutative, idempotent, and satisfies the cancellation law. Intuitively, II denotes 
simultaneous occurrence of events, and 1 denotes the empty event. 

Event monoids/~i  = (E~,H ~, 1~), i -- 1,2, can be related by event monoid mot- 
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phisms h :/~1 -'*/~2 which are structure preserving maps h : E1 ~ E2 satisfying the 
properties h(11) = 12 and h(el II1 e2) = h(el)II 2 h(e2). Henceforth, we will omit the 
indexes from ]1 and 1 as long as there is no danger of confusion. 

Let/~ = (E, II, 1) be an event monoid. A subset M ___ E is called a menu: it might 
appear on a screen as a selection of events (actions and observations) which may 
occur next. For a collection a of menues, [J a denotes the union of these menues, 
i.e., U a  = {e [ 3 M e a :  eeM} .  

A process over an a lphabet /~  is a map # : E* --* 22E satisfying the following 
conditions for each TEE*: 

1. U,(T) ,(T) 

2. VX, Y C E  : X C _ Y C U # ( T  ) A Xel~(T) ~ Yelz(T) 

The intuition might help that  each Me#(T)  corresponds to a state of knowledge 
about what might possibly occur next after the history T of the system. 

Let #i : E* -~ 22E~ , i -- 1, 2, be processes over alphabets/~1 and ~2, respectively. 
Let h : /~1 ~ /~2 be a monoid morphism, h is called a process morphism iff the 
following condition holds: 

h(/~l(T)) _C_ #2(h(T)) for each TeE~.  

In this noti~tion, h is extended to traces as well as sets and families of sets by 
elementwise application. For example, h(ef)  -- h(e)h(f)  and h({{a}, {a, b}}) -- 
{{h(a)}, {h(a), h(b)}}. 

It is not hard to prove that  processes and process morphisms as defined above 
form a category. We call this category NDM, the Non-Deterministic Menu model. 

We cannot develop the mathematics of N D M  in this paper. We claim, however, 
that  

* NDM is complete, and limits reflect parallel composition, 

. N D M  is cocomplete, and colimits reflect internal choice. 

Therefore, this model is especially well suited to model the object-oriented concepts 
explained in section 2. The reader is referred to [ES91] for further details. 

3 . 4  P r o c e s s e s  a s  A b s t r a c t  D a t a  T y p e s  

There are various approaches for the specification of processes by algebraic methods, 
by Bergstra and Klop [BK86], by the Berlin Abstract Data  Type group [EPPB+90], 
by Kaplan [Kap89], and others. The main idea behind these approaches is to in- 
troduce sorts for actions and processes explicitly and to provide operations like 
prefixing, parallel composition, choice, etc., for the combination of processes. The 
logic employs (conditional) equations. On the semantic side, the approaches use 
continuous algebras, projection spaces, or some form of observational or behavioral 
semantics. 

It is perhaps not fair to evaluate these approaches on the basis of how well they 
meet requirements of object-orientation, since most of them do not claim to do so. 
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But there are quite a few allusions - more or less vague - that these approaches 
might be useful for the theory of objects, so a few remarks are in order. 

The general idea is to give an object-oriented flavor by adding identification 
to processes. For instance, Grofle-Rhode [GR91] considers the following concepts: 
objects as states (the state of the system is the aggregation of all local object states); 
objects for local behavior (local process specifications define the dynamic behavior 
of objects); class definitions (Berlin module specifications serve as class definitions 
which axe similar to object templates in the sense of section 2); class eombinators 
(class combinators are the usual Berlin module operations building large modules 
from smaller ones); (strict) inheritance: (inheritance corresponds to union, import 
actualization or extension of modules). Objects are defined only on the syntactic 
level, they are enrichments of the specification representing the state of the system. 
The semantics of state changes of processes consists of the syntactic modification of 
the underlying specification. 

Berlin module specifications are also used by Paxisi-Presicce and Pierantonio 
[PP91] in order to explain inheritance mechanisms in object-oriented programming. 

Another effort following these lines is CMSL (Conceptual Model Specification 
Language) proposed by Wieringa [Wie91]. 

Although some object-oriented concepts can be expressed in these approaches, 
there are some problems with this approach. Inheritance is no problem, at least 
not on the theory (or template) level: like in the FOOPS approach, specification or 
theory morphisms do the job. On the instance level, however, an obvious concept 
for modeling inheritance or interaction is missing. 

The main problem is with identification. The problems with inheritance and 
interaction are consequences of identification problems. The relevant question here 
is: what is the unit identified? 

One obvious unit of identification is a specification (or theory) specifying some 
kind of object (aspect), i.e., a template. However, object identification is a little 
more demanding than just giving names to templates. Rather, what is needed is a 
dynamic mechanism for generating, maintaining, and destroying objects (aspects) 
as named units "at runt ime' .  Object classes are time-vaxying collections of objects 
(aspects) with different names but with the same template. This is an essential 
feature of object-orientation, it is one of the reasons why, for example, MODULA2 
is not considered object-oriented. 

In most of the algebraic approaches mentioned above, the way of handling this is 
to introduce a sort ID of identities and introduce ID as a parameter sort for the create 
operation(s). For example, instead of create:--+stack, we have create:ID--+stack. 
This way, however, we obtain what we might call a set of named process states 
instead of a set of process states within a named object. That is, the named unit is 
an object state rather than an object. Moreover, all states of all objects are grouped 
together in one structure (carrier of an algebra). 

As a consequence, algebra morphisms preserving this structure do not appropri- 
ately reflect inheritance and interaction at the instance level. For example, it is not 
possible to express formally that a user interacts with one specific stack, not with 
all the others around, using algebra morphisms that have the carrier set of all states 
of all stacks as source or target, respectively. 
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4 Conclusions 

Let us first summarize the object-oriented concepts and constructions of section 2. 
Templates are generic objects without individual identity. Identities are associated 
with templates to represent aspects of individual objects. Interaction is a relation- 
ship between different objects, while inheritance relates aspects of the same object. 
Objects and aspects appear as members of classes. A class is again an aspect with 
a time-varying set of aspects as members. Since classes are objects or aspects of 
objects, there is no difficulty in constructing meta-classes having classes of different 
types as members. 

By means of an object-oriented approach, systems can be elegantly described 
as communities of interacting objects. As has been pointed out, the notion of an 
object only makes sense within an object community. Please remember that an 
object community must be closed with respect to inheritance and must provide 
unique identifiers for objects, among others. 

The algebraic approaches to object specification and semantics investigated in 
this paper suggests that an appropriate theory of objects should be based on pro- 
cesses rather than data types. This is obvious in the approaches investigated in 
sections 3.2 and 3.3. At first sight, the FOOPS approach described in section 3.1 
seems to contradict this conclusion, but a closer look reveals that it does not: by 
employing hidden sorts and observational equivalence, this approach is based on an 
algebraic state machine model of processes rather than abstract data types. 

It should be mentioned that not everything relevant to object specification - 
i.e., specification of object communities - is addressed in this paper. A full-fledged 
language and system for specification h~d design must provide means for specify- 
ing data types, (types of) identities, inheritance schemata (e.g., for specialization 
and generalization), interaction schemata (e.g., for aggregation and synchronization 
patterns), generic modules and actualization, classes and instances, etc. 

The important issue of object reification (or implementation or refinement) has 
not been addressed in this paper. A satisfactory treatment is still missing, but there 
are promising approaches borrowing ideas from abstract data type implementation 
and from process refinement. 
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