
Object-Oriented Speci�cation andStepwise Re�nement�yGunter SaakeRalf JungclausHans-Dieter EhrichAbt. Datenbanken, Techn. Universit�at BraunschweigPostfach 3329, 3300 Braunschweig, GermanyAbstractA basic concept in object-oriented approaches is the notion of object as inte-grated unit of structure and behavior. Conceptually, objects are modeled as pro-cesses of which certain dynamic characteristics of their internal state can be observedusing attributes. Objects are the basic units of design. Systems are composed fromobjects that interact to provide the desired services. In the semantics domain,concepts related to the object-oriented paradigm like interaction, inheritance andobject aggregation can be uniformily modelled by object morphisms.In this paper we introduce the language TROLL to conceptually specify dynamicinformation systems. TROLL supports abstract description of temporal evolvement ofobjects, classi�cation of objects, complex objects, active objects and specializationhierarchies. Additionally, the integration of concepts like modularization support,and component reusability into the TROLL framework is brie
y discussed.1 IntroductionThe modeling of complex systems requires the formal description of a large number offeatures and properties that are di�erent in nature. Established formal methods generallyfocus on certain aspects of system design (e.g. data structures or functionality or dynam-ics) and thus do not support an integrated description of the system to be developed.Describing a complex dynamic software system may e.g. require the modeling of databasestructures, interactive interfaces, tasks (or scripts), active components (like system clocks)or the explicit speci�cation of temporal requirements. In general, complex systems mayconceptually be regarded as collections of interacting subsystems.Aspects like those mentioned above should be supported by a formalism to specifycomplex open systems. Additionally, such a formalism should meet requirements like�To appear in: Proc. IFIP TC6 Int'l Workshop on Open Distributed Processing, Berlin 1991, publishedby North-Holland.yThis work was partly supported by CEC under ESPRIT BRA WG 3023 IS-CORE (InformationSystems { COrrectness and REusability) and by Deutsche Forschungsgemeinschaft under grant no. Sa465/1-1. 1

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext
J. de Meer, V. Heymer, and R. Roth, editors, IFIP Transactions C:
Communication Systems, Vol. 1: Proc. Open Distributed Processing,
Berlin 1991, pages 99–121. North–Holland, 1992

modularization support and component reusability. Approaches to object-oriented designof programs and databases provide useful concepts but yet lack a formal foundation whichis essential for the design of complex and safe systems.A basic concept in object-oriented approaches is the notion of object as integrated unitof structure and behavior. In our approach, objects are modeled as processes of whichcertain dynamic characteristics of their internal state can be observed using attributes.Objects are the basic units of design. Systems are composed from objects that interactto provide the desired services.The current research in object-oriented databases [ZM89, Kim90] and active databases[Day88] leads to the notion of object bases containing both passive and dynamic/activeobjects as basic building blocks of an application system [SSE87, SFSE89, Wie90, KS90].This new approach to system design has its roots in several �elds of research:� The object-oriented databases now under development and formalization at severalsites mainly base on new database structuring techniques which �rstly were requiredby non-standard applications [Dit88, Bee90]. They usually support object-centeredclustering of data, object identy and inheritance of object properties. Object speci�cmethods (for updates) are realized in some prototypes but are outside the currentstate of most data model formalization approaches [Bee90].� Object-oriented design focuses on the integrated design of structure and dynamicsencapsulated in object units [Boo90] but lacks up to now a formal semantics.� Object-oriented programming languages like Simula, Smalltalk, Ei�el or C++ con-centrate on the computational aspects of objects as independent units of com-putation having a local memory and communicating solely through method call-ing/message passing. The basic elements of computation are methods manipulatingthe local object variables in a conventional operational way.The idea of dynamic object bases combines these approaches into one framework sup-porting structured and persistent database objects as well as object dynamics in terms ofupdate methods.This paper is organized as follows: After discussing the concept of object-orientationin a general sense, we present a framework for modelling object systems. We introducethe language TROLL to conceptually specify dynamic object systems. The speci�cationlanguage TROLL supports abstract description of temporal evolvement of objects, classi-�cation of objects, complex objects, active objects, specialization hierarchies, and mod-ularization. The remainder of this contribution gives some ideas towards supporting thedesign of large object systems by modularization and re�nement techniques.2 Object-OrientationIn the last years, the object-oriented paradigm has attracted much attention in di�er-ent �elds of computer science, among them object-oriented design (for a survey see e.g.[MK90]), object-oriented programming languages [Weg90] and object-oriented databases[ZM89]. Resulting from this diversity, several di�erent opinions exist what makes up thevery essence of object-orientation. Di�erent application areas naturally lead to di�erent2

views on objects and their properties, and it is not easy to give a de�nition of a conceptof object which a majority agrees on.In this section, we will try to identify some basic features of object-oriented tech-niques which must be supported by an object-oriented conceptual modeling framework.In the conceptual modeling phase, we have to abstract from implementation-related de-tails and techniques which play a major role in object-oriented programming languagesand databases.� The basic concept of object-oriented design is the concept of objects as units ofstructure and behavior. Objects integrate the structural and behavioral aspects ofsome `system entities' into inseparable design units. An object has an encapsulatedinternal state which can be observed and manipulated exclusively through an object`interface'. In contrast to object-oriented programming languages that emphasizea functional manipulation interface (i.e., methods), object-oriented database ap-proaches put emphasis on the observable structure of objects (through attributes).We propose to support both views in an equal manner for the design of objects, i.e.object structure may be observed through attributes and object behavior may bemanipulated through events, which are abstractions of methods.� Objects are the units of design. Following this perspective, uniform modeling of thesystem and the environment (in which it will be embedded) is made possible. Thus,we achieve clean interfaces between components that are part of the environmentand components that are computerized later on. This approach results in havinghigher levels of modularity and abstraction during early system design.� Dynamic objects somehow communicate with each other. In object-oriented pro-gramming, this may be realized by method calling (i.e., procedure call) or by processcommunication mechanisms. For conceptual modelling, the concepts of event shar-ing and event calling serve as abstractions of those implementation-related tech-niques.� Objects are classi�ed into object classes and object types. The term object classdenotes a dynamic collection of existing objects wich are conceptually treated asobjects of the same kind (extensional classi�cation), whereas an object type de-scribes the possible instances of an object description (intensional description). Bothconcepts are commonly used in an integrated way, i.e. an object type de�nes thestructure of instances of a corresponding object class and vice versa.� Objects (and object classes) are often embedded into a class hierarchy with inheri-tance. Even if the concept of inheritance in object-oriented techniques seems to berelevant for most researchers, there is still a lot of confusion which kinds of inheri-tance should be supported by an object-oriented approach. We distinguish two sortsof inheritance relations which are sometimes confused in the literature. Syntacticinheritance denotes inheritance of structure or method de�nitions and is thereforerelated to reuse of code (and to overriding of code for inherited methods). Semanticinheritance denotes inheritance of object semantics, i.e. of the objects themselves.This kind of inheritance is known from semantic data models, where it is used tomodel one object that appears in several roles in an application. In this paper wewill only address semantic inheritance.3

� A concept which has attracted a lot of attention in object-oriented data modelsis the composition of complex objects from objects. In object-oriented design, thecomposition has to obey both structural and behavioral aspects. Along with thestrict concept of object encapsulation, object composition can be modeled by safeobject import using object incorporation morphisms.� The last relevant aspect which must be supported by an object-oriented speci�cationtechnique is a formal notion of object re�nement and object implementation. Theseconcepts are mandatory for structured design of object-oriented systems and enablee.g. top-down re�nement techniques and abstract object descriptions in early de-sign phases. Technically, object re�nement and implementation can be modeled byexplicit object interfaces for complex objects and by a mechanism to call sequencesof events as atomic units of behavior.In the following section, we will characterize basic concepts and constructs of suchobject systems and show how the speci�cation of such systems is supported by the TROLL-language.3 Fundamental Object ConceptsThe aim of this section is to sketch a semantical framework dealing with objects, ob-ject classes, inheritance, interaction and other concepts related to the object-orientedapproach. Conceptually, objects can be treated as communicating processes with observ-able attributes [SE90]. Based on single objects as processes, we have to formalize objectsystems as collections of objects related in manyfold ways.What is an object? An object has structure and behavior, but there may be manyobjects with the same structure and behavior while they are di�erent as objects. That is,an object has an identity, and it is an instance of a structure and behavior template whichit may share with many other objects. Only if we distinguish clearly between individualobjects and their templates is it possible to treat object concepts like inheritance andinteraction in a clean and satisfactory way: interaction is a relationship between di�erentindividual objects, while inheritance relates aspects of the same individual object | whichmay be expressed by a corresponding inheritance schema relationship among anonymoustemplates.There is a notorious confusion around the object{oriented notions type and class: somepeople would probably use one of these words for what we call template. But all threenotions are di�erent, as we will see. By template we mean an object's structure andbehavior pattern without individual identity. Formally, a template can be modelled as aprocess [ES91].Inheritance and interaction relationships among (aspects of) objects are based oncorresponding relationships among their templates. In [ES91], a general notion of templatemorphism, i. e. a structure and behavior preserving map among templates, is describedwhich captures inheritance as well as interaction relationships. In this paper, we will onlyuse the special case of a template projection: it projects a template to a portion of it, wherethe portion might represent an abstraction or a physical part. For instance, a computertemplate may be projected to that of an electronic device (because any computer is anelectronic device) or to the template of a computer cpu (describing a part{of relationship),cf. example 3.1 below. 4

Object identities are atomic items whose principle purpose is to characterize objectsuniquely. Thus, the most important properties of identities are the following: we shouldknow which of them are equal and which are not, and we should have enough of themaround to give all objects of interest a separate identity. In the TROLL language later onpresented in this contribution, object identities are modelled as values of an arbitraryabstract data type.Identities are associated with templates to represent individual objects | or, rather,aspects of objects, as we will see.Given templates and identities, we may combine them to pairs b�t (to be read \b ast"), expressing that object b has behavior pattern t. But there are objects with severalbehavior patterns! For instance, a given person may be looked at as an employee, apatient, a car driver, a person as such, or a combination of all these aspects. Indeed, thisis at the heart of inheritance: b�t denotes just one aspect of an object { there may beothers with the same identity!An object aspect { or aspect for short { is a pair b�t where b is an identity and t is atemplate. Let b�t and c�u be two aspects, and let h : t ! u be a template morphism.Then we call h : b�t! c�u an aspect morphism.Aspect morphisms are nothing else but template morphisms with identities attached.The identities, however, are not just decoration: they give us the possibility to make afundamental distinction between the following two kinds of aspect morphisms.An aspect morphism h : b� t ! c�u is called an inheritance morphisms i� b = c.Otherwise, it is called an interaction morphism.The following example illustrates the notions introduced so far.Example 3.1 Let el dvice be a behavior template for electronic devices, and letcomputer be a template for computers. Assuming that each computer IS An electronicdevice, there is a template morphism h : computer! el dvice.If SUN denotes a particular computer, it has the aspectsSUN�computer (SUN as a computer) andSUN�el dvice (SUN as an electronic device),related by the inheritance morphism h : SUN�computer �! SUN�el dvice .Let powsply and cpu be templates for power supplies and central processing units, re-spectively. Assuming that each electronic device HAS A power supply and each computerHAS A cpu, we have templatemorphisms f : el dvice! powsply and g : computer! cpu,respectively. If PXX denotes a speci�c power supply and CYY denotes a speci�c cpu,we might have interaction morphisms f 0 : SUN�el dvice ! PXX�powsply and, say,g0 : SUN�computer ! CYY�cpu. f 0 expresses that the SUN computer { as an electronicdevice { HAS THE PXX power supply, and g0 expresses that the SUN computer HAS THEcpu CYY.These examples show special forms of interaction, namely between objects (aspects)and their parts. More general forms of interaction are established via shared parts. Forexample, if the interaction between SUN's power supply and cpu is some speci�c cableCBZ, we can view the cable as an object CBZ�cable which is part of both PXX�powsplyand CYY�cpu. This is expressed by a sharing diagramCYY � cpu �! CBZ � cable � PXX � powsply5

The main e�ect of an object morphism is to include part of an object (aspect) intoanother object. This inclusion of properties can be characterized as semantic inheritancebetween object (aspects) in contrast to syntactical inheritance of signature between objectdescriptions.
As we have seen, objects may appear in di�erent aspects, all with the same identitybut with di�erent templates, related by inheritance morphisms. The information whichaspects are related by inheritance morphisms is usually given by template morphisms pre-scribing inheritance. For example, we specify h : computer! el dvice in order to expressthat each computer IS An electronic device, imposing that whenever we have an instancecomputer, say SUN�computer, then it necessarily IS THE electronic device SUN�el dviceinherited by h as an aspect morphisms, h : SUN�computer ! SUN�el dvice.Template morphisms intended to prescribe inheritance are called inheritance schemamorphisms. An inheritance schema is a diagram consisting of a collection of templatesrelated by inheritance schema morphisms.Example 3.2 In the following inheritance schema, arrowheads are omitted: the mor-phisms go upward. HHHHHHH�������
XXXXXXXXXX���������� �������HHHHHHH mainframeworkstationpersonal c computer calculatorthingel dvice

Practically speaking, we create an object by providing an identity b and a templatet. Then this object b� t has all aspects obtained by relating the same identity b to all\derived" aspects t0 for which there is an inheritance schema morphisms t! t0 in �.Thus, an object is an aspect together with all its derived aspects. All aspectsof one object have the same identity { and no other aspect should have this identity!But the latter statement is not meaningful unless we say which aspects are there,i.e. we can only talk about objects within a given community of aspects. Of course, thecommunity will also contain aspect morphisms expressing how its members interact, wewill be back to this. And if an aspect is given, all its derived aspects with respect to agiven inheritance schema should also be in the community.Objects rarely occur in isolation, they usually appear as members of classes { unlessthey are classes themselves. Indeed, we will see that a class is again an object, with atime{varying set of objects as members.Or should we say aspects rather than objects? With the distinction between objectsand aspects made in the previous section, we have to be careful with what can be a6

member of a given class, and whether a class is an aspect or an object. Let us �rst lookat the member problem.Example 3.3 Referring to the inheritance schema in example 3.2, let CEQ { the computerequipment { be a class of computers of some company Z. Let MAC be a speci�c personalcomputer in Z, and let SUN be a speci�c workstation in Z. The question is: are theobjects MAC�personal c and SUN�workstation members of CEQ, or rather their aspectsMAC�computer and SUN�computer?
It is easier to work with homogeneous classes where all members have the same tem-plate, so we formally adopt the second alternative: each class has a �xed member template.This member template is called its type. But, since each aspect of an object determinesthe object uniquely, there is no objection to considering, for example, the MAC�personal ca member of the class CEQ.Therefore, while classes are formally homogeneous, they have a heterogeneous { orpolymorphic {
avor when working with inheritance: each object with an appropriateaspect whose template is the type of the class can be a member of that class!Classes can be specialized by inheritance. For example, if we de�ne a club as a classof persons, we might subsequently de�ne special classes like a football club, a motor club,and a chess club.Therefore, we consider classes as aspects. The class items are actions like insertingand deleting members, and observations are attribute{value pairs with attributes likethe current number of members and the current set of (identities of) members. In mostobject{oriented systems, standard class items (actions and observations) are providedimplicitly, they need not be speci�ed by the user.Since classes are objects or aspects of objects, there is no di�culty in constructingmeta{classes, i. e. classes of classes of : : :. See [ES91] for further details.When we build an object{oriented system, we must provide an inheritance schema,as explained above. Now we investigate how to construct such an inheritance schema:which are the inheritance morphisms of interest, and how are they used to grow theschema step by step?The inheritance morphisms of interest seem to be surjective in the sense that all itemsof both partners are involved in an inheritance relationship. We refer to [ES91] for furtherdetails.Example 3.4 Referring to example 3.2, consider the inheritance schema morphismh : computer ! el dvice expressing that each computer is an electronic device. Letel dvice have the actions switch on , switch off and the observations is on , is off.By inheritance, computer has corresponding items switch on c, switch off c, etc. hmaps switch on c to switch on expressing that the switch on c of the computer is theswitch on inherited from el dvice, and similarly for the other items.Concerning the behaviors of the templates, we would expect that a computer's behav-ior \contains" that of an el dvice: also a computer is bound to the protocol of switchingon before being able to switch o�, etc.
Let an inheritance schema � be given. If we have a surjective inheritance schemamorphism h : t! u not (yet) in �, we can use it in two ways to enlarge �:7

� if t is already in �, we create u and connect it to the schema via h : t! u ,� if u is already in �, we create t and connect it to the schema via h : t! u .The �rst construction step corresponds to specialization, the second one to abstraction.The most popular object{oriented construction is specialization, constructing the in-heritance schema in a top{down fashion, adding more and more details. For example,the inheritance schema in example 3.2 was constructed this way, moving from thing toel dvice and calculator, etc. By \inheritance", many people mean just specialization.The reverse construction, however, makes sense, too: abstractionmeans to grow the in-heritance schema upward, hiding details (but not forgetting them: beware of side e�ects!).Taking our example inheritance schema, if we �nd out later on that computers { amongothers { belong to the sensitive items in a company which require special safety measures,we might consider introducing a template sensitive as an abstraction of computer.Both specialization and abstraction may occur in multiple versions: we have severaltemplates, say u1; : : : ; un, already in the schema and construct a new one, say t, byrelating it to u1; : : : ; un simultaneously. In the case of specialization, i. e. hi : t ! ui fori = 1; : : : ; n, it is common to speak of \multiple inheritance". In the case of abstraction,i. e. hi : ui ! t for i = 1; : : : ; n, we may speak of generalization.Example 3.5 Referring to example 3.2 and assuming top{down construction, the tem-plate for computer is constructed by multiple specialization (multiple inheritance) fromel dvice and calculator.
Example 3.6 If we would have constructed the schema in example 3.2 in a bottom{upway, we would have obtained thing as a generalization of el dvice and calculator.A less contrived example of generalization, however, is the following: if we have tem-plates person and company in our schema, we might encounter the need to generalizeboth to contract partner.
When we build an object{oriented system, we must provide an object community, i. e.a collection of interacting objects. Now we investigate how to construct such an objectcommunity: which are the interaction morphisms of interest, and how are they used togrow the community step by step?As with inheritance morphisms, it seems that also interaction morphisms are surjectivein all meaningful cases (cf. [ES91] for further details).Example 3.7 Referring to example 3.1, the interaction morphismsCYY � cpu �! CBZ � cable � PXX � powsplyexpress that the cable CBZ is a shared part of the cpu CYY and the power supply PXX.Suppose the items relevant for cables are voltage level observation and switch{on/switch{o� actions. The sharing expresses that, if the power supply is switched on,the cable and the cpu are switched on at the same time, etc.
Let an object community � be given. If we have a surjective interaction morphismh : a�t! b�u not (yet) in �, we can use it in two ways to enlarge �:� if a�t is already in �, we create b�u and connect it to the community via h : a�t! b�u,8

� if b�u is already in �, we create a�t and connect it to the community via h : a�t! b�u.After connecting the new morphism to �, we have to close it with respect to �, i. e. addall aspects derived from the new one by inheritance.By incorporation we mean the construction step of taking a part and enlarging it byadding new items. Most often the multiple version of this is used, taking several partsand aggregating them. We will be back to this.The reverse construction is also quite often used in the single version, we call it inter-facing. Interfacing is like abstraction, but it creates an object with a new identity.Example 3.8 Consider the construction of a database view on top of a database: this isinterfacing. Please note that it is quite common to have non{encapsulated interaction: anon{updateable view would display many changes which cannot be explained from localactions!
Both incorporation and interfacing may occur in multiple versions: we have severalobjects, say b1�u1; : : : ; bn �un, already in the community and construct a new one, saya�t, by relating it to b1�u1; : : : ; bn�un simultaneously. In the case of incorporation, i. e.hi : a�t! bi�ui for i = 1; : : : ; n, we have aggregation as mentioned above. In the case ofinterfacing, i. e. hi : bi�ui ! a�t for i = 1; : : : ; n, we have synchronization by sharing.The latter was illustrated above in example 3.7 (cf. also example 3.1). An examplefor aggregation is the following.Example 3.9 Referring again to example 3.1, suppose that PXX�powsply and CYY�cpuhave been constructed and we want to assemble them (and other parts which we ignorehere) to form our SUN�computer. Then we have to aggregate the parts and provide themorphisms f : SUN�computer ! PXX�powsply and g : SUN�computer ! CYY�cpu showingthe relationships to the parts.
After this brief discussion of the conceptual framework, we present in the next sectionspeci�cation language features based on this framework.4 Language Features for Object Speci�cationA speci�cation language for object systems has to o�er language features which al-low to describe the conceptual schema of a system using abstract and implementation{independent concepts. All aspects of a complete system must be covered by the descrip-tion. As an example for designing complex systems, consider the case of describing aninformation system containing information about a given Universe of Discourse. This taskputs some requirements upon a description language to be used for specifying objects:� Objects must be described in an abstract way, i.e. independently from their laterimplementation. This holds both for objects from the UoD and for objects used forsystem functions.� The conceptual schema must be complete in terms of restrictions on objects, beit constraints on object properties, restrictions on object updates or restrictions onlong-term object evolution, because it is the central description of the object systembeing the reference both for the implementers as well as for application developers.9

� As mentioned already, a formal semantics is an indispensible property of a languagefor specifying a conceptual model, because otherwise transformations to lower levelsand their veri�cation cannot be formalized.We will use the presented object model as semantical framework for conceptual schemadescriptions. Let us now show how objects and object classes can be speci�ed in the TROLL-language. The language TROLL is presented in [JHSS91]. Therefore, we will recapitulatesome basic features of TROLL only. We present the basic language features using a typicalinformation system example, even if the language itself can be used to specify other systemtypes as well. As an example, consider the description of an object class representingdepartments:object class DEPTidenti�cation id: string;data types date,jPERSONj,set(jPERSONj);templateattributesest date: date;manager: jPERSONj;employees: set(jPERSONj);eventsbirth establishment(date);death closure;new manager(jPERSONj); assign official car(jCARj,jPERSONj);hire(jPERSONj); fire(jPERSONj);valuationvariables P: jPERSONj; d: date;[establishment(d)]est date = d;[new manager(P)]manager = P;[hire(P)]employees = insert(P,employees);[fire(P)]employees = remove(P,employees);permissionsvariables P: jPERSONj;f sometime(after(hire(P)))g fire(P);f for all(P: jPERSONj): sometime(P in employees))sometime(after(fire(P))) g closure;end object class DEPT;After the identi�cation keyword, the abstract data type for object identi�ers isexplicitly declared analogously to database keys. Attributs and events de�ne the accessinterface forming the object signature.The valuation rules describe the evolvement of the attribute observations. They de-scribe the e�ect of event terms on attribute values in terms of a data-valued term evaluatedbefore the event occurence which determines the new attribute value. The permissionsdescribe permitted sequences of events and thus restrict the set of possible sequences overthe alphabet of events to admissible sequences. Additional features of the language notdescribed here include arbitrary constraints on attributes, liveness requirements (i.e. goalsto be achieved by the object in an active way) and activity, i.e. events that may occur10

on the object's own intitiative whenever their occurrence is possible. A more elaborateddescription of TROLL language features can be found in [SJ91, JSS91, JHSS91, JSH91].An object in TROLL is thus a unit encapsulating data and evolvement. Encapsulationmeans that local data can solely be manipulated by local events which can be seen asbasic operations on the state of an object and that the internal state can be observed byattributes only. In contrast to the view of encapsulation in object-oriented programming,we allow attribute values to be read by other objects, i.e. they are part of the object'sinterface. In a certain sense, we can see attributes as the read-only interface for queriesand events as the manipulation interface o�ered by an object. We may, however, hidemore information by explicitly de�ning interfaces to objects (see section 5.1).TROLL also supports the speci�cation of aspects. As stated in section 3, this involveson the one hand inheritance of templates which essentially means the reuse of speci�-cation texts. On the other hand, aspects involve the incorporation of instances. Thatis, attributes of the incorporated instance may not be changed by events not local tothe incorporated instance. Events local to the incorporated instance may, however, betriggered from the outside.In our language, we distinguish between specializations and phases. Specialization isstatic, i.e. the specialized object is born as a special kind of the base object and remainsof this special kind for it's entire life (consider e.g. a woman as specialization of a person).An object being a special kind just for a part of it's life has special properties only whenit is in this role (consider e.g. a manager as a special kind of person). Note that bothconcepts are based on semantic inheritance, i.e. on inheritance schema morphisms.The following speci�cation fragment de�nes the class MANAGER as a phase of an objectclass PERSON:object class PERSONidenti�cationname: string;birthdate: date;templateattributes...events...become manager;...end object class PERSON;object class MANAGERview of PERSON;templateattributesOfficialCar : jCARj;eventsbirth PERSON.become manager;: : :constraintsstatic Salary � 5.000;: : : 11

end object class MANAGER;In TROLL, complex objects may be constructed using aggregation, i.e. compositionof objects from sets or lists of objects as well as from single objects. The concept ofaggregation is based on semantic incorporation: the components of a complex object areincluded in a property-preserving way.Consider for example the object representing TheCompany, which is a complex objecthaving a list of departments as component:object TheCompany...templatecomponentsdepts : LIST(DEPT);: : :end object TheCompany;An object society is a (possibly large) collection of objects that interact. Interaction ise.g. performed by event calling. To call an event means to force synchronous occurrenceof the called event by the occurrence of the calling event.Consider e.g. the promotion of a person identi�ed by surrogate P to become a managerof a department identi�ed by surrogate D. The event new manager(P) of the departmentobject calls the event become manager of the corresponding person object:global interactionsvariables P: jPERSONj; D: jDEPTj;DEPT(D).new manager(P) >> PERSON(P).become manager;Note that event calling is also used for interactions with incorporated objects. Animportant extension of event calling is transaction calling enabling an event to call a �nitesequence of other events treated as a transaction unit [SE90]. We will see the usefulnessof this concept during the discussion of formal object implementation in section 5.2.5 Object Interfaces and Formal ImplementationOur aim is to formally describe large object systems based on the TROLL language. Oneimportant aspect of object-oriented design concepts is that object-orientation allows toleave the strict hierarchical system structure enforced by other design approaches. Toallow a liberal system design, we have to support two basic structuring principles:� We need a general interface mechanism to allow combination of subsystems whilehiding details of these subsystems. This interface mechanism should support controland data
ow in both directions.� Subsystems should be designed on the basis of existing components in a stepwisere�nement process starting with an abstract conceptual description and ending withexecutable descriptions close to the implementation platform. Therefore we needthe concept of formal implementation of objects over objects supported by languagefeatures.The following subsections discuss the language primitives for supporting these tasksas they are included in the TROLL language.12

5.1 Object InterfacesThe basic idea of object interface de�nition is to give an access interface to existingobjects. That is, we do not de�ne new objects by de�ning interfaces. In terms of thepresented approach, we de�ne new interfaces to existing objects by de�ning attributes,events and components (interfaces for derived objects). Thus, external object interfacesare very similar to conceptual schema objects, but their internal semantics is given by atransformation of the signature components to an implementation in terms of conceptualobjects. In terms of the concepts discussed in section 3, interfaces are language featuresto describe interfacing by interaction morphisms and abstractions.As mentioned before, an object (class) interface is mainly a mechanism for controllingaccess to objects in an object base. Access control for a single object is achieved by de�ninga restricted interface for the object, e.g. by performing a projection on the attributes andevents of the object. Furthermore, we allow a restricted form of deriving new attributevalues and events. This projection can be de�ned for single objects as well as for allinstances of an object class. The following examples show the principles of de�ning objectinterfaces.The �rst example is an interface to an object class PERSON de�ned for the use ofthe salary department or a subsystem handling the task of preparing the monthly salaryreport. Only attributes and events being of interest for this department are shown in theinterface signature.interface class SAL EMPLOYEEencapsulating PERSONattributesName: string;IncomeInYear(integer): money;Salary: money;eventsChangeSalary(money);end interface class SAL EMPLOYEE;The semantics of this interface de�nition is a restriction of the access to PERSON objectsas it is done in relational databases by a projection view. Please note that the projectionde�nition does not only restrict the observation of attributes but also the possible mod-i�cation events being o�ered to the view users. This kind of projection can be used torestrict the access to complex object components, too.The object's identi�ers (for PERSONs the values of name and birthday) are not generallypreserved by an interface de�nition as visible attributes, but the internal object identityis preserved since we do not derive new objects.As an example for an interface with derived attributes and events we have the interfaceclass SAL EMPLOYEE2 where the additional attribute CurrentIncomePerYear is derivedfrom the value of the attribute Salary and only a restricted way of changing salaries iso�ered.interface class SAL EMPLOYEE2encapsulating PERSONattributes 13

Name: string;derived CurrentIncomePerYear: money;Salary: money;eventsderived IncreaseSalary;derivationderivation rulesCurrentIncomePerYear = Salary �13:5;callingIncreaseSalary >> ChangeSalary(Salary �1:1);end interface class SAL EMPLOYEE2;The derivation part is usually hidden to the users. For the derivation of attributevalues we may use an object query language enabling value retrieval from object states.We use an object query algebra presented in [SJ90, SJS91]. This algebra resembles wellknown concepts of database query algebras handling values (not objects !). Algebra termsare evaluated locally to the encapsulated object. For the derivation of events we can usearbitrary process calling [SE90]. Thus, the derived event may be evaluated by a �niteprocess de�ned over the local events of the encapsulated object.Furthermore, object class interfaces allow the selection of a subpopulation of an objectclass. To de�ne a selection, we allow arbitrary query terms of sort boolean. A variableSELF denotes the currently observed instance. The following interface class RESEARCHEMPLOYEE selects only those persons working for the research department.interface class RESEARCH EMPLOYEEencapsulating PERSONselection where SELF.Dept = `Research';attributesName: string;Salary: money;eventsChangeSalary(money);end interface class RESEARCH EMPLOYEE;In the terminology presented in section 3, one may implicitly de�ne an aggregationobject identi�ed by the identi�cation of its parts [EGS90, SE90] over each two objects usingincorporation morphisms. Therefore, we can easily extend our mechanism to support joinviews:interface class WORKS FORencapsulating PERSON P, DEPT Dselection where P.surrogate in D.employees;attributesDeptName: string;PersonName: string;derivationderivation rulesDeptName = D.id; 14

PersonName = P.name;end interface class WORKS FOR;In a join view, we typically introduce variables to identify the participating objectinstances (which is, however, not necessary in our example). These variables can be usedin the (optional) selection clause and in derivation rules. As said before, the internalobject identity is preserved by the view and therefore even derived updates can be o�eredin the view de�nition without semantical di�culties.The purpose of interfaces is in principle mainly an authorization for restricted objectmanipulation and attribute value retrieval. Interfaces have nothing to do with object copies| they are only a restricted view on existing objects rather than an object-preservingoperation. We can regard interface de�nitions as a mechanism to select objects for ma-nipulation. The manipulations themselves are encapsulated within the objects, thereforewe do not have to describe the concrete manipulations but the restrictions for using themcorrectly.5.2 Formal ImplementationThe basic idea of formal object implementation is taken from the area of abstract datatypes: Starting with already speci�ed base objects, we de�ne an abstract object in terms ofthe attributes and events of these base objects. The concrete implementation is hidden inthe abstract object which then can be used abstracting from its concrete implementation.An implementation consists of three parts, namely� the declaration of the base objects,� the aggregation of the base objects and the implementation of the new events andattributes in terms of the base object signature,� and the hiding of the implementation details using an interface de�nition.As an example, we implement the object class EMPLOYEE on top of an object emp reldescribing a database relation of a relational database. The object class EMPLOYEE is verysimple to keep the implementation example small. EMPLOYEE objects are identi�ed (likepersons) by their name (EmpName) and birthday (EmpBirth) and have a current salary(Salary). As update events we have hire and �re of an employee (HireEmployee andFireEmployee) and a change of their salary (IncreaseSalary). The implementation isdone using one object managing a set of tuples storing the data. This example was chosenbecause it shows some critical aspects of formal object implementation, among them thesharing of base objects by several abstract objects.We start with de�ning the base object emp rel.object emp reltemplatedata types string, date, integer;attributesEmps : set(tuple(ename:string, ebirth:date, esalary:integer));eventsbirth CreateEmpRel; 15

UpdateSalary(string, date, integer);InsertEmpl(string, date, integer);DeleteEmpl(string, date);death CloseEmpRel;valuationvariables n:string, b:date, s:integer;[CreateEmpRel] Emps = fg;[InsertEmp(n,b,s)] Emps = insert(Emps, tuple(n,b,s));fin(Emps,tuple(n,b,s))g)[DeleteEmp(n,b)] Emps = delete(Emps, tuple(n,b,s));permissionsvariables n:string, b:date, s:integer;f exists(s1:integer) in(Emps,tuple(n,b,s1))g UpdateSalary(n,b,s);f Emps = fg g CloseEmpRel;interactionvariables n:string, b:date, s:integer;ChangeSalary(n,b,s) >> h DeleteEmp(n,b); InsertEmp(n,b,s) i;end object emp rel;The operators in, insert and delete are operations de�ned for the parametrized datatype constructor set. The keyword tuple is used for the data type constructor (the `recordof' construct of programming languages) as well as for the tuple creation operation.The interfaces (i.e., the object signature) of such implementation objects can be de-rived automatically from a given relational schema. For example, the semantics of updateoperations are semantically modelled by a sequence consisting of an insert and delete op-eration in a set of tuples under the requirement to satisfy the key constraints. In general,there are a number of update events generated from a given relational schema. It shouldbe mentioned that this relation object itself may be implemented for example by anotherobject using a B-tree or a hash table access method.To de�ne the relation between emp rel and EMPLOYEES, we de�ne as a next stepthe implementation of an object class EMPL IMPL on top of the single object emp relrepresenting the relational implementation. This way, we are able to express the sharingof a resource by a number of `client' objects.object class EMPL IMPLidenti�cationdata types date, string;EmpName : string;EmpBirth : date;templateinheriting emp rel as employees;attributesderived Salary;eventsbirth HireEmployee;derived IncreaseSalary(integer);death FireEmployee;constraintsderivation rulesSalary = 16

count(project[esalary](select[ename = EmpName and ebirth = EmpBirth] (employees)))interactionvariables n:integer;HireEmployee >> employees.InsertEmpl(self.EmpName, self.Empbirth, 0);FireEmployee >> employees.DeleteEmpl(self.EmpName, self.Empbirth);IncreaseSalary(n) >>employees.UpdateSalary(self.EmpName, self.Empbirth, self.Salary + n);end object class EMPL IMPL;The object class EMPL IMPL realizes the implementation of `employee' instances ontothe single object realization. The last step is to hide implementation details (encapsula-tion) by de�ning an interface class EMPL for EMPL IMPL.interface class EMPLencapsulating EMPL IMPLattributesEmpName: string;EmpBirth: date;Salary: integer;eventsIncreaseSalary(integer);HireEmployee;FireEmployee;end interface class EMPL;To show the correctness of our implementation, we have to prove that all properties ofthe original EMPLOYEE speci�cation can be derived from EMPL, too. It is outside the scopeof this paper to present a proof theory for formal object implementation. Basic conceptsfor a proof theory for object speci�cations can be found in [FSMS90, FM91].An implementation may use several base objects to implement an abstract object, forexample if normalization of relations becomes necessary to realize nested structures. Ingeneral, each formal implementation consists of the following steps :1. First of all, a complex object is constructed consisting of all base objects needed forthe implementation.2. An object (class) interface de�nes the encapsulation of implementation details.Formal implementation of objects over objects enables consistency checks and formalveri�cation because it is done in the same formal framework [FSMS90].6 Schema Architecture and ModularizationIn this section, we will brie
y discuss some ideas towards the development large systemsusing modularization principles for object systems. After several facets of modulariza-tion object systems are informally discussed, we propose the use of a layered schemaarchitecture for object bases modules. 17

6.1 Modularization of Object SystemsThe main motivation for introducing additional modularization constructs to the pre-sented object speci�cation language is the problem of managing large object system de-scriptions. Objects are encapsulated modules of small granularity, but for really largesystems we need further modularization constructs supporting speci�cation in the large.Another motivation is the safe access to existing system components encapsulated byan object-oriented access interface during the speci�cation process of components to bedeveloped. Other important topics are the support of cooperative work by system mod-ularization, modules as units for access rights, and local consistency checking.In the area of object system speci�cation, we can distinguish several kinds of modu-larization principles occuring in design documents:� The �rst structuring principle for large speci�cation documents is the use of objectspeci�cation libraries to support reusability of object descriptions. We call thisprinciple syntactical reuse of speci�cations text.We will not discuss syntactical reuse and related aspects like parametrization ofobject descriptions in this paper. For a proposal to integrate syntactical reuse in aframework for object speci�cation we refer to [SRGS91].� The classical case for modularization is the support of a hierarchical system structureas known from modern programming languages. The main aspect of this approachfor system design is the support of divide-and-conquer methods in the design process.An interesting special case is the support of module re�nement by formal implemen-tation steps where one (more abstract) module is implemented in terms of dependentother modules, where the control
ow follows the hierarchy.� The more general case are object system modules as communicating subsystems.In our framework, we call such systems communicating object societies. This ideacorresponds to horizontal composition of independent object systems in contrast tothe strict hierarchical composition of dependent subsystems mentioned before.In contrast to the �rst case, we can characterize the cases of hierarchical and horizontalcomposition as semantical (re)use of object system modules by other object systems.Typical examples for this general kind of system modularization are� the case of shared databases, where di�erent subsystems have access using applica-tion-speci�c view interfaces only,� a shared system clock or calendar, where we have both read access to the currenttime or date as well as an active triggering mechanism for time-dependent systemactivities,� and as general case we have cooperating object systems as connected autonomoussystems realizing cooperating applications, where we have again both passive accessand active communication.
18

HHHHHHHHHH ����������External Schema 1 External Schema n

Internal Schema

.
Conceptual Schema External / ConceptualMappingConceptual / Internal Mapping

Figure 1: Schema structure of the three-level architecture.What unit of modularization can support such di�erent system architectures ? Asingle module must be expressed by an arbitrary object society to allow adequate modulespeci�cations. We need a concept of society interface structured like usual object societiesbut hiding module realization details. Of course, we can de�ne such societies as collectionsof object interfaces as discussed in section 5.1.Furthermore, we need language features for import and export of object society inter-faces. Society interfaces can be passive or active interfaces; the passive case corresponds tohierarchical dependent subsystems and the active case to horizontal composition of inde-pendent systems. We need several di�erent export interfaces for one module for modellinga controlled communication of autonomous subsystems.As a summary of these considerations, we need a module concept supporting both theclassical hierarchical re�nement step for single modules and the general case of interactingmodules with controlled module access using di�erent export interfaces. Therefore, wepropose to adopt the three-level schema architecture developed for database applicationsas structuring principle for object system modules.6.2 Three-level Schema Architecture for ModulesTo organize the description of an object subsystem, we propose the three-level schemaarchitecture successfully introduced for structuring database applications [DAFTG86].This three-level schema architecture for database applications can easily be explainedusing �gure 1. This architecture organizes the schema in three di�erent levels :� The central conceptual schema represents the conceptual view on the complete data-base using an abstract data model schema. `Abstract' data model means that theconceptual schema abstracts from implementation details.� The internal schema describes the implementation details in terms of the usedimplementation platform (the used DBMS). This may require a change of the useddata model. Typical description issues for classical DBMSs are access paths andtheir realization. 19

� The external schemata describe several views on the conceptual schema speci�c toparticular applications or user groups.We propose to adapt this three-level schema architecture for our abstract concept ofdynamic objects (i.e., objects evolving over time). To realize such a schema architecture,we have to make use of several formalisms and languages :� We need a formal concept of objects to de�ne the semantics of an object base bothon the conceptual and implementation level.� Conceptual object base schemata must be de�ned using a language that enables animplementation-independent abstract description of object bases.� A formal concept of object interfaces is required to de�ne external schemata as viewson an object base.� Finally, we need a formal concept of object implementation to de�ne the relationbetween conceptual schema and internal schema.As this list shows compared with the topics of this contribution, the TROLL languageand the theory behind it is well suited for using this architecture for object system mod-ules.Having modules organized following this architecture proposal, arbitrary systems canbe built by connecting object system modules using society interface import. The imple-mentation of single modules is hidden to the outside allowing the integration of alreadyexisting subsystems, too. The possibility of de�ning several external schemata as exportinterfaces allows to include access control and security mechanisms already on the systemspeci�cation level.7 ConclusionsIn this paper, we have introduced a framework that attemps to overcome the gap betweenthe description of static and dynamic properties of conceptual models. Object descriptionsare the units of design and encapsulate all static and dynamic aspects local to an object.Object systems are collections of objects related by the notions of class membership,interaction, inheritance and object aggregation. We gave a formalization of our conceptof object and introduced the language TROLL for the abstract description of object-orientedconceptual models. Besides the underlying framework, TROLL is based on concepts fromsemantic data modeling, from algebraic speci�cation and from the speci�cation of reactivesystems and tries to combine the advantages of these approaches. TROLL o�ers a variety ofstructuring mechanisms for speci�cations, among them roles, complex objects and globalinteractions. With TROLL, system speci�cations may be constructed from componentsthat can be analyzed locally.Further work will focus on �nding subsets of TROLL which are su�cient for the de-scription of models on lower levels of abstraction. Using formal transformations, abstractspeci�cations shall be re�ned and implemented. Other topics are modularization issues,in-the-large speci�cation, reusability and graphical notations for TROLL.20

AcknowledgementsThanks to all IS-CORE colleagues, who contributed to the development of the conceptspresented and in the de�nition of the TROLL speci�cation language. In particular, Am��lcarSernadas and Cristina Sernadas participated in developing basic ideas of objects andobject descriptions. Cristina Sernadas and Thorsten Hartmann were heavily involved inde�ning the TROLL language.References[Bee90] Beeri, C.: A Formal Approach to Object Oriented Databases. Data & KnowledgeEngineering, Vol. 5, No. 4, 1990, pp. 353{382.[Boo90] Booch, G.: Object-Oriented Design. Benjamin/Cummings, Menlo Park, CA,1990.[DAFTG86] Database ArchitectureFramework Task Group (DAFTG) of the ANSI/X3/SPARC Database SystemStudy Group: Reference Model for DBMS Standardization. ACM SIGMODRecords, Vol. 15, No. 1, 1986, pp. 19{58.[Day88] Dayal, U.: Active Database Management Systems. In: Proc. Conf. on Data andKnowledge Bases, Jerusalem, 1988. pp. 150{169.[Dit88] Dittrich, K. R. (ed.): Advances in Object-Oriented Database Systems. LectureNotes in Comp. Sc. 334. Springer Verlag, Berlin, 1988.[EGS90] Ehrich, H.-D.; Goguen, J. A.; Sernadas, A.: A Categorial Theory of Objects asObserved Processes. In: Bakker, J. de; Roever, W. de; Rozenberg, G. (eds.):Foundations of Object-Oriented Languages (Proc. REX School/Workshop), No-ordwijkerhood (NL), 1990. LNCS 489, Springer-Verlag, Berlin, 1991, pp. 203{228.[ES91] Ehrich, H.-D.; Sernadas, A.: Fundamental Object Concepts and Constructions.In: Saake, G.; Sernadas, A. (eds.): Information Systems | Correctness andReusability, Technical Report 91-03, Technische Universit�at Braunschweig, 1991.pp. 1{24.[FM91] Fiadeiro, J.; Maibaum, T.: Towards Object Calculi. In: Saake, G.; Sernadas,A. (eds.): Information Systems | Correctness and Reusability, Technical Report91-03, Technische Universit�at Braunschweig, 1991. pp. 129{178.[FSMS90] Fiadeiro, J.; Sernadas, C.; Maibaum, T.; Saake, G.: Proof-Theoretic Semanticsof Object-Oriented Speci�cation Constructs. In: Meersman, R.; Kent, W. (eds.):Object-Oriented Databases: Analysis, Design and Construction (Proc. 4th IFIPWG 2.6 Working Conference DS-4), Windermere (UK), 1990. North-Holland,Amsterdam. In print.[JHSS91] Jungclaus, R.; Hartmann, T.; Saake, G.; Sernadas, C.: Introduction to TROLL| Textual Language for Object-oriented Speci�cation. In: Saake, G.; Sernadas,A. (eds.): Information Systems | Correctness and Reusability, Technical Report91-03, Technische Universit�at Braunschweig, 1991. pp. 97{128.21

[JSH91] Jungclaus, R.; Saake, G.; Hartmann, T.: Language Features for Object-OrientedConceptual Modeling. In: Teory, T. (ed.): Proc. ER'91, 1991. to appear.[JSS91] Jungclaus, R.; Saake, G.; Sernadas, C.: Formal Speci�cation of Object Systems.In: Abramsky, S.; Maibaum, T. (eds.): Proc. TAPSOFT'91, Brighton (UK),1991. LNCS 494, Springer-Verlag, Berlin, pp. 60{82.[Kim90] Kim, W.: Object-Oriented Databases: De�nition and Research Directions. IEEETransactions on Knowledge and Data Engineering, Vol. 2, No. 3, 1990, pp. 327{341.[KS90] Kappel, G.; Schre
, M.: Object/Behavior Diagrams. Technical Report CD-TR90/12, TU Wien, 1990. To appear in Proc. Int. Conf. on Data Engineering 1991.[MK90] McGregor, J. D.; Korson, T. (Guest editors): Special Issue on Object-OrientedDesign. Communications of the ACM, Vol. 33, No. 9, 1990.[SE90] Sernadas, A.; Ehrich, H.-D.: What Is an Object, After All? In: Meersman, R.;Kent, W. (eds.): Object-Oriented Databases: Analysis, Design and Construction(Proc. 4th IFIP WG 2.6 Working Conference DS-4), Windermere (UK), 1990.North-Holland, Amsterdam. In print.[SFSE89] Sernadas, A.; Fiadeiro, J.; Sernadas, C.; Ehrich, H.-D.: The Basic BuildingBlocks of Information Systems. In: Falkenberg, E.; Lindgreen, P. (eds.): Informa-tion System Concepts: An In-Depth Analysis, Namur (B), 1989. North-Holland,Amsterdam, 1989, pp. 225{246.[SJ90] Saake, G.; Jungclaus, R.: Information about Objects versus Derived Objects. In:G�oers, J.; Heuer, A. (eds.): Second Workshop on Foundations and Languages forData and Objects, Aigen (A), 1990. Informatik-Bericht 90/3, Technische Univer-sit�at Clausthal, pp. 59{70.[SJ91] Saake, G.; Jungclaus, R.: Speci�cation of Database Applications in the TROLLLanguage. In: Harper, D. (ed.): Proc. Workshop on Speci�cation of DatabaseSystems, SODS'91, Glasgow, 1991. Springer-Verlag, Berlin. to appear.[SJS91] Saake, G.; Jungclaus, R.; Sernadas, C.: Abstract Data Type Semantics for Many-Sorted Object Query Algebras. In: Thalheim, B. (ed.): Proc. 3rd Symp. onMathematical Fundamentals of Database and Knowledge Base Systems MFDBS-91, Rostock, 1991. Springer-Verlag, Berlin, 1991.[SRGS91] Sernadas, C.; Resende, P.; Gouveia, P.; Sernadas, A.: In-the-large Object-Oriented Design of Information Systems. In: Van Assche, F.; Moulin, B.; Rolland,C. (eds.): Proc. The Object-Oriented Approach in Information Systems. NorthHolland, 1991. to appear.[SSE87] Sernadas, A.; Sernadas, C.; Ehrich, H.-D.: Object-Oriented Speci�cation ofDatabases: An Algebraic Approach. In: Hammerslay, P. (ed.): Proc. 13thInt. Conf. on Very Large Databases VLDB'87, Brighton (GB), 1987. Morgan-Kaufmann, Palo Alto, 1987, pp. 107{116.[Weg90] Wegner, P.: Concepts and Paradigms of Object-Oriented Programming. ACMSIGPLAN OOP Messenger, Vol. 1, No. 1, 1990, pp. 7{87.22

[Wie90] Wieringa, R.J.: Equational Speci�cation of Dynamic Objects. In: Meersman, R.;Kent, W. (eds.): Object-Oriented Databases: Analysis, Design and Construction(Proc. 4th IFIP WG 2.6 Working Conference DS-4), Windermere (UK), 1990.North-Holland, Amsterdam. In print.[ZM89] Zdonik, S. B.; Maier, D. (eds.): Readings in Object-Oriented Database Systems.Morgan-Kaufmann, Palo Alto, CA, 1989.

23

