
Objects and Their Specification *

Hans-Dieter Ehrich
Martin Gogolla

Abteilung Datenbanken, Technische Universits Postfach 3329

W-3300 Braunschweig, GERMANY

Amilcar Sernadas
Computer Science Group, INESC, Apaxtado 10105

1017 Lisbon Codex, PORTUGAL

A b s t r a c t

Object-oriented concepts and constructions are explained in an informal
and language-independent way. Various algebraic approaches for dealing with
objects and their specification are examined, ADT-based ones as well a~ pro-
cess-based ones. The conclusion is that the process view of objects seems to
be more appropriate than the data type view.

1 I n t r o d u c t i o n

There is a pecul iar confusion around the notions of object and abs t rac t da t a type in
practice: while the la t te r has been made mathemat ica l ly precise as an isomorphism
class of algebras, pract i t ioners tend to view an abs t rac t da t a type as an encapsulated
module export ing a set of procedures through which its da t a can be accessed and
manipula ted . The bridge to the theory is to look at the module 's set of internal
s tates as a carrier, and its procedures as operat ions of an algebra.

The problem with this view is tha t it blurs the dist inct ion between da ta and
objects.

The integers const i tute a basic example of a da t a type. Another popular example
is a stack. Pragmat ical ly , however, integers and stacks axe quite different. The
integer d a t a type provides a supply of values which can be used, say, as actual
parameters in procedure calls. A stack, on the other hand, is a unit of s t ructure
and behavior: its s ta tes are not meant to be used as actual parameters in procedure
calls. Rather , the s tack as a w h o l e is subject to operations. An integer is added to
another integer to give a result which is a third integer. A stack entry, however, is
pushed onto a stack, and we still look at the la t te r as being the same stack, a l though
its s ta te has changed.

*This work was partly supported by the EC under ESPRIT BRA WG 3264 COMPASS, under
ESPRIT BRA WG 3023 IS-CORE and by JNICT under PMCT/C/TIT/178/90 FAG3 contract.

HDEhrich
Schreibmaschinentext
M. Bidoit and C. Choppy, editors, Proc. 8th Workshop on Abstract Data Types, Dourdan 1991, LNCS 655, pages 40–66, Berlin, 1992. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

4]

That is, a stack is an object, not a data type: it has an identity which persists
through change. It seems that, for the most part, the practical success of abstract
data types is one of object-orientation.

There are many languages, systems, methods and approaches in computing
which call themselves "object-oriented" by now, among them object-oriented pro-
gramming languages like SmallTalk [GR83], C § [St86] and Eiffel [Me88], object-
oriented database systems like GemStone [BOS91], O2 [De91], IRIS [Fi87] and
ORION [Ki88], and object:oriented system development methods like GOOD [SS86],
MOOD [Ke88] and HOOD [Hei88].

High-level system specification languages and design methodologies are evolv-
ing which are based on object-oriented concepts and techniques. [Ve91] gives an
overview of recent work in this area. We are cooperating in the ESPRIT BRA
Working Group IS-CORE where a graphical language [SGCS91, SRGS9], SSGRG91,
SGGSR91] and a textual counterpart [JSS90, JHSS91, JSS91, JSHS91, SJ91] for de-
signing, specifying and implementing object communities are being developed.

But what precisely is an object? As we have seen, it has an internal state and
a certain behavior reflected by its operations: it is a unit of structure and behavior
- - and it has an identity which persists through change. Moreover, dynamic objects
somehow communicate with each other, they are classified by object types, collected
into object classes, related by various forms of inheritance, and composed to form
complex objects.

This rich world of concepts and constructions seems to be very fertile: An enor-
mous amount of work is being invested in developing object-oriented techniques for
software engineering. Evidently, there is much hope that software production and
maintenance can be made more effective, more productive, more adequate, and more
reliable this way. Indeed, object-oriented languages and systems as well as design
and implementation methods are invading all disciplines of software engineering.

With all these practical developments, it is amazing that theoretical founda-
tions for object-oriented concepts and constructions do not have found so wide
attention yet. Matters are changing slowly: there are formal approaches to object-
oriented programming language semantics [CP89], database concepts [Be91, GKS91],
and specification languages [GW90]. Besides this, also language- and system-
independent discussions of fundamental object-oriented issues are evolving [Cu91,
HC89, LP90].

In the IS-CORE working group~ the first and third authors have been cooperating
in the latter direction. Recent contributions to semantic fundamentals are lESS90,
ES90, EGS91, CS91, CSS91, SE90, SEC90, SFSE89], emphasizing the process view
of objects. In cooperation, logic fundamentals of object specification have been
developed [FM91a, FM91b, FS91, FSMS90]. A first result harmonizing logics and
semantics of object specification can be found in [FCSM91].

A systematic formalization of basic object-oriented concepts and constructions
in terms of this theory has been published in [ES91] and, together with features of
an object-oriented specification language and methodology, in [SJE91].

In the second section of this paper, we give an informal account of these ideas.
In the third section, we examine various approaches for dealing with objects and
their specification, ADT-based ones as well as process-based ones. The conclusion
is tha t the process view of objects seems to be .more appropriate than the data type
view.

42

2 Object-Oriented Concepts and Constructions

In this section, we give an informal account of our view of objec t -or ien ted concepts
and constructions. The purpose is to establish requirements for formalizat ion of
objec t -or ienta t ion , not a formalization itself: we declare the intui t ive basis on which
to evaluate formal approaches. Fi rs t steps towards formalizat ion are discussed in
section 3.

We feel tha t i t is necessary to discuss the intui t ive background at some length,
because of the confusion and disagreement on fundamental terms in this area. We
took some pain to make the definitions precise enough to serve their purpose, but
they are not meant to be a formalizat ion yet.

In order to be short and concise, we present one par t icular view ra ther than
giving a review of a l ternat ive opinions and philosophies. Whenever appropr ia te ,
however, we drop a hint at other viewpoints.

2 . 1 T e m p l a t e s

In na tura l language, we refer to objects by substant ives , but we use the same sub-
s tant ive in two different ways: with the definite art icle t h e (or words like t h i s or
t h a t) for referring to specific individual objects, and with the indefinite art icle a for
referring to generic terms.

The dist inct ion between individual objects and generic terms is somewhat sloppy
in na tu ra l language. Consider, for example, the sentence

�9 This computer is a SUN workstation; it works quite well.

Does the speaker want to say tha t the specific SUN workstat ion referred to by this
works quite well, or does she want to say tha t SUN workstat ions in general work
quite well? T h e first meaning is probably more obvious, but you can hear people
ta lk like this with the second meaning in mind.

In computing, we have to be very specific about this distinction. For generic
terms, the word type is often used, but this word is overloaded with too many
connotations. We avoid it and prefer to speak of object templates if we mean generic
objects without individual identity. The notion of an object class is easily confused
with this, but it means something else, namely a t ime-vary ing collection of objects!
We will be back to this.

An object templa te represents the common s t ructure and behavior pa t t e rn of
some kind of object .

The basic ingredients of s t ructure and behavior are observations and actions. For
instance, for a queue object with integer entries, we might have

�9 observations f r o n t = 7 , r e a r = 2 , s i z e = 3 , . . .

�9 actions c r e a t e , e n t e r (7) , l e a v e , . . .

43

with obvious meanings. It is essential that we are general enough to allow for
concurrency. In a nonempty queue, for instance, enter(4) and l eave may occur
simultaneously, and this simultaneous occurrence can be considered as one composite
action enter(4)l[leave. Moreover, also actions and observations can occur at the
same time, giving rise to expressions like enter (4) [[f ront=7 or s• H
leave.

But what do the latter expressions mean? They are neither pure actions nor

pure observations. In order to make sense of this, we introduce the concept of event
as a generalization of actions and observations:

�9 an event is anything which can occur in one instant of t ime.

Let E be a given set of events including atomic actions, atomic observations, and
simultaneous combinations of finitely many of these. Obviously, we have a binary
operation II on E which should be associative, commutative and idempotent, and it
should satisfy the cancellation law. Adding, for completeness and convenience, a
neutral element 1 standing for nothing happens (or, rather, nothing visible happens,
i.e., it might represent a hidden event), we obtain an

�9 event monoid E = (E,H , 1)

with the above properties as the basic event structure to work with.
An object template has an event monoid associated with it, representing the

events which can possibly happen to this kind of object. But, of course, it is not
sufficient to know which events can happen, we need to know how-they can happen
in sequence or concurrently.

A process is a well known concept" modelling precisely this. There are many
process models and languages in the literature, including CSP, CCS, ACP, Petri nets,
labelled transition systems, various trace models, etc. We cannot go into process
theory here, and fortunately we need not: we are ready to accept any sufficiently
powerful process model for modelling object template behavior.

In order to help the reader's intuition, however, she might envisage labelled
transition systems (Its) as an example process model: an object template has states,
and it can move (non-deterministically) from state to state by transitions labelled
by events (only actions will actually change state, observations will leave it fixed). A
mathematical elaboration of this model can be found in [CSS91], and a more abstract
denotational model is outlined in [ES91]. Other appropriate process categories are
currently being investigated, denotational and operational ones [CS91, CSS91], and
also logic-based ones [FM91a, FSMS90]. An interesting unifying approach can be
found in [Me91].

Templates in isolation, however, are not enough for capturing the relevant object-
oriented concepts: for studying inheritance and interaction, we have to deal with
suitable relationships between templates. In this respect, process theory offers only
rudimentary help. We found it necessary to develop a general and powerful notion
of process morphism as some kind of "behavior preserving map" between processes
[ES91, ESS90, ES90, SE90, SFSE89, SSE87]. Amazingly, one single concept turned
out to be sufficient for dealing with inheritance as well as interaction!

Templates and template morphisms constitute a well known mathematical struc-
ture called a category. We have been able to find instances of process categories

44

where not only the morphisms are appropr ia te for modell ing inheri tance and inter-
action, but where also fundamental process operations are reflected by basic cate-
gorial constructions: paral lel composit ion by limits, and internal choice by colimits
[ES91, CS91].

In what follows, we will need one special case of templa te morphism in par t icular ,
namely projection: a template is projected to a par t or an aspect of itself by mapping
all "global" s tates to their "local" par t or aspect, and correspondingly for transit ions.
The events relevant for the par t or aspect are maintained, while the remaining events
are "hidden" by mapping them to 1. Please note tha t nondeterminism might be
introduced this way.

For example, let twoqueue be the templa te for objects consisting of two queues
working in parallel, without any interact ion between them. The states of twoqueue
are all pairs (ql, q2) of s tates of the two component queues, whereas the events
(labels) are given by the product of the two event monoids, i.e., all events of the
form el II e2 where el is an event of the first queue and e2 is one of the second.
Let queue be the template for jus t one such queue. Then we have two obvious
project ions Pi : twoqueue - , queue, i = 1,2, where p~ leaves the i - t h queue fixed
and '~orgets" the other one by mapping all actions and all observations to 1.

For another example, let queue be as above, and let deque (double-ended queue)
be like a queue, but with actions to enter and to leave at both ends: there is an
obvious "abstract ion" a : deque --~ queue leaving the states fixed but '~orgetting"
the addi t ional actions.

These examples demonst ra te the twofold use of template morphisms: for restr ict-
ing to a const i tuent pa r t and for abs t rac t ing an aspect.

2 . 2 O b j e c t s

Wha t is an object ? Its behavior is a process, but an object is more than its
behavior: there may be many objects with the same behavior, but they are different
as objects. Tha t is, an object has an identity while a process has not. Only if we can
distinguish clearly between individual objects is i t possible to t rea t object concepts
like inheri tance and interaction in a clean and sat isfactory way: interact ion is a
relationship between different objects, while inheri tance relates aspects of the same
object .

Object identities are a tomic items whose principle purpose is to characterize
objects uniquely. Thus, the most impor tan t propert ies of identi t ies are the following:
we should know which of them are equal and which are not, and we should have
enough of them around to give all objects of interest a separa te identity. Identi t ies
are associated with templates to represent individual objects - - or, ra ther , aspects
of objects, as we will see.

Given templates and identities, we may combine them to pairs b.t (to be read
"b as t") , expressing tha t object b has behavior pa t t e rn t. But there are objects
with several behavior pat terns! For instance, a given person may be looked a t as
an employee, a pat ient , a car driver, a person as such, or a combinat ion of all these
aspects. Indeed, this is a t the heart of inheritance: b.t denotes jus t one aspect of an
object - there may be others with the same identity!

45

D e f i n i t i o n 2.1 : An object aspect - or aspect for short - is a pair b.t where b is
an ident i ty and t is a template .

D e f i n i t i o n 2.2 : Let b.t and c.u be two aspects, and let h : t ~ u be a templa te
morphism. Then we call h : b.t ~ c.u an aspect morphism.

Aspect morphisms are nothing else but t empla te morphisms with identi t ies at-
tached. The identities, however, are not jus t decoration: they give us the possibil i ty
to make a fundamental dist inction between the following two kinds of aspect mor-
phisms.

D e f i n i t i o n 2.3 : An aspect morphism h : b.t --. c.u is called an inheritance
morphisms iff b = c. Otherwise, i t is called an interaction morphism.

The following example i l lustrates the notions introduced so far.
E x a m p l e 2 .4 : Let e l_dvs be a behavior t empla te for electronic devices,

and let computer be a templa te for computers. Assuming tha t each computer IS An
electronic device, there is a t empla te morphism h : computer -~ e l _ d v i c e (roughly
speaking, the e l_dvs par t in computer is left fixed, while the rest of computer is
projected to 1).

If SUN denotes a par t icular computer , i t has the aspects

SUN. computer (SUN as a computer) and
SUN. e l _ d v i c e (SUN as an electronic device),

related by the inheri tance morphism h : SUN. computer > SUN. e l _ d v i c e .
Let powsp ly and cpu be templates for power supplies and central processing

units, respectively. Assuming tha t each electronic device HAS A power supply and
each computer HAS A cpu, we have template morphisms] : e l _ d v i c e ~ p o w s p l y
and g : c o m p u t e r - * cpu, respectively. "If PXX denotes a specific power supply and
cYY denotes a specific cpu, we might have interaction morphisms iF' : SUN. e l _ d v i c e
--* PXX.powsply and, say, g' :SUN. computer --~ CYY. cpu.] ' expresses tha t the SUN
computer - as an electronic device - HAS THE PXX power supply, and g' expresses
tha t the SUN computer HAS T H E cpu CYY.

These examples show special forms of interaction, namely between objects (as-
pects) and their parts. More general forms of interact ion are established via shared
parts. For example, if the interaction between SUN's power supply and cpu is some
specific cable CBZ, we can naively view the cable as an object CBZ. c a b l e which is
par t of both PXX.powsply and CYY. cpu. This is expressed by a sharing diagram

CYY. cpu ~ CBZ.cab le r - PXX.powsply

A more realistic way of modeling this would consider the cable as a separa te object
not contained in the cpu and not in the power supply either. Rather , the cable
would share contacts with both. o

This shows tha t objects may appear in different aspects, all with the same
ident i ty but with different behavior templates, related by inheri tance morphisms.
The information which aspects are related by inheri tance morphisms is usually
given by template morphisms prescribing inheritance. For example, we specify
h : c o m p u t e r ~ e l _ d v i c e in order to express tha t each computer IS An electronic
device, imposing tha t whenever we have an instance computer , say SUN. computer ,
then it necessarily IS THE electronic device SUN.e l_dvice inheri ted by h as an
aspect morphisms, h : SUN. computer - . S U N . e l _ d v i c e .

46

D e f i n i t i o n 2 .5 : Template morphisms intended to prescribe inheri tance are
called inheritance schema morphisms. An inheritance schema is a collection of tem-
plates related by inheri tance schema morphisms.

E x a m p l e 2.{} : In the following inheri tance schema, arrowheads are omit ted:
the morphisms go upward.

t h i n g

el_dviee calculator

computer

personal_c workstation mainframe

Pract ica l ly speaking, we create an object by providing an identi ty b and a tem-
plate t. Then this object bJ has all aspects obtained by relat ing the same ident i ty b
to all "derived" aspects t ~ for which there is an inheri tance schema morphisms t --* t '
in the schema.

Thus, an object is an aspect together with all its derived aspects. All aspects of
one object have the same identi ty - and no other aspect should have this identity!

But the la t te r s ta tement is not meaningful unless we say which aspects are there,
i.e., we can only talk about objects within a given collection of aspects. Of course, the
collection will also contain aspect morphisms expressing how its members interact ,
we will be back to this. And if an aspect is given, all its derived aspects with respect
to a given inheri tance schema should also be in the collection.

D e f i n i t i o n 2 .7 : An aspect community is a collection of aspects and interact ion
morphisms. I t is said to be closed with respect to a given inheri tance schema iff,
whenever an aspect a.t is in the community and an inheri tance morphism t --~ t ' is
in the schema, then we also have a.t ~ in the community.

D e f i n i t i o n 2.8 : An object community - or community for short - consists of
an inheri tance schema and an aspect community which is closed with respect to it.

D e f i n i t i o n 2.9 : Let an object community be given, and let a be an object
identity. The aspect graph of a in tha t community is the graph consisting of all
aspects in the community with the ident i ty a as nodes, and all inheri tance morphisms
lifted from the schema as edges.

By lifting we mean tha t whenever a.t and a.t ' are in the aspect graph of object
a and t --~ t r is in the schema, then also a.t --* a.t ~ is in the aspect graph.

47

One could argue that the object with identity a is the aspect graph of a. Intu-
itively, an object with identity a is a collection of consistent aspects. But, as we will
see, we take a simpler and more practical approach.

E x a m p l e 2.10 : Consider an object community containing the inheritance
schema in Example 2.6, a particular workstation named SUN, and a particular cal-
culator named UPN. By inheritance, SUN automatically is a computer, an electronic
device, a calculator, and a thing. Since UPN is a calculator, it is also a thing, etc. So
we have the following object diagrams:

SUN.thing

SUN.el_dvice SUN.calculator

SUN.computer

I
: SUN.workstation

UPN.thing

UPN.calculator

In a given community, an object is usually constructed by picking a specific
identity a and associating it with a'$pedfic template t, yielding a core aspect a.t for
this object. Then the object diagram of a is determined by all aspects a t ' where
t ' is related to t by an inheritance schema morphism t --* t ' . Consequently, object
diagrams have an inheritance morphism from the core aspect to any other aspect.

Def in i t i on 2.11 : An object community is called regular iff each aspect graph
of an object in it has a core aspect.

While the notion of object should probably be taken as that of its aspect graph in
general, we can make things easier and closer to popular use in a regular community:
here it is safe to identify objects with their core aspects.

De f in i t i on 2.12 : In a regular community, an object b is the core aspect of its
aspect graph.

Clearly, from the core aspect and the inheritance schema we can recover the
entire aspect graph.

Since, according to this definition, objects a re special aspects, we immediately
have a notion of object morphism: it is an aspect morphism between objects.

2.3 C las se s

Objects rarely occur in isolation, they usually appear as members of classes. A
warning is in order: the notion of class is subject to considerable confusion! Essen-
tially, there seem to be two different schools. The first one says that a class is a

48

sort of abs t rac t ion of pat terns , i.e., an intensional description of an invariant set of
potent ia l members . The other one says tha t a class is an extensional collection of
objects which may vary from state to s ta te . Both notions are needed. We capture
the first one by templates, and we use the word class in the second sense.

Tha t is, a class is a t ime-vary ing collection of objects as members - and this
means tha t a class is a par t icular kind of object itself!

Or should we say aspects ra ther than objects? Wi th the dist inct ion between
objects and aspects made above, we have to be careful with what can be a member
of a given class, and whether a class is an aspect or an object . Let us first look at
the member problem.

E x a m p l e 2 .13 : Referring to the inheri tance schema in Example 2.6, let CEQ
- the computer equipment - be a class of computers of some company Z. Let MAC
be a specific personal computer in Z, and let SUN be a specific workstat ion in Z.
The question is: are the objects MAC.personal_c and S U N . w o r k s t a t i o n members
of CEQ, or ra ther their aspects MAC. computer andSUN, computer? o

It is easier t o work with homogeneous classes where all members have the same
template , so we formally adopt the second al ternative: each class has a fixed member
template . We call this member templa te the type of the class. But, since each aspect
of an object carries its ident i ty and thus determines the object uniquely~ there is no
object ion to considering, for example, the MAC.personal_c a member of the class
CEQ.

Therefore, while classes are formally homogeneous, they have a heterogeneous
- or polymorphic - flavor when working with inheritance: each object with an
appropr ia te aspect whose template is the type of the class can be a member of tha t
class!

Classes can be specialized by inheritance. For example, if we define a club as a
class of persons, we might subsequently define special classes like a football club, a
motor club, and a chess club.

Therefore, we consider classes as aspects. The class events are actions like insert-
ing and delet ing members, and observations are a t t r ibute-value pairs with a t t r ibutes
like the current number of members and the current set of (identities of) members.
In most objec t -or ien ted systems, s t andard class events are provided implicitly, they
need not be specified by the user.

D e f i n i t i o n 2 .14 : Let t be a template . An object class - or class for short - of
type t is an aspect C = ac. tc where ac is the class name and tc = (Ec, Pc) is the
class template. H I D is a given set of~dentities, the class events Ec contain

�9 actions insert(ID), delete(ID)

�9 observations p o p u l a t i o n = s e t (I D) , #popula t ion-- - -na t .

The class process Pc describes the proper dynamic behavior in terms of the class
events, o

In practice, we would probably have the information in the environment which
member identi t ies can go with which class, i.e., some typing of identities. In this
case, the argument ID in the above definition should be replaced by ID(C), the set of
member identit ies which can be used in class C, and the notion of class type should
comprise ID(C) along with the member templa te t.

49

Def in i t i on 2.15 : Let C = av. tc be a class of type t. An aspect a.t is called
a member of C if[a is an element of the population of C. An object b.u is called a
member of C iff it has an aspect b.t which is a member of C.

This definition justifies our calling a class an object class, not an aspect class: the
members may be considered to be the objects having the relevant aspects, empha-
sizing the polymorphic viewpoint.

Since classes are objects or aspects of objects, there is no difficulty in constructing
meta-classes, i.e., classes of classes of . . .

Def in i t i on 2.16 : A class C is called a meta-class iff its type is a class template.
Since class templates tend to be homogeneous even if their types are not, a me ta -

class may have classes of different types as members. For example, we could define
the class of all clubs in a given city without generalizing the club member templates
so as to provide an abstract and uniform one for all clubs.

Sometimes, we might want to restrict the members of a meta-class to contain
sub-populations of a given class. For example, we may devise classes CEQ (D) for
the computer equipment of each department D of company Z, given the class CEQ of
computers in the company (cf. Example 2.13).

Def in i t i on 2.17 : Let C1 and C2 be classes. C1 is called a meta-class of C2 iff
(1) the type of C1 is the template of C2, and (2) each member of C1 is a class whose
population is a subset of that of C2.

Since classes are aspects, we immediately have a notion of class morphism: it is
jhst an aspect morphism between classes.

Please note that the dynamic evolution of a class is completely separated from
the dynamic behavior of its members. Typically, a class changes its state by inserting
and deleting members, i.e., by changing its population. If the population does not
change, then the state of the class does not change, even if some of its members
change their state! Formally, this is' achieved by having only the member identities
in the class.

2.4 I n h e r i t a n c e

When we build an object-oriented system, we must provide an inheritance schema
(cf. Definition 2.5). Without it, the very notion of object does not make sense. In
this section, we investigate how to construct such an inheritance schema: which are
the inheritance morphisms of interest, and how are they used to grow the schema
step by step?

The inheritance morphisms of interest seem to be special indeed: in all cases
we found meaningful so far, the underlying event maps were surjective. Since they
are total anyway, this means that all events of both partners are involved in an
inheritance relationship. And this makes sense: if we take a template and add
features, we have to define how the inherited features are affected; and if we take a
template and hide features, we have to take into account how the hidden features
affect those inherited.

For any reasonable process model, the template morphisms with surjective event
maps will be the epimorphisms, i.e., those morphisms r having the property that
whenever r;p = r;q, then p -- q. We found a special case of epimorphism useful
which reflects an especially well-behaved inheritance relationship where the smaller

50

aspect is "protected" in a certain sense: retractions. A retraction is a morphism
r : t ~ u for which there is a reverse morphism q : u --~ t such that q; r = ida.
Retractions are always epimorphisms.

Intuitively speaking, the target of a retraction, i.e., the smaller aspect, is not
affected by events outside its scope, it is encapsulated. As a consequence, retractions
maintain the degree of nondeterminism: if the bigger aspect is deterministic, so is
the smaller one.

E x a m p l e 2.18 : Referring to Example 2.6, consider the inheritance schema
morphism h : computer -~ e l_dv ice expressing that each computer is an electronic
device. Let e l_dv ice have the following events:

�9 actions swi t ch_on , swi tch_of f

�9 observations is_on , i s _ o f f

By inheritance, computer has corresponding events switch_on_c, switch_off_c, etc.
h sends switch_on_c to switch_on expressing that the switch_on_c of the computer
is the switch_on inherited from e l_dvice , and similarly for the other events. But
what about the other events of computer, i.e., the ones not inherited? For example,
there might be

�9 actions p r e s s _ k e y , c l i ck_mouse , . . .

�9 observations s c r een=da rk ~ . . .

Well, all these events are mapped to 1 indicating that they are hidden when viewing
a computer as an electronic device.

Concerning the processes of the templates, we would expect that a computer 's
behavior "contains" that of an e l_dvice : also a computer is bound to the protocol
of switching on before being able to switch off, etc.

Naturally, the template morphism h : computer ~ el_dvice is a retraction:
there is also an embedding g : e l _ d v i c e ~ computer such that g;] is the identity
on e l_dv ice . Intuitively, this means that the e l_dv i ce aspect of a computer is
protected in the sense that it cannot be influenced by computer events which are
not also e l_dv i ce events: a computer can only be switched off by its e l _ d v i c e
switch.

This would not be so if we had a strange computer which, say~ can be switched off
by other means, not using the e l_dv ice switch (perhaps by a software opt ion. . .) .
In this case, we would have side effects of the computer on its e l_dv ice aspect:
the lat ter would change its state from is_on to i s_of f , but would not be able to
observe the reason for it locally: its swi tch_of f was not used. In this case, the
morphism h would still be an epimorphism, but not a retraction. Please note how
nondeterminism is introduced for the local e l_dv ice aspect, o

Let an inheritance schema be given. If we have a surjective inheritance morphism
h : t --* u not (yet) in the schema, we can use it in two ways to enlarge the schema:

�9 if t is already in the schema, we create u and connect it to the schema via

h : t - * u ,

�9 if u is already in the schema, we create t and connect it to the schema via

h : t - - ~ u .

51

The first construction step corresponds to specialization, the second one to abstrac-
tion.

The most popular objec t -or ien ted construct ion is specialization, construct ing
the inheri tance schema in a top-down fashion, adding more and more details. For
example, the inheri tance schema in Example 2.6 was constructed this way, moving
from t h i n g to e l _ d v i c e and c a l c u l a t o r , etc. By "inheritance", many people mean
just specialization.

The reverse construction, however, makes sense, too: abstraction means to grow
the inheri tance schema upward, hiding details (but not forgett ing them: beware of
side effects!). Taking our example inheri tance schema, if we find out la ter on tha t
computers - among others - belong to the sensitive i tems in a company which require
special safety measures, we might consider introducing a templa te s e n s i t i v e as an
abs t rac t ion of computer .

Both specialization and abs t rac t ion may occur in multiple versions: we have
several templates , say Ul , . . . , u ,~ , a l ready in the schema and construct a new one,
say t, by relat ing it to u l , . . . , u~ simultaneously. In the case of specialization, i.e.,
hi : t ~ ui for i = 1 , . . . , n, it is common to speak of "multiple inheri tance". In the
case of abstract ion, i.e., hi : ui --* t for i = 1 , . . . , n, we may speak of generalization.

E x a m p l e 2.19 : Referring to Example 2.6 and assuming top-down construc-
tion, the templa te for computer is constructed by mult iple specialization (multiple
inheritance) from e l _ d v i c e and c a l c u l a t o r , o

E x a m p l e 2 .20 : If we would have constructed the schema in Definition 2.6 in
a b o t t o m - u p way, we would have obtained t h i n g as a generalizat ion of e l _ d v i c e
and c a l c u l a t o r .

A less contrived example of generalization, however, is the following: if we have
templates p e r s o n and company in our schema, we might encounter the need to
generalize both to c o n t r a c t _ p a r t n e r , o

We note in passing that , with respect to objects, we have two kinds of generaliza-
tion. For a computer c, its c . t h i n g aspect is a proper generalizat ion of its c . e l _dv i c e
and c . c a l c u l a t o r aspects. We would not expect to have an object , however, which
is both a person and a company. Thus, the proper generalizat ion c o n t r a c t _ p a r t n e r
of p e r s o n and company in the schema would only appear as single object abstrac-
tions p .pe r son --* p . c o n t r a c t _ p a r t n e r or c.company --* c . c o n t r a c t _ p a r t n e r on the
instance level, but not as a proper object generalization.

2 . 5 I n t e r a c t i o n

When we build an objec t -or ien ted system, we must provide an object community
(cf. Definition 2.8). Wi thou t it, the very notion of object does not make sense. In
what follows, we investigate how to construct such an object community: which are
the interact ion morphisms of interest, and how are they used to grow the community
s tep by step?

The basic mechanism of interact ion in our approach is sharing parts, as i l lustrated
in example 2.4. In the simplest case, the shared par t may be a single action, modeling
a "global" action which is seen by all objects sharing it. In this case, the "part"
plays the role of a communicat ion port, and the shared ports can be seen as a
communicat ion channel, allowing for symmetr ic and synchronous communication.

52

Other forms of communication (asymmetric, asynchronous, . . .) can be modeled and
explained on these grounds, but we cannot go into detail here. Please note that
shared parts playing the role of communication channels are objects themselves!
Thus, they may have static Structure (observable attributes) as well as dynamic
behavior (the communication protocol).

As with inheritance morphisms, we found that interaction morphisms are epimor-
phisms in all meaningful cases. And this makes sense, too. An interaction morphism
h : a.t --* b.u tells that the aspect a.t has the part b.u, and how this part is affected
by its embedding into the whole: this has to be specified for all items in the part!

As with inheritance morphisms, we found that retractions model an especially
meaningful case of par t -of relationship, namely encapsulated parts which are not
affected by events outside their scope.

E x a m p l e 2.21 : Referring to Example 2.4, the interaction morphisms

CYY.cpu ----* CBZ.cable ~ PXX.powsply

express that the cable CBZ is a shared part of the cpu CYY and the power supply PXX.
Suppose the events relevant for cables are voltage level observation and switch-

on/switch-off actions. The sharing expresses that, if the power supply is switched
on, the cable and the cpu are switched on at the same time, etc. If the cable's
voltage level depends only on the shared switch actions, the cable is an encapsulated
part of both cpu and power supply, and the interaction morphisms are retractions.
If, however, events from outside can influence the voltage level (say, by magnetic
induction), then the sharing morphisms are just epimorphisms, no retractions, o

Let an object community be given. If we have a surjective interaction morphism
h : a.t ~ b.u not (yet) in the community, we can use h in two ways to enlarge it:

�9 if a.t is already in the community, we create b.u and connect it to the commu-
nity via h : a,t --* b.u,

* if b,u is already in the community, we create a.t and connect it to the commu-
nity via h : a.t -~ b.u.

After connecting the new morphism to the community, we have to close it with
respect to the schema (cf. Definition 2.7), i.e., add all aspects derived from the new
one by inheritance.

By incorporation we mean the construction step of taking a part and enlarging it
by adding new items. Most often the multiple version of this is used, taking several
parts and aggregating them. We will be back to this.

The reverse construction is also quite often used in the single version, we call
it interlacing. Interfacing is like abstraction, but it creates an object with a new
identity.

E x a m p l e 2.22 Consider the construction of a database view on top of a
database: this is interfacing. Please note that it is quite common to have non-
encapsulated interaction: a non-updateable view would display many changes which
cannot be explained from local actions! That is, the interaction morphism from the
database to its view is not a retraction, o

Both incorporation and interfacing may occur in multiple versions: we have sev-
eral objects, say b l .U l , . . . , b,~.u~, already in the community and construct a new one,

53

say a.t, by relating it to bl.Ul, . . . , b,~.u,~ simultaneously. In the case of incorporation,
i.e., hi : a.t --+ bi.ui for i = 1 , . . . , n, we have aggregation as mentioned above. In the
case of interfacing, i.e., hi : bi.ul --* a.t for i = 1, . . . ,n, we have synchronization by
sharing.

The latter was illustrated above in Example 2.18 (cf. also Example 2.4). An
example for aggregation is the following.

E x a m p l e 2.23 : Referring again to Example 2.4, suppose that PXX.powsply
and CYY. cpu have been constructed and we want to assemble them (and other parts
which we ignore here) to form our SUN. computer. Then we have to aggregate the
parts and provide the epimorphisms (retractions in this case?) f : SUN. computer
PXX.powsply and g:SUN.computer --~ CYY.cpu showing the relationships to the
parts. Please note that f sends the cpu items within the SUN to 1, while it sends the
power supply items to themselves (modulo renaming). The same holds for g, with
cpu taking the place of power supply, o

It is remarkable how much symmetry the inheritance and interaction construc-
tions display. Their mathematical core is the same, namely epimorphisms between
aspects. Taking the constructions in either direction and considering single and
multiple versions, we arrive at the following table:

Object Constructs inheritance interaction
small-to-big/single specialization incorporation
small-to-big/multiple mult. specialization aggregation
big-to-small/single abstraction interfacing
big-to-small/multiple generalization synchronization

For each of these cases, we also have the encapsulated variant where the epimor-
phisms are retractions.

3 Object-Oriented Specification Approaches

3.1 F O O P S

FOOPS [GM87, GW90] (Functional Object-Oriented Programming System) is an
object-oriented programming system with a declarative functional style. It is de-
signed to preserve the essence of both functional and object-oriented programming:
functional programming provides abstract data types for object attribute values,
while object-oriented programming limits access to an object's state via methods
associated with the specific object. In FOOPS, data elements are unchanging enti-
ties, while objects are persistent but changing entities.

Among many other concepts, FOOPS knows functional and object modules. Very
roughly speaking, functional modules correspond to definitions of abstract data types
in OBJ3 [GW88]. The underlying logic employs conditional equations and a form
of sort inheritance via subsorting. The semantics is constructed by initial algebras.
Object modules allow to define specific methods and attributes by means of condi-
tional equations. Objects modules with a distinguished object sort correspond to

54

classes. The state of an object - the attribues (or more generally the observable
properties) - may change when certain methods are performed on it. Special meth-
ods, new and remove for object creation and deletion, are provided with any object
module. Object modules are allowed to have sub-modules, thus providing a form
of class inheritance. Three different kinds of semantics have been proposed for the
object level:

A reflective semantics representing the FOOPS database and all object ma-
nipulating methods as a functional module, i.e., as an abstract data type.

A direct algebraic semantics employing hidden sorts to model states.

A sheaf semantics modelling objects as sheaves and systems as collections of
sheaves and sheaf morphisms.

As an example we consider a FOOPS specification describing integer cells in an
object-oriented fashion. An attribute get and a method se t are defined as follows

omod CELL

cl Cell

pr INT

at get : Cell -> Int

me set : Cell Int -> Cell

eq get(set(C,N)) = N

endo

* ob jec t module *\
* c l a s s *\
* p r o t e c t i n g *\
* a t t r i b u t e *\
* method *\
* equation *\

* end object module *\

FOOPS has a sophisticated user-defined syntax and therefore it is possible to
denote this specification in the more readable form given below. Additionally, an
operation declare_: I n t e g e r for the declaration of variables is introduced. The
definition of this operation employs the method new provided automatically with
each class.

omod CELL * object module *\

cl Cell * class *\

pr INT * protecting *\

at : Cell -> Int * attribute *\
me _:=_ : Cell Int -> Cell * method *\

eq C := N = N * equation *\
op (declare_: Integer) : Id -> Cell * operation *\

eq declare I : Integer = new(I) * equation *\
endo * end object module *\

Using this definition of CELL, one can create new cell objects and apply methods
to them in a convenient way. For example, FOOPS can evaluate the following lines.

declare x : Integer ;

declare y : Integer ;

x :=5 ;

y := X �9

55

Generally speaking, object modules like those given above denote theories which
specify "templates" as introduced in section 2. The power of specifying object dy-
namics, i.e. processes, is not quite clear, but there seem to be limitations, especially
concerning the capability to specify infinite (non-terminating) behavior and full
concurrency.

In the hidden-sorted algebra approach to semantics (cf. [Go91], object identi-
ties are associated with particular models of theories where each such model is a
particular algebra of possible process states. The permissible algebras are given by
observational equivalence.

Inheritance relationships are modeled at the syntactic level, by theory mor-
phisms. The corresponding semantic relationship between aspects of the same object
is not discussed in the FOOPS literature, but it seems that "cryptomorphisms" as
introduced in [TBG89] (or, rather, their opposites) can do the job [Go92].

Using cryptomorphisms, it is also possible to model interaction along the lines
outlined in section 2 [Go92]. So far, this point has not been emphasized in the
FOOPS literature.

In conclusion, barring details which still have to be worked out, FOOPS has the
potential of expressing all object-oriented concepts and constructions as outlined in
section 2.

3.2 Entity Algebras
Entity algebras IRe91] provide models for data types, processes, and objects. They
are special partial algebras with predicates [BW82] including the following features:

�9 The elements of certain sorts represent dynamic elements, called entities. Their
dynamics is realized by allowing to perform labelled transitions.

�9 Entities may have subcomponents. The structure of these subcomponent enti-
ties is not fixed but can be defined by appropriate operations and axioms.

�9 Entities are given identities so that subcomponents can be retrieved and shar-
ing of subcomponents can be described.

The entity algebra approach is based on previous work by the Genova and Passau
Abstract Data Type groups (see for instance [AR87a, AR87b, AGRZ89, BZ89]).
Another feature is that the approach distinguishes between specifications-in-the-
small corresponding to usual specifications of dynamic systems as abstract data
types and specifications-in-the-large suitable for expressing abstract properties of
classes of dynamic systems.

Entity specifications distinguish between static sorts (like i n t or bool) and dy-
namic sorts (like queue -wi th - s t a t e) . For each dynamic sort s providing the val-
ues of sort s, there axe additionally sorts i d e n t (s) and e n t (s) . The elements in
iden t (s) are the identities for sort s and ent (s) represents the entities of sort s.
Consequently, there is an operation

: : i d e n t (s) x s -~ e n t (s)

56

for the construction of entities. Dynamics is realized by providing a sort l ab(s)
where the possible transitions (or labels) for entities are collected (e.g., labels like
remove or put for entity sort queue-wi th-s ta te) . The concrete behavior of entities
is specified by axioms for predicates of the form

_ ---_---> _ : ent(s) X lab(s) • ent(s)

Thus, the process model in this approach is labelled transition systems�9 Please
note that the entities (or objects) are constructed by giving an identity and a current
value for the object state. Therefore, elements in dynamic sorts are object states
rather than (abstract) objects�9 The same holds for the object-oriented algebraic
specification language OS introduced by Ruth Breu [Bre91].

The following specification defines an object-oriented version of data type queue.
The entities of sort ent (queue) represent the objects of the class queue, the elements
in ident (queue) are the identifiers for queues.

enrich INT by
dsorts queue

opns
Empty : -> queue total

Get : queue-> ident(int)

Remove : ent (queue) -> ent (queue)
Put : ent(int) x queue -> queue
A, B, ..., ABC, ... -> ident(queue)

_.Empty : ident(queue) -> lab(queue) total

=_.Get : ident(int) x ident(queue) -> lab(queue) total

.Remove : ident(queue) -> lab(queue) total

.Put() : ident(queue) x ent(int) -> lab(queue) total

preds

Diff : ident(queue) x ident (queue)

Unused : ident(int) x queue

axioms

A Diff B ... A Diff ABC ...
Get(Put(id:i,Empty)) = id
DEF(Get(q)) => Get(Put(el,q)) = Get(q)

Remove(id:Put(ei,Empty)) = id:Empty
Remove (id: q) =eq => Remove (id, P~t (el, q)) =eq

Unused (id, Empty)
id Diff id' ~ Unused(id,q) => Unused(id,Put(id' :i,q))

Unused (id, q) => DEF (Put (id: i ,q))
id: q ---id. Empty---> id: Empty
DEF(Put(ei,q)) => (id:q---id.Put(ei)---> id:Put(ei,q))
DEF(Remove (q)) => (id: q ---id.Remove---> id:Remove (q))

end enrich

Operations which have the sorts queue or ent (queue) as argument or result
sorts - in this case Empty, Put, Remove, and Get - define the methods of class

57

queue. The application of methods is specified by giving axioms for the transi-
tion predicate. Transitions are labelled by sending appropriate messages. If we
now have the queue object MYQUEUE: Put (INT_ENT1, Put (INT_ENT2, Empty)) (pro-
vided i n t objects INT_ENT1 and INT_ENT2 are g iven) , the application of the meth-
ods MYQUEUE. Remove and MYQUEUE. Empty yield MYQUEUE: Put (INT_ENTI, Empty) and
MYQUEUE: Empty, respectively.

Based on the algebraic semantics of processes as developed in [AR87a, AR87b],
the semantics can he given by various observational equivalences, for example (gen-
eralized) bisimulation.

The literature on entity algebras does not address inheritance and interaction
explicitly. A concept which compares with template (aspect) morphisms a:s described
in section 2 is missing, but inheritance and interaction can probably be handled
by different means and on different levels of abstraction. However, it would be
interesting to see whether the entity algebra approach can be extended to include
inheritance and interaction on the abstraction level of section 2.

Entity algebras do have a concept for subcomponents which can be shared, pro-
viding a means of symmetric and synchronous interaction as described in section 2.
Together with the algebraic approach to concurrency invented in [AR87a], powerful
means for expressing interaction of processes are available, with different kinds of
parallelism and even with higher-order processes.

3.30BLOG

The languages OBLOG [CSS89] (OBject LOGic) and its successor TROLL [JHSS91]
(Textual Representation of an Object Logic Language) were developed hand in hand
with the conceptual framework outlined in section 2. Information systems are de-
scribed as communities of interacting objects. Object templates specify processes
and observations on these processes.

The languages employ features of equational logic for the specification of data,
events, and identities and they use elements of temporal, dynamic, and deontic logic
for system behavior and abstract system properties. Object templates introduce the
objects' attributes characterising the objects' state and define the actions (called
"events" in the language) modifying these attributes. The effect of performing ac-
tions is described by valuation rules. Additionally, safety and liveness properties can
be specified.

As a specification example for the TROLL language, we consider a bank account.
After importing the data types used, the attribute section determines the observable
properties of accounts. The events (i.e., actions) specify the possible state transi-
tions. Both, attribute values and state transitions have to satisfy the conditions
given in the constraints part. The valuation section defines the effect of events, and
the behavior part states permissions and obligations for events to occur, employing
a deontic logic.

TEMPLATE account
DATA TYPES lBankCustomer I, money, bool, UpdateType
ATTRIBUTES

CONSTANT Holder: I BankCustomer [

58

CONSTANT Type:{checking,saving}

Balance:money

CreditLimit:money
DERIVED MaxWithdrawal:money

EVENTS
BIRTH open(Holder:IBankCustomerl, Type:{checking,saving})

DEATH close

new_credit_limit(Amount:money)
aceept_update(Type:UpdateType, Amount:money)

update_failed

withdrawal(Amount:money)

deposit(Amount:money)

CONSTRAINTS
INITIAL CreditLimit = 0

DERIVATION
MaxWithdrawal = Balance + CreditLimit

VALUATION

VARIABLES m:money
[new_credit_limit(m)] CreditLimit = m

[withdrawal(m)] Balance = Balance - m

[deposit(m)] Balance = Balance + m

BEHAVIOR
PERMISSIONS

VARIABLES t,tl:UpdateType; m,ml,m2:money

{ Balance = 0 } close

{ NOT SOMETIME(AFTER(accept_update(tl,ml)))

SINCE LAST(AFTER(update_failed) OR

AFTER(deposit(m2)) OR
AFTER(withdrawal(m2))) } accept_update(t,m)

�9 ~ �9

OBLIGATIONS . . .

END TEMPLATE account

The semantics of such specifications is not fully worked out yet, but there are
semantic models available which have been designed for this purpose, meeting all
requirements described in section 2.

Essentially, these models provide categorial process models which can be used for
formalizing these conceps: processes formalizing templates, and process morphisms
formalizing template morphisms. This way, there is a heavy emphasis on object
dynamics�9

In what follows, we briefly outline one particular such model (cf. [ES91] for more

detail)�9
The basic event structure is an event monoid/~ = (E,II, 1) which is associative,

commutative, idempotent, and satisfies the cancellation law. Intuitively, II denotes
simultaneous occurrence of events, and 1 denotes the empty event.

Event monoids/~i = (E~,H ~, 1~), i -- 1,2, can be related by event monoid mot-

59

phisms h :/~1 -'*/~2 which are structure preserving maps h : E1 ~ E2 satisfying the
properties h(11) = 12 and h(el II1 e2) = h(el)II 2 h(e2). Henceforth, we will omit the
indexes from]1 and 1 as long as there is no danger of confusion.

Let/~ = (E, II, 1) be an event monoid. A subset M ___ E is called a menu: it might
appear on a screen as a selection of events (actions and observations) which may
occur next. For a collection a of menues, [J a denotes the union of these menues,
i.e., U a = {e [3 M e a : eeM} .

A process over an a lphabet /~ is a map # : E* --* 22E satisfying the following
conditions for each TEE*:

1. U,(T) ,(T)

2. VX, Y C E : X C _ Y C U # (T) A Xel~(T) ~ Yelz(T)

The intuition might help that each Me#(T) corresponds to a state of knowledge
about what might possibly occur next after the history T of the system.

Let #i : E* -~ 22E~ , i -- 1, 2, be processes over alphabets/~1 and ~2, respectively.
Let h : /~1 ~ /~2 be a monoid morphism, h is called a process morphism iff the
following condition holds:

h(/~l(T)) _C_ #2(h(T)) for each TeE~.

In this noti~tion, h is extended to traces as well as sets and families of sets by
elementwise application. For example, h(ef) -- h(e)h(f) and h({{a}, {a, b}}) --
{{h(a)}, {h(a), h(b)}}.

It is not hard to prove that processes and process morphisms as defined above
form a category. We call this category NDM, the Non-Deterministic Menu model.

We cannot develop the mathematics of N D M in this paper. We claim, however,
that

* NDM is complete, and limits reflect parallel composition,

. N D M is cocomplete, and colimits reflect internal choice.

Therefore, this model is especially well suited to model the object-oriented concepts
explained in section 2. The reader is referred to [ES91] for further details.

3 . 4 P r o c e s s e s a s A b s t r a c t D a t a T y p e s

There are various approaches for the specification of processes by algebraic methods,
by Bergstra and Klop [BK86], by the Berlin Abstract Data Type group [EPPB+90],
by Kaplan [Kap89], and others. The main idea behind these approaches is to in-
troduce sorts for actions and processes explicitly and to provide operations like
prefixing, parallel composition, choice, etc., for the combination of processes. The
logic employs (conditional) equations. On the semantic side, the approaches use
continuous algebras, projection spaces, or some form of observational or behavioral
semantics.

It is perhaps not fair to evaluate these approaches on the basis of how well they
meet requirements of object-orientation, since most of them do not claim to do so.

60

But there are quite a few allusions - more or less vague - that these approaches
might be useful for the theory of objects, so a few remarks are in order.

The general idea is to give an object-oriented flavor by adding identification
to processes. For instance, Grofle-Rhode [GR91] considers the following concepts:
objects as states (the state of the system is the aggregation of all local object states);
objects for local behavior (local process specifications define the dynamic behavior
of objects); class definitions (Berlin module specifications serve as class definitions
which axe similar to object templates in the sense of section 2); class eombinators
(class combinators are the usual Berlin module operations building large modules
from smaller ones); (strict) inheritance: (inheritance corresponds to union, import
actualization or extension of modules). Objects are defined only on the syntactic
level, they are enrichments of the specification representing the state of the system.
The semantics of state changes of processes consists of the syntactic modification of
the underlying specification.

Berlin module specifications are also used by Paxisi-Presicce and Pierantonio
[PP91] in order to explain inheritance mechanisms in object-oriented programming.

Another effort following these lines is CMSL (Conceptual Model Specification
Language) proposed by Wieringa [Wie91].

Although some object-oriented concepts can be expressed in these approaches,
there are some problems with this approach. Inheritance is no problem, at least
not on the theory (or template) level: like in the FOOPS approach, specification or
theory morphisms do the job. On the instance level, however, an obvious concept
for modeling inheritance or interaction is missing.

The main problem is with identification. The problems with inheritance and
interaction are consequences of identification problems. The relevant question here
is: what is the unit identified?

One obvious unit of identification is a specification (or theory) specifying some
kind of object (aspect), i.e., a template. However, object identification is a little
more demanding than just giving names to templates. Rather, what is needed is a
dynamic mechanism for generating, maintaining, and destroying objects (aspects)
as named units "at runt ime' . Object classes are time-vaxying collections of objects
(aspects) with different names but with the same template. This is an essential
feature of object-orientation, it is one of the reasons why, for example, MODULA2
is not considered object-oriented.

In most of the algebraic approaches mentioned above, the way of handling this is
to introduce a sort ID of identities and introduce ID as a parameter sort for the create
operation(s). For example, instead of create:--+stack, we have create:ID--+stack.
This way, however, we obtain what we might call a set of named process states
instead of a set of process states within a named object. That is, the named unit is
an object state rather than an object. Moreover, all states of all objects are grouped
together in one structure (carrier of an algebra).

As a consequence, algebra morphisms preserving this structure do not appropri-
ately reflect inheritance and interaction at the instance level. For example, it is not
possible to express formally that a user interacts with one specific stack, not with
all the others around, using algebra morphisms that have the carrier set of all states
of all stacks as source or target, respectively.

6]

4 Conclusions

Let us first summarize the object-oriented concepts and constructions of section 2.
Templates are generic objects without individual identity. Identities are associated
with templates to represent aspects of individual objects. Interaction is a relation-
ship between different objects, while inheritance relates aspects of the same object.
Objects and aspects appear as members of classes. A class is again an aspect with
a time-varying set of aspects as members. Since classes are objects or aspects of
objects, there is no difficulty in constructing meta-classes having classes of different
types as members.

By means of an object-oriented approach, systems can be elegantly described
as communities of interacting objects. As has been pointed out, the notion of an
object only makes sense within an object community. Please remember that an
object community must be closed with respect to inheritance and must provide
unique identifiers for objects, among others.

The algebraic approaches to object specification and semantics investigated in
this paper suggests that an appropriate theory of objects should be based on pro-
cesses rather than data types. This is obvious in the approaches investigated in
sections 3.2 and 3.3. At first sight, the FOOPS approach described in section 3.1
seems to contradict this conclusion, but a closer look reveals that it does not: by
employing hidden sorts and observational equivalence, this approach is based on an
algebraic state machine model of processes rather than abstract data types.

It should be mentioned that not everything relevant to object specification -
i.e., specification of object communities - is addressed in this paper. A full-fledged
language and system for specification h~d design must provide means for specify-
ing data types, (types of) identities, inheritance schemata (e.g., for specialization
and generalization), interaction schemata (e.g., for aggregation and synchronization
patterns), generic modules and actualization, classes and instances, etc.

The important issue of object reification (or implementation or refinement) has
not been addressed in this paper. A satisfactory treatment is still missing, but there
are promising approaches borrowing ideas from abstract data type implementation
and from process refinement.

Acknowledgements

Thanks to all colleagues who contributed to the development of ideas presented
here. Special thanks are due to our COMPASS collegues Egidio Astesiano, Hart-
mut Ehrig, Martin Grot]e-Rhode, and Gianna Reggio for stimulating discussions on
algebraic process theory, and to the ISCORE partners who took part in developing
object theory and specification language features. In particular, Cristina Sernadas
participated in discussing the basic ideas of objects and object descriptions. She,
Ralf Jungclaus, Thorsten Hartmann, and Gunter Saa~e were involved in defining the
TROLL language. Thanks to Ralf Jungclaus and Thorsten Hartmann for providing
the TROLL example. Felix Costa's contributions to object semantics are greatfully
acknowledged.

Special thanks axe due to Joseph Goguen and Egidio Astesiano for correcting

62

errors and misconceptions in an earlier draft of this paper . Of course, the authors
are fully responsible for all errors tha t are still there.

References

[AR87a] Astesiano,A.;Reggio,G.: An outline of the SMoLCS approach. Proc. Advanced
School on Mathematical Models for Parallelism (M.Venturini Zitli~ ed.), LNCS 280,
Springer-Verlag, Berlin 1987, 81-113

[AR87b] Astesiano,A.;Reggio,G.i SMoLCS-driven concurrent calculi. Proc. TAPSOFT'87
Vol.1, (H.Ehrig et al, eds.), LNCS 249, Springer-Verlag, Berlin 1987, 169-201

[AGRZ89] Astesiano,E.;Giovini,A.;Reggio~G.;Zucca,E.: An integrated algebraic approach
to the specification of data types, processes, and objects. Proc. Algebraic Methods

- Tools and Applications, LNCS 394, 1989~ 91-116
[Be91] Beeri~C.: Theoretical Foundations for OODB's - a Personal Perspective. Database

Engineering, to appear
[BK86] Bergstra,J.A.;Klop,J.W.: Algebra of co~hmunicating processes. CWI Monographs

Series, Proc. of the CWI Symposium Mathmatics and Computer Science, North-
Holland, Amsterdam 1986, 89-138

[BOS91] Butterworth,P.;Otis,A.;Stein,J.: The GemStone Object Database Management
System. Comm. ACM 34 (1991), 64-77

[Bre91] Breu,R.: Algebraic specification techniques in object-oriented programming envi-
ronments. Ph.D. Thesis, Passau University; also: LNCS, Springer 1991.

[BW82] Broy, M.;Wirsing,M.: Partial abstract types. Acta Informatica 18, 1982, 47-64
[BZ89] Breu,R.;Zucca,E.: An algebraic compositional semantics of an object-oriented no-

tation with concurrency. Proc 9th Conf. on Foundations of Software Technology
and Theoretical Computer Science, LNCS 405, 1989, 131-142

[CP89] Cook,W.;Palsberg, J.: A Denotational Semantics of Inheritance and its Correctness.
Proc. OOPSLA'89, ACM Press, 433-443

[CS91] Costa,J.-F.;Sernadas,A.: Process Models within a Categorial Framework. INESC
Research Report, Lisbon 1991, submitted for publication

[CSS89] Costa,J.-F.;Sernadas,A.;Sernadas,C.: OBL-89 User's Manual - Version 2.3. Inter-
nal Report, INESC Lisbon 1989.

[CSS91] Costa,J.-F.;Sernadas,A.;Sernadas~C.: Objects as Non-Sequential Machines. In-
formation Systems - Correctness and Reusability, Proc. ISCORE Workshop'91
(G.Sa~ke, A.Sernadas, eds.), Informatik-Berichte 91-03, Tech. Univ. Braunschweig
1991, 25-60

�9 [Cu91] Cnsack,E.: Refinement, Conformance and Inheritance. Formal Aspects of Comput-
ing 3 (1991), 129-141

[De91] Deux,O. et al: The 02 System. Comm. ACM 34 (1991), 35-48
[DMN67] Dahl,O.-J.;Myrhaug,B.;Nygaard,K.: SIMULA 67, Common Base Language. Nor-

wegian Computer Center, Oslo 1967
[EBO91] Ehrig,H.;Baldamus,M.;Orejas,F.: New concepts for amalgamation and extension

in the framework of specification logics. Technical Report No. 91/05, Computer
Science Department, TU Berlin 1991.

[EGS91] Ehrich,H.-D.;Goguen,J.A.;Sernadas,A.: A Categorial Theory of Objects as Ob-
served Processes. Proc. REX/FOOL School/Workshop, deBakker,J.W, et. al.
(eds.)~ LNCS 489, Springer-Verlag, Berlin 1991, 203-228

63

[EPPB+90] Ehrig,H.; Parisi-Presicce,F.; Boehm,P.; Rieckhoff, C.; Dimitrovici,Ch.; Grot~e-
Rhode,M.: Combining data type specifications and recursive process specifications
using projection algebras. Theoretical Computer Science 71 1990, 347-380

lESS90] Ehrich~H.-D.;Sernadas,A.;Sernadas,C.: From Data Types to Object Types. Jour-
nal of Information Processing and Cybernetics EIK 26 (1990) 1/2~ 33-48

[ES90] Ehrich,H.-D.;Sernadas,A.: Algebraic Implementation of Objects over Objects.
Proc. REX Workshop on Stepwise Refinement of Distributed Systems: Models, For-
realism, Correctness. deBakker:I.W.;deRoever,W.-P.; Rozenberg~G. (eds.), LNCS
430~ Springer-Verlag, Berlin 1990, 239-266

[ES91] Ehrich,H.-D.;Sernadas,A.: Fundamental Object Concepts and Constructions, In-
formation Systems - Correctness and Reusability, Proc. ISCORE Workshop~91
(G.Saake, A.Sernadas, eds.), Informatik-Berichte 91-03~ Tech. Univ. Braunschweig
1991, 1-24

[FCSM91] Fiadeiro,J.;Costa,J.-F.;Sernadas,A.;Maibaum,T.: (Terminal) Process Semantics
of Temporal Logic Specification. Unpublished draft, Dept. of Computing, Imperial
College, London 1991

[Fi87] Fishman,D. et al: IRIS: An Object-Oriented Database Management System. ACM
Trans. Off. Inf. Sys. 5 (1987)

[FM91a] Fiadeiro,J.;Maibaum,T.: Describing~ Structuring and Implementing Objects.
Proc. REX/FOOL School/Workshop, deBakker,J.W, et. al. (eds.), LNCS 489,
Springer-Verlag~ Berlin 1991

[FM91b] Fiadeiro,J.;Maibaum,T.: Temporal Theories as Modularisation Units for Concur-
rent System Specification~ to appear in Formal Aspects of Computing

[FS91] Fiadeiro~J.;Sernadas,A.: Logics of Modal Terms for System Specification. Journal
of Logic and Computation 1 (1991), 357-395

[FSMS90] Fiadeiro,J.;Sernadas,C.;Maibaum,T.;Sa~ke,G.: Proof-Theoretic Semantics of
Object-Oriented Specification Constructs. Proc. IFIP 2.6 Working Conference DS-
4, Meersman,R.;Kent,W. (eds.)~ North-Holland, Amsterdam 1991

[GKS91] Gottlob,G.;Kappel,G.;Schrefl,M.: Semantics of Object-Oriented Data Models - -
The Evolving Algebra Approach. Proc. Int. Workshop on Information Systems for
the 90's, Schmidt~J.W. (ed.), Springer LNCS 1991

[GM87] Goguen,J.A.;Meseguer,:I.: Unifying functional~ object-oriented and relational pro-
gramming with logical semantics. Research Direction in Object-Oriented Program-
ming, B.Shriver~P.Wegner (eds.)~ MIT Press 1987~ 417-477

[Go73] Goguen~J.: Categorical Foundations for General Systems Theory. Advances in Cy-
bernetics and Systems Research~ Transcripta Books~ 1973~ 121-130

[Go75] Goguen,J.: Objects. International Journal of General Systems, 1 (1975), 237-243
[Go89] Goguen~J.: A Categorical Manifesto. Technical Report PRG-72, Programming Re-

search Group~ Oxford University~ March 1989. To appear in Mathematical Struc-
tures in Computer Science.

[Go90] Goguen~J.: Sheaf Semantics of Concurrent Interacting Objects~ 1990. To appear in
Mathematical Structures in Computer Science.

[Go91] Goguen,J.: Types as Theories. Proc. Conf. on Topology and Category Theory in
Computer Science, Oxford University Press 1991, 357-390

[Go92] Goguen,J.: personal communication
IGR83] Goldberg,A.;Robson,D.: Smalltalk 80: The Language and its Implementation.

Addison-Wesley, New York 1983

64

[GR91] Grofle-Rhode,M.: Towards object-oriented algebraic specifications. Proc. 7th
Workshop on Specification of Abstract Data Types, Wusterhausen (Dosse), H.
Ehrig, K.P. Jantke, F. Orejas, H. Reichel (Eds.), LNCS 534, 1991

[GW88] Goguen,J.A.;Winkler,T.: Introducing OBJ3. SRI International, Technical Report
SRI-CSL-88-9, 1988.

[GWg0] Goguen,J.;Wolfram,D.: On Types and FOOPS. Proc. IFIP 2.6 Working Confer-
ence DS-4, Meersman,R.;Kent,W. (eds.), North-Holland, Amsterdam 1991

[HC89] Hayes,F.;Coleman,D.: Objects and Inheritance: An Algebraic View. Technical
Memo, HP Labs, Information Management Lab, Bristol 1989

[Hei88] Heitz,M.: HOOD: A Hierarchical Object-Oriented Design Method. Proc. 3rd Ger-
man Ada Users Congress, Munich 1988, 12-1 - 12-9

[JHSS91] Jungclaus,R.;Hartmann,T.;Saake,G.;Sernadas,C.: Introduction to TROLL - - A
Language for Object-Oriented Specification of Information Systems. Information
Systems - Correctness and Reusability, Proc. ISCORE Workshop'91 (G.Sa~ke,
A.Sernadas, eds.), Informatik-Berichte 91-03, Tech. Univ. Braunschweig 1991, 97-
128

[JSH91] Jungclaus, R.; Saake, G.; Hartmann, T.:Language Features for Object-Oriented
Conceptual Modeling. In:Proc. 10 th Int. Conf. on the ER-approach (T.J. Teo-
rey,ed.), San Marco, E /R Institute 1991, 309-324.

[JSHS91] Jungclaus,R.;Saake,C.;Hartmann,T.;Sernadas,C.: Object-Oriented Specification
of Information Systems: The TROLL Language. Informatik-Bericht, TU Braun-
schweig 1991. To appear

[JSS90] Jungclaus,R.;Saake,G.;Sernadas,C.: Using Active Objects for Query Processing.
Proc. IFIP 2.6 Working Conference DS-4, Meersman,R.;Kent,W. (eds.), North-
Holland, Amsterdam 1991

[JSS91] Jungclaus,R.;Sa~ke,G.;Sernadas,C.: Formal Specification of Object Systems. Proc.
TAPSOFT'91, Abramsky, S.;Maibaum,T.S.E. (eds.), Brighton (UK) 1991

[Kap89] Kaplan,S.: Algebraic specification of concurrent systems. Theoretical Computer
Science, 1989.

[Ke88] Kerth,N,: MOOD: A Methodology for Structured Object-Oriented Design. Tutorial
presented at OOPSLA'88, San Diego 1988

[Ki88] Kim,W. et al: Features of the ORION Object-Oriented DBMS. In Object-
Oriented Concepts, Databases, and Applications, tGm,W, and Lochovsky, E.H.
(eels.), Addison-Wesley 1988

[Ki90] Kim,W.: Object-Oriented Databases: Definition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering 2 (1990), 327-341

[LP90] Lin,H.;Pong,M.: Modelling Multiple Inheritance with Colimits. Formal Aspects of
Computing 2 (1990), 301-311

[Me88] Meyer,B.: Object-Oriented Software Construction. Prentice--Hall, Englewood
Cliffs 1988

[Me91] Meseguer,J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Tech-
nical Report SRI-CSL-91-05, Computer Science Laboratory, SRI International,
Menlo Park 1991

[PP91] Parisi-Presicce,F.;Pierantonio,A.: Towards the algebraic specification of classes in
object-oriented programming. Bulletin of the EATCS, Vol. 45,1991, 86-97

IRe91] Reggio,G.: Entities: Institutions for dynamic systems. Proc. 7th Workshop on Spec-
ification of Abstract Data Types, Wnsterhausen (Dosse)~ H. Ehrig, K.P. Jantke, F.
Orejas, H. Reichel (Eds.), LNCS 534, 1991

65

[SE90] Sernadas,A.;Ehrich,H.-D.: What is an object, after all ? Proc. IFIP 2.6 Working
Conference DS-4, Meersman,R.;Kent,W. (eds.), North-Holland, Amsterdam 1991

[SEC90] Sernadas,A.;Ehrich,H.-D.;Cost%J.-F.: From Processes to Objects. The INESC
Journal of Research and Development 1 (1990), 7-27

[SGGSR91] Sernadas, C.; Gouveia, P.; Gouveia, J.; Sernadas, A.; Resende, P.: The Rei-
fication Dimension in Object-oriented Database Design. Proc. Int. Workshop on
Specification of Database Systems, Glasgow 1991, Springer-Verlag, to appear

[SFSE89] Sernadas,A.;Fiadeiro,J.;Sernadas,C.;Ehrich,H.-D.: The Basic Building Blocks of
Information Systems. Proc. IFIP 8.1 Working Conference, Falkenberg,E.; Lind-
green,P. (eds.), North-Holland, Amsterdam 1989, 225-246

[SGCS91] Sernadas,C.;Gouveia,P.;Costa,J.-F.;Sernadas,A.: Graph-theoretic Semantics of
Oblog - Diagrammatic Language for Object-oriented Specifications. Information
Systems - Correctness and Reusability, Proc. ISCORE Workshop'91 (G.Saake,
A.Sernadas, eds.), Informatik-Berichte 91-03, Tech. Univ. Braunschweig 1991, 61-
96

IS J91] Sa~ke,G.;Jungclaus,R.: Specification of Database Applications in the TROLL Lan-
guage. Proc. Int. Workshop on Specification of Database Systems, Glasgow 1991 ,
Springer-Verlag, to appear

[SJE91] Saake,G.;Jungclaus,R.;Ehrich,H.-D.: Object-Oriented Specification and Stepwise
Refinement. Proc. IFIP TC6 Int'l Workshop on Open Distributed Processing, Berlin
1991, to be published by North-Holland

[SRGS91] Sernadas, C.; Resende, P.; Gouveia, P.; Sernadas, A.: In-the-large Object-
oriented Design of Information Systems. Proc IFIP 8.1 Working Conference on the
Object-oriented Approach in Information Systems, van Assche, F.; Moulin, B.;
Rolland, C. (eds.), Quebec City (Canada) 1991, North Holland, to appear

[SS86] Seidewitz,E.;Stark,M.: General Object-Oriented Software Development. Document
No. SEL-86-002, NASA Goddard Space Flight Center, Greenbelt, Maryland 1986

[SSE87] Sernadas,A.;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Specification of Data-
bases: An Algebraic Approach. Proc. 13th VLDB, Stocker,P.M.; Kent,W. (eds.),
Morgan-Kaufmann Publ. Inc., Los Altos 1987, 107-116

[SSGRG91] Sernadas,A.;Sernadas,C.;Gouveia,P.;Resende,P.;Gouveia,J.: Oblog - An Infor-
mal Introduction, INESC Lisbon, 1991.

[St86] Stroustrup,B.: The C++ Programming Language. Addison Wesley, Reading, Mass.
1986

[TBG89] Tarlecki,A.; Burstall,R.; Goguen,J.: Indexed Categories as a Tool for the Seman-
tics of Computation. Technical Monograph PRG-77~ August 1989, Oxford Univer-
sity Computing Laboratory.

[Ve91] Verharen, E.M.: Object-oriented System Development: An Overview. Informa-
tion Systems- Correctness and Reusability, Proc. ISCORE Workshop'91 (G.Saake,
A.Sernadas, eds.), Informatik-Berichte 91-03, Tech. Univ. Braunschweig 1991, 202-
234

[We89] Wegner,P.: Learning the Language. Byte i4 (1989), 245-253
[Wie91] Wieringa,R.: A formalization of objects using equational dynamic logic. Proc. 2nd

Int. Conf. on Deductive and Object-Oriented Databases, Munich 1991

