J. de Meer, V. Heymer, and R. Roth, editors, IFIP Transactions C:
Communication Systems, Vol. 1. Proc. Open Distributed Processing,
Berlin 1991, pages 99-121. North—Holland, 1992

Object-Oriented Specification and
Stepwise Refinement*'

Gunter Saake
Ralf Jungclaus
Hans-Dieter Ehrich

Abt. Datenbanken, Techn. Universitit Braunschweig

Postfach 3329, 3300 Braunschweig, Germany

Abstract

A basic concept in object-oriented approaches is the notion of object as inte-
grated unit of structure and behavior. Conceptually, objects are modeled as pro-
cesses of which certain dynamic characteristics of their internal state can be observed
using attributes. Objects are the basic units of design. Systems are composed from
objects that interact to provide the desired services. In the semantics domain,
concepts related to the object-oriented paradigm like interaction, inheritance and
object aggregation can be uniformily modelled by object morphisms.

In this paper we introduce the language TRoLL to conceptually specify dynamic
information systems. TRQLL supports abstract description of temporal evolvement of
objects, classification of objects, complex objects, active objects and specialization
hierarchies. Additionally, the integration of concepts like modularization support,
and component reusability into the TRgLI, framework is briefly discussed.

1 Introduction

The modeling of complex systems requires the formal description of a large number of
features and properties that are different in nature. Established formal methods generally
focus on certain aspects of system design (e.g. data structures or functionality or dynam-
ics) and thus do not support an integrated description of the system to be developed.
Describing a complex dynamic software system may e.g. require the modeling of database
structures, interactive interfaces, tasks (or scripts), active components (like system clocks)
or the explicit specification of temporal requirements. In general, complex systems may
conceptually be regarded as collections of interacting subsystems.

Aspects like those mentioned above should be supported by a formalism to specify
complex open systems. Additionally, such a formalism should meet requirements like

*To appear in: Proc. IFTP TC6 Int’l Workshop on Open Distributed Processing, Berlin 1991, published
by North-Holland.

"This work was partly supported by CEC under ESPRIT BRA WG 3023 IS-CORE (Information
Systems — COrrectness and REusability) and by Deutsche Forschungsgemeinschaft under grant no. Sa
465/1-1.

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext
J. de Meer, V. Heymer, and R. Roth, editors, IFIP Transactions C:
Communication Systems, Vol. 1: Proc. Open Distributed Processing,
Berlin 1991, pages 99–121. North–Holland, 1992

modularization support and component reusability. Approaches to object-oriented design
of programs and databases provide useful concepts but yet lack a formal foundation which
is essential for the design of complex and safe systems.

A basic concept in object-oriented approaches is the notion of object as integrated unit
of structure and behavior. In our approach, objects are modeled as processes of which
certain dynamic characteristics of their internal state can be observed using attributes.
Objects are the basic units of design. Systems are composed from objects that interact
to provide the desired services.

The current research in object-oriented databases [ZM89, Kim90] and active databases
[Day88] leads to the notion of object bases containing both passive and dynamic/active
objects as basic building blocks of an application system [SSE87, SFSE89, Wie90, KS90].
This new approach to system design has its roots in several fields of research:

e The object-oriented databases now under development and formalization at several
sites mainly base on new database structuring techniques which firstly were required
by non-standard applications [Dit88, Bee90]. They usually support object-centered
clustering of data, object identy and inheritance of object properties. Object specific
methods (for updates) are realized in some prototypes but are outside the current
state of most data model formalization approaches [Bee90].

e (Object-oriented design focuses on the integrated design of structure and dynamics
encapsulated in object units [Boo90] but lacks up to now a formal semantics.

e (Object-oriented programming languages like Simula, Smalltalk, Eiffel or C++ con-
centrate on the computational aspects of objects as independent units of com-
putation having a local memory and communicating solely through method call-
ing/message passing. The basic elements of computation are methods manipulating
the local object variables in a conventional operational way.

The idea of dynamic object bases combines these approaches into one framework sup-
porting structured and persistent database objects as well as object dynamics in terms of
update methods.

This paper is organized as follows: After discussing the concept of object-orientation
in a general sense, we present a framework for modelling object systems. We introduce
the language TROLL to conceptually specify dynamic object systems. The specification
language TRQLIL supports abstract description of temporal evolvement of objects, classi-
fication of objects, complex objects, active objects, specialization hierarchies, and mod-
ularization. The remainder of this contribution gives some ideas towards supporting the
design of large object systems by modularization and refinement techniques.

2 Object-Orientation

In the last years, the object-oriented paradigm has attracted much attention in differ-
ent fields of computer science, among them object-oriented design (for a survey see e.g.
[IMK90]), object-oriented programming languages [Weg90] and object-oriented databases
[ZM89]. Resulting from this diversity, several different opinions exist what makes up the
very essence of object-orientation. Different application areas naturally lead to different

views on objects and their properties, and it is not easy to give a definition of a concept
of object which a majority agrees on.

In this section, we will try to identify some basic features of object-oriented tech-
niques which must be supported by an object-oriented conceptual modeling framework.
In the conceptual modeling phase, we have to abstract from implementation-related de-
tails and techniques which play a major role in object-oriented programming languages
and databases.

e The basic concept of object-oriented design is the concept of objects as units of
structure and behavior. Objects integrate the structural and behavioral aspects of
some ‘system entities’ into inseparable design units. An object has an encapsulated
internal state which can be observed and manipulated exclusively through an object
‘interface’. In contrast to object-oriented programming languages that emphasize
a functional manipulation interface (i.e., methods), object-oriented database ap-
proaches put emphasis on the observable structure of objects (through attributes).
We propose to support both views in an equal manner for the design of objects, i.e.
object structure may be observed through attributes and object behavior may be
manipulated through events, which are abstractions of methods.

e Objects are the units of design. Following this perspective, uniform modeling of the
system and the environment (in which it will be embedded) is made possible. Thus,
we achieve clean interfaces between components that are part of the environment
and components that are computerized later on. This approach results in having
higher levels of modularity and abstraction during early system design.

e Dynamic objects somehow communicate with each other. In object-oriented pro-
gramming, this may be realized by method calling (i.e., procedure call) or by process
communication mechanisms. For conceptual modelling, the concepts of event shar-
ing and event calling serve as abstractions of those implementation-related tech-
niques.

e Objects are classified into object classes and object types. The term object class
denotes a dynamic collection of existing objects wich are conceptually treated as
objects of the same kind (extensional classification), whereas an object type de-
scribes the possible instances of an object description (intensional description). Both
concepts are commonly used in an integrated way, i.e. an object type defines the
structure of instances of a corresponding object class and vice versa.

e Objects (and object classes) are often embedded into a class hierarchy with inheri-
tance. Even if the concept of inheritance in object-oriented techniques seems to be
relevant for most researchers, there is still a lot of confusion which kinds of inheri-
tance should be supported by an object-oriented approach. We distinguish two sorts
of inheritance relations which are sometimes confused in the literature. Syntactic
inheritance denotes inheritance of structure or method definitions and is therefore
related to reuse of code (and to overriding of code for inherited methods). Semantic
inheritance denotes inheritance of object semantics, i.e. of the objects themselves.
This kind of inheritance is known from semantic data models, where it is used to
model one object that appears in several roles in an application. In this paper we
will only address semantic inheritance.

e A concept which has attracted a lot of attention in object-oriented data models
is the composition of complex objects from objects. In object-oriented design, the
composition has to obey both structural and behavioral aspects. Along with the
strict concept of object encapsulation, object composition can be modeled by safe
object import using object incorporation morphisms.

e The last relevant aspect which must be supported by an object-oriented specification
technique is a formal notion of object refinement and object implementation. These
concepts are mandatory for structured design of object-oriented systems and enable
e.g. top-down refinement techniques and abstract object descriptions in early de-
sign phases. Technically, object refinement and implementation can be modeled by
explicit object interfaces for complex objects and by a mechanism to call sequences
of events as atomic units of behavior.

In the following section, we will characterize basic concepts and constructs of such
object systems and show how the specification of such systems is supported by the TRQLL-
language.

3 Fundamental Object Concepts

The aim of this section is to sketch a semantical framework dealing with objects, ob-
ject classes, inheritance, interaction and other concepts related to the object-oriented
approach. Conceptually, objects can be treated as communicating processes with observ-
able attributes [SE90]. Based on single objects as processes, we have to formalize object
systems as collections of objects related in manyfold ways.

What is an object? An object has structure and behavior, but there may be many
objects with the same structure and behavior while they are different as objects. That is,
an object has an identity, and it is an instance of a structure and behavior template which
it may share with many other objects. Only if we distinguish clearly between individual
objects and their templates is it possible to treat object concepts like inheritance and
interaction in a clean and satisfactory way: interaction is a relationship between different
individual objects, while inheritance relates aspects of the same individual object — which
may be expressed by a corresponding inheritance schema relationship among anonymous
templates.

There is a notorious confusion around the object oriented notions type and class: some
people would probably use one of these words for what we call template. But all three
notions are different, as we will see. By template we mean an object’s structure and
behavior pattern without individual identity. Formally, a template can be modelled as a
process [ES91].

Inheritance and interaction relationships among (aspects of) objects are based on
corresponding relationships among their templates. In [ES91]; a general notion of template
morphism, i. e. a structure and behavior preserving map among templates, is described
which captures inheritance as well as interaction relationships. In this paper, we will only
use the special case of a template projection: it projects a template to a portion of it, where
the portion might represent an abstraction or a physical part. For instance, a computer
template may be projected to that of an electronic device (because any computer is an
electronic device) or to the template of a computer cpu (describing a part of relationship),
cf. example 3.1 below.

Object identities are atomic items whose principle purpose is to characterize objects
uniquely. Thus, the most important properties of identities are the following: we should
know which of them are equal and which are not, and we should have enough of them
around to give all objects of interest a separate identity. In the TRoLL language later on
presented in this contribution, object identities are modelled as values of an arbitrary
abstract data type.

Identities are associated with templates to represent individual objects — or, rather,
aspects of objects, as we will see.

Given templates and identities, we may combine them to pairs bet (to be read “b as
t”), expressing that object b has behavior pattern ¢. But there are objects with several
behavior patterns! For instance, a given person may be looked at as an employee, a
patient, a car driver, a person as such, or a combination of all these aspects. Indeed, this
is at the heart of inheritance: bet denotes just one aspect of an object — there may be
others with the same identity!

An object aspect or aspect for short is a pair bet where b is an identity and ¢ is a
template. Let bet and ceu be two aspects, and let A : ¢t — u be a template morphism.
Then we call h : bet — ceu an aspect morphism.

Aspect morphisms are nothing else but template morphisms with identities attached.
The identities, however, are not just decoration: they give us the possibility to make a
fundamental distinction between the following two kinds of aspect morphisms.

An aspect morphism h : bet — ceuw is called an inheritance morphisms iff b = c.
Otherwise, it is called an interaction morphism.

The following example illustrates the notions introduced so far.

Example 3.1 Let el_dvice be a behavior template for electronic devices, and let
computer be a template for computers. Assuming that each computer IS An electronic
device, there is a template morphism h : computer — el _dvice.

If SUN denotes a particular computer, it has the aspects

SUN e computer (SUN as a computer) and
SUNeel dvice (SUN as an electronic device),

related by the inheritance morphism 5/ : SUNe computer — SUNeel dvice .

Let powsply and cpu be templates for power supplies and central processing units, re-
spectively. Assuming that each electronic device HAS A power supply and each computer
HAS A cpu, we have template morphisms f:el_dvice — powsply and ¢ : computer — cpu,
respectively. If PXX denotes a specific power supply and CYY denotes a specific cpu,
we might have interaction morphisms f':SUNeel dvice — PXXepowsply and, say,
¢’ :SUNecomputer — CYYecpu. [’ expresses that the SUN computer — as an electronic
device HAS THE PXX power supply, and ¢’ expresses that the SUN computer HAS THE
cpu CYY.

These examples show special forms of interaction, namely between objects (aspects)
and their parts. More general forms of interaction are established via shared parts. For
example, if the interaction between SUN’s power supply and cpu is some specific cable
CBZ, we can view the cable as an object CBZecable which is part of both PXXepowsply
and CYYecpu. This is expressed by a sharing diagram

CYYecpu —+ CBZecable <— PXX e powsply

The main effect of an object morphism is to include part of an object (aspect) into
another object. This inclusion of properties can be characterized as semantic inheritance
between object (aspects) in contrast to syntactical inheritance of signature between object
descriptions. O

As we have seen, objects may appear in different aspects, all with the same identity
but with different templates, related by inheritance morphisms. The information which
aspects are related by inheritance morphisms is usually given by template morphisms pre-
scribing inheritance. For example, we specify h : computer — el_dvice in order to express
that each computer IS An electronic device, imposing that whenever we have an instance
computer, say SUNecomputer, then it necessarily IS THE electronic device SUNeel dvice
inherited by h as an aspect morphisms, h : SUNecomputer — SUNeel dvice.

Template morphisms intended to prescribe inheritance are called inheritance schema
morphisms. An inheritance schema is a diagram consisting of a collection of templates
related by inheritance schema morphisms.

Example 3.2 In the following inheritance schema, arrowheads are omitted: the mor-
phisms go upward.

thing

el_dvice calculator

\/

computer

e

personal_c workstation mainframe

O

Practically speaking, we create an object by providing an identity b and a template
t. Then this object bet has all aspects obtained by relating the same identity b to all
“derived” aspects t' for which there is an inheritance schema morphisms ¢ — ' in A.

Thus, an object is an aspect together with all its derived aspects. All aspects
of one object have the same identity and no other aspect should have this identity!

But the latter statement is not meaningful unless we say which aspects are there,
i.e. we can only talk about objects within a given community of aspects. Of course, the
community will also contain aspect morphisms expressing how its members interact, we
will be back to this. And if an aspect is given, all its derived aspects with respect to a
given inheritance schema should also be in the community.

Objects rarely occur in isolation, they usually appear as members of classes — unless
they are classes themselves. Indeed, we will see that a class is again an object, with a
time varying set of objects as members.

Or should we say aspects rather than objects? With the distinction between objects
and aspects made in the previous section, we have to be careful with what can be a

member of a given class, and whether a class is an aspect or an object. Let us first look
at the member problem.

Example 3.3 Referring to the inheritance schema in example 3.2, let CEQ — the computer
equipment be a class of computers of some company Z. Let MAC be a specific personal
computer in Z, and let SUN be a specific workstation in Z. The question is: are the
objects MACepersonal _c and SUNeworkstation members of CEQ, or rather their aspects
MACecomputer and SUNecomputer? O

It is easier to work with homogeneous classes where all members have the same tem-
plate, so we formally adopt the second alternative: each class has a fixed member template.
This member template is called its type. But, since each aspect of an object determines
the object uniquely, there is no objection to considering, for example, the MACepersonal ¢
a member of the class CEQ.

Therefore, while classes are formally homogeneous, they have a heterogeneous — or
polymorphic — flavor when working with inheritance: each object with an appropriate
aspect whose template is the type of the class can be a member of that class!

Classes can be specialized by inheritance. For example, if we define a club as a class
of persons, we might subsequently define special classes like a football club, a motor club,
and a chess club.

Therefore, we consider classes as aspects. The class items are actions like inserting
and deleting members, and observations are attribute value pairs with attributes like
the current number of members and the current set of (identities of) members. In most
object oriented systems, standard class items (actions and observations) are provided
implicitly, they need not be specified by the user.

Since classes are objects or aspects of objects, there is no difficulty in constructing
meta—classes, i. e. classes of classes of See [ES91] for further details.

When we build an object—oriented system, we must provide an inheritance schema,
as explained above. Now we investigate how to construct such an inheritance schema:
which are the inheritance morphisms of interest, and how are they used to grow the
schema step by step?

The inheritance morphisms of interest seem to be surjective in the sense that all items
of both partners are involved in an inheritance relationship. We refer to [ES91] for further
details.

Example 3.4 Referring to example 3.2, consider the inheritance schema morphism
h : computer — el_dvice expressing that each computer is an electronic device. Let
el_dvice have the actions switch_on , switch_off and the observations is_on , is_off.
By inheritance, computer has corresponding items switch_on_c, switch_off_c, etc. h
maps switch_on_c to switch_on expressing that the switch_on_c of the computer is the
switch_on inherited from el_dvice, and similarly for the other items.

Concerning the behaviors of the templates, we would expect that a computer’s behav-
ior “contains” that of an el_dvice: also a computer is bound to the protocol of switching
on before being able to switch off, etc. O

Let an inheritance schema A be given. If we have a surjective inheritance schema
morphism h : ¢t — u not (yet) in A, we can use it in two ways to enlarge A:

e if ¢ is already in A, we create u and connect it to the schema via h : ¢t — u ,
e if u is already in A, we create £ and connect it to the schema via h : ¢t — u .

The first construction step corresponds to specialization, the second one to abstraction.

The most popular object oriented construction is specialization, constructing the in-
heritance schema in a top—down fashion, adding more and more details. For example,
the inheritance schema in example 3.2 was constructed this way, moving from thing to
el dvice and calculator, etc. By “inheritance”, many people mean just specialization.

The reverse construction, however, makes sense, too: abstraction means to grow the in-
heritance schema upward, hiding details (but not forgetting them: beware of side effects!).
Taking our example inheritance schema, if we find out later on that computers — among
others — belong to the sensitive items in a company which require special safety measures,
we might consider introducing a template sensitive as an abstraction of computer.

Both specialization and abstraction may occur in multiple versions: we have several
templates, say uq,...,u,, already in the schema and construct a new one, say ¢, by
relating it to uy, ..., u, simultaneously. In the case of specialization, i. e. h; : t — u; for
1=1,...,n, it is common to speak of “multiple inheritance”. In the case of abstraction,
i.e. h;:u;—tfori=1,...,n, we may speak of generalization.

Example 3.5 Referring to example 3.2 and assuming top down construction, the tem-
plate for computer is constructed by multiple specialization (multiple inheritance) from
el_dvice and calculator. O

Example 3.6 If we would have constructed the schema in example 3.2 in a bottom—up
way, we would have obtained thing as a generalization of el_dvice and calculator.

A less contrived example of generalization, however, is the following: if we have tem-
plates person and company in our schema, we might encounter the need to generalize
both to contract_partner. O

When we build an object oriented system, we must provide an object community, i. e.
a collection of interacting objects. Now we investigate how to construct such an object
community: which are the interaction morphisms of interest, and how are they used to
grow the community step by step?

As with inheritance morphisms, it seems that also interaction morphisms are surjective
in all meaningful cases (cf. [ES91] for further details).

Example 3.7 Referring to example 3.1, the interaction morphisms
CYYecpu —+ CBZecable <— PXX e powsply

express that the cable CBZ is a shared part of the cpu CYY and the power supply PXX.
Suppose the items relevant for cables are voltage level observation and switch

on/switch—off actions. The sharing expresses that, if the power supply is switched on,

the cable and the cpu are switched on at the same time, etc. O

Let an object community 7 be given. If we have a surjective interaction morphism
h:aet — beu not (yet) in 7, we can use it in two ways to enlarge ?:

o if aet is already in 7, we create bsu and connect it to the community via h : aet — beu,

o if beu is already in 7, we create aet and connect it to the community via h : aet — beu.

After connecting the new morphism to 7, we have to close it with respect to A, i. e. add
all aspects derived from the new one by inheritance.

By incorporation we mean the construction step of taking a part and enlarging it by
adding new items. Most often the multiple version of this is used, taking several parts
and aggregating them. We will be back to this.

The reverse construction is also quite often used in the single version, we call it inter-
facing. Interfacing is like abstraction, but it creates an object with a new identity.

Example 3.8 Consider the construction of a database view on top of a database: this is
interfacing. Please note that it is quite common to have non encapsulated interaction: a
non updateable view would display many changes which cannot be explained from local
actions! O

Both incorporation and interfacing may occur in multiple versions: we have several
objects, say by euy,...,b,eu,, already in the community and construct a new one, say
aet, by relating it to byewuq,...,b,eu, simultaneously. In the case of incorporation, i. e.
h; : aet — b;eu; for e = 1,...,n, we have aggregation as mentioned above. In the case of
interfacing, i. e. h; : b;eu; — aet for 1 = 1,... n, we have synchronization by sharing.

The latter was illustrated above in example 3.7 (cf. also example 3.1). An example
for aggregation is the following.

Example 3.9 Referring again to example 3.1, suppose that PXXepowsply and CYYecpu
have been constructed and we want to assemble them (and other parts which we ignore
here) to form our SUNecomputer. Then we have to aggregate the parts and provide the
morphisms f: SUNecomputer — PXXepowsply and g:SUNecomputer — CYYecpu showing
the relationships to the parts. O

After this brief discussion of the conceptual framework, we present in the next section
specification language features based on this framework.

4 Language Features for Object Specification

A specification language for object systems has to offer language features which al-
low to describe the conceptual schema of a system using abstract and implementation—
independent concepts. All aspects of a complete system must be covered by the descrip-
tion. As an example for designing complex systems, consider the case of describing an
information system containing information about a given Universe of Discourse. This task
puts some requirements upon a description language to be used for specifying objects:

e Objects must be described in an abstract way, i.e. independently from their later
implementation. This holds both for objects from the UoD and for objects used for
system functions.

e The conceptual schema must be complete in terms of restrictions on objects, be
it constraints on object properties, restrictions on object updates or restrictions on
long-term object evolution, because it is the central description of the object system
being the reference both for the implementers as well as for application developers.

e As mentioned already, a formal semantics is an indispensible property of a language
for specifying a conceptual model, because otherwise transformations to lower levels
and their verification cannot be formalized.

We will use the presented object model as semantical framework for conceptual schema,
descriptions. Let us now show how objects and object classes can be specified in the TRQLL-
language. The language TROLL is presented in [JHSS91]. Therefore, we will recapitulate
some basic features of TRoLL only. We present the basic language features using a typical
information system example, even if the language itself can be used to specify other system
types as well. As an example, consider the description of an object class representing
departments:

object class DEPT
identification id: string;
data types date,|PERSON|,set(|PERSON|);
template
attributes
est_date: date;
manager: |[PERSON|;
employees: set(|PERSON|);
events
birth establishment(date);
death closure;
new_manager (|PERSON|); assign_official_car(|CAR|,|PERSON|);
hire(|PERSON|); fire(|PERSON|);
valuation
variables P: |PERSON|; d: date;
[establishment(d)]est_date = d;
[new_manager(P)|manager = P;
[hire(P)|employees = insert(P,employees);
[fire(P)]employees = remove(P,employees);
permissions
variables P: |PERSON|;
{ sometime(after(hire(P)))} fire(P);
{ for all(P: |PERSON|): sometime(P in employees) =
sometime(after(fire(P))) } closure;
end object class DEPT;

After the identification keyword, the abstract data type for object identifiers is
explicitly declared analogously to database keys. Attributs and events define the access
interface forming the object signature.

The valuation rules describe the evolvement of the attribute observations. They de-
scribe the effect of event terms on attribute values in terms of a data-valued term evaluated
before the event occurence which determines the new attribute value. The permissions
describe permitted sequences of events and thus restrict the set of possible sequences over
the alphabet of events to admissible sequences. Additional features of the language not
described here include arbitrary constraints on attributes, liveness requirements (i.e. goals
to be achieved by the object in an active way) and activity, i.e. events that may occur

10

on the object’s own intitiative whenever their occurrence is possible. A more elaborated
description of TRoLL language features can be found in [SJ91, JSS91, JHSS91, JSHOI1].

An object in TRoLL is thus a unit encapsulating data and evolvement. Encapsulation
means that local data can solely be manipulated by local events which can be seen as
basic operations on the state of an object and that the internal state can be observed by
attributes only. In contrast to the view of encapsulation in object-oriented programming,
we allow attribute values to be read by other objects, i.e. they are part of the object’s
interface. In a certain sense, we can see attributes as the read-only interface for queries
and events as the manipulation interface offered by an object. We may, however, hide
more information by explicitly defining interfaces to objects (see section 5.1).

TROLL also supports the specification of aspects. As stated in section 3, this involves
on the one hand inheritance of templates which essentially means the reuse of specifi-
cation texts. On the other hand, aspects involve the incorporation of instances. That
is, attributes of the incorporated instance may not be changed by events not local to
the incorporated instance. Events local to the incorporated instance may, however, be
triggered from the outside.

In our language, we distinguish between specializations and phases. Specialization is
static, i.e. the specialized object is born as a special kind of the base object and remains
of this special kind for it’s entire life (consider e.g. a woman as specialization of a person).
An object being a special kind just for a part of it’s life has special properties only when
it is in this role (consider e.g. a manager as a special kind of person). Note that both
concepts are based on semantic inheritance, i.e. on inheritance schema morphisms.

The following specification fragment defines the class MANAGER as a phase of an object
class PERSON:

object class PERSON
identification
name: string;
birthdate: date;
template
attributes

events

become_manager;
end object class PERSON;

object class MANAGER
view of PERSON;
template
attributes
OfficialCar : |CAR|;
events
birth PERSON.become_manager;

constraints
static Salary > 5.000;

11

end object class MANAGER;

In TRoLL, complex objects may be constructed using aggregation, i.e. composition
of objects from sets or lists of objects as well as from single objects. The concept of
aggregation is based on semantic incorporation: the components of a complex object are
included in a property-preserving way.

Consider for example the object representing TheCompany, which is a complex object
having a list of departments as component:

object TheCompany

template
components
depts : LIST(DEPT);

end object TheCompany;

An object society is a (possibly large) collection of objects that interact. Interaction is
e.g. performed by event calling. To call an event means to force synchronous occurrence
of the called event by the occurrence of the calling event.

Consider e.g. the promotion of a person identified by surrogate P to become a manager
of a department identified by surrogate D. The event new_manager(P) of the department
object calls the event become_manager of the corresponding person object:

global interactions
variables P: |PERSON|; D: |DEPT|;
DEPT(D).new_manager(P) >> PERSON(P).become_manager;

Note that event calling is also used for interactions with incorporated objects. An
important extension of event calling is transaction calling enabling an event to call a finite
sequence of other events treated as a transaction unit [SE90]. We will see the usefulness
of this concept during the discussion of formal object implementation in section 5.2.

5 Object Interfaces and Formal Implementation

Our aim is to formally describe large object systems based on the TRoLL language. One
important aspect of object-oriented design concepts is that object-orientation allows to
leave the strict hierarchical system structure enforced by other design approaches. To
allow a liberal system design, we have to support two basic structuring principles:

e We need a general interface mechanism to allow combination of subsystems while
hiding details of these subsystems. This interface mechanism should support control
and data flow in both directions.

e Subsystems should be designed on the basis of existing components in a stepwise
refinement process starting with an abstract conceptual description and ending with
executable descriptions close to the implementation platform. Therefore we need
the concept of formal implementation of objects over objects supported by language
features.

The following subsections discuss the language primitives for supporting these tasks
as they are included in the TRQLL language.

12

5.1 Object Interfaces

The basic idea of object interface definition is to give an access interface to existing
objects. That is, we do not define new objects by defining interfaces. In terms of the
presented approach, we define new interfaces to existing objects by defining attributes,
events and components (interfaces for derived objects). Thus, external object interfaces
are very similar to conceptual schema objects, but their internal semantics is given by a
transformation of the signature components to an implementation in terms of conceptual
objects. In terms of the concepts discussed in section 3, interfaces are language features
to describe interfacing by interaction morphisms and abstractions.

As mentioned before, an object (class) interface is mainly a mechanism for controlling
access to objects in an object base. Access control for a single object is achieved by defining
a restricted interface for the object, e.g. by performing a projection on the attributes and
events of the object. Furthermore, we allow a restricted form of deriving new attribute
values and events. This projection can be defined for single objects as well as for all
instances of an object class. The following examples show the principles of defining object
interfaces.

The first example is an interface to an object class PERSON defined for the use of
the salary department or a subsystem handling the task of preparing the monthly salary
report. Only attributes and events being of interest for this department are shown in the
interface signature.

interface class SAL_EMPLOYEE
encapsulating PERSON
attributes
Name: string;
IncomeInYear (integer): money;
Salary: money;
events
ChangeSalary(money);
end interface class SAL_EMPLOYEE;

The semantics of this interface definition is a restriction of the access to PERSON objects
as it is done in relational databases by a projection view. Please note that the projection
definition does not only restrict the observation of attributes but also the possible mod-
ification events being offered to the view users. This kind of projection can be used to
restrict the access to complex object components, too.

The object’s identifiers (for PERSONs the values of name and birthday) are not generally
preserved by an interface definition as visible attributes, but the internal object identity
is preserved since we do not derive new objects.

As an example for an interface with derived attributes and events we have the interface
class SAL_EMPLOYEE2 where the additional attribute CurrentIncomePerYear is derived
from the value of the attribute Salary and only a restricted way of changing salaries is
offered.

interface class SAL_EMPLOYEE2

encapsulating PERSON
attributes

13

Name: string;
derived CurrentIncomePerYear: money;
Salary: money;
events
derived IncreaseSalary;
derivation
derivation rules
CurrentIncomePerYear = Salary x13.5;
calling
IncreaseSalary >> ChangeSalary(Salary x1.1);
end interface class SAL_EMPLOYEE2;

The derivation part is usually hidden to the users. For the derivation of attribute
values we may use an object query language enabling value retrieval from object states.
We use an object query algebra presented in [SJ90, SJS91]. This algebra resembles well
known concepts of database query algebras handling values (not objects !). Algebra terms
are evaluated locally to the encapsulated object. For the derivation of events we can use
arbitrary process calling [SE90]. Thus, the derived event may be evaluated by a finite
process defined over the local events of the encapsulated object.

Furthermore, object class interfaces allow the selection of a subpopulation of an object
class. To define a selection, we allow arbitrary query terms of sort boolean. A variable
SELF denotes the currently observed instance. The following interface class RESEARCH
EMPLOYEE selects only those persons working for the research department.

interface class RESEARCH EMPLOYEE
encapsulating PERSON
selection where SELF .Dept = ‘Research’;
attributes
Name: string;
Salary: money;
events
ChangeSalary(money);
end interface class RESEARCH EMPLOYEE;

In the terminology presented in section 3, one may implicitly define an aggregation
object identified by the identification of its parts [EGS90, SE90] over each two objects using
incorporation morphisms. Therefore, we can easily extend our mechanism to support join
VIews:

interface class WORKS_FOR
encapsulating PERSON P, DEPT D
selection where P.surrogate in D.employees;
attributes
DeptName: string;
PersonlName: string;
derivation
derivation rules
DeptName = D.id;

14

PersonName = P.name;
end interface class WORKS_FOR;

In a join view, we typically introduce variables to identify the participating object
instances (which is, however, not necessary in our example). These variables can be used
in the (optional) selection clause and in derivation rules. As said before, the internal
object identity is preserved by the view and therefore even derived updates can be offered
in the view definition without semantical difficulties.

The purpose of interfaces is in principle mainly an authorization for restricted object
manipulation and attribute value retrieval. Interfaces have nothing to do with object copies

they are only a restricted view on existing objects rather than an object-preserving
operation. We can regard interface definitions as a mechanism to select objects for ma-
nipulation. The manipulations themselves are encapsulated within the objects, therefore
we do not have to describe the concrete manipulations but the restrictions for using them
correctly.

5.2 Formal Implementation

The basic idea of formal object implementation is taken from the area of abstract data
types: Starting with already specified base objects, we define an abstract object in terms of
the attributes and events of these base objects. The concrete implementation is hidden in
the abstract object which then can be used abstracting from its concrete implementation.
An implementation consists of three parts, namely

e the declaration of the base objects,

e the aggregation of the base objects and the implementation of the new events and
attributes in terms of the base object signature,

e and the hiding of the implementation details using an interface definition.

As an example, we implement the object class EMPLOYEE on top of an object emp_rel
describing a database relation of a relational database. The object class EMPLOYEE is very
simple to keep the implementation example small. EMPLOYEE objects are identified (like
persons) by their name (EmpName) and birthday (EmpBirth) and have a current salary
(Salary). As update events we have hire and fire of an employee (HireEmployee and
FireEmployee) and a change of their salary (IncreaseSalary). The implementation is
done using one object managing a set of tuples storing the data. This example was chosen
because it shows some critical aspects of formal object implementation, among them the
sharing of base objects by several abstract objects.

We start with defining the base object emp_rel.

object emp_rel
template
data types string, date, integer;
attributes
Emps : set(tuple(ename:string, ebirth:date, esalary:integer));
events
birth CreateEmpRel;

15

UpdateSalary(string, date, integer);
InsertEmpl(string, date, integer);
DeleteEmpl(string, date);
death CloseEmpRel;
valuation
variables n:string, b:date, s:integer;
[CreateEmpRel| Emps = {};
[InsertEmp(n,b,s)] Emps = insert(Emps, tuple(n,b,s));
{in(Emps,tuple(n,b,s))} =
[DeleteEmp(n,b)] Emps = delete(Emps, tuple(n,b,s));
permissions
variables n:string, b:date, s:integer;
{ exists(sl:integer) in(Emps,tuple(n,b,s1))} UpdateSalary(n,b,s);
{ Emps = {} } CloseEmpRel;
interaction
variables n:string, b:date, s:integer;
ChangeSalary(n,b,s) >> (DeleteEmp(n,b); InsertEmp(n,b,s));
end object emp_rel;

The operators in, insert and delete are operations defined for the parametrized data
type constructor set. The keyword tuple is used for the data type constructor (the ‘record
of” construct of programming languages) as well as for the tuple creation operation.

The interfaces (i.e., the object signature) of such implementation objects can be de-
rived automatically from a given relational schema. For example, the semantics of update
operations are semantically modelled by a sequence consisting of an insert and delete op-
eration in a set of tuples under the requirement to satisfy the key constraints. In general,
there are a number of update events generated from a given relational schema. It should
be mentioned that this relation object itself may be implemented for example by another
object using a B-tree or a hash table access method.

To define the relation between emp _rel and EMPLOYEES, we define as a next step
the implementation of an object class EMPL_IMPL on top of the single object emp_rel
representing the relational implementation. This way, we are able to express the sharing
of a resource by a number of ‘client” objects.

object class EMPL_IMPL
identification
data types date, string;
EmpName : string;
EmpBirth : date;
template
inheriting emp rel as employees;
attributes
derived Salary;
events
birth HireEmployee;
derived IncreaseSalary(integer);
death FireEmployee;
constraints
derivation rules
Salary =

16

count(project[esalary]
(select[ename = EmpName and ebirth = EmpBirth| (employees)))
interaction

variables n:integer;

HireEmployee >> employees.InsertEmpl(self.EmpName, self.Empbirth, 0);

FireEmployee >> employees.DeleteEmpl(self.EmpName, self.Empbirth);

IncreaseSalary(n) >>

employees.UpdateSalary(self.EmpName, self.Empbirth, self.Salary + n);

end object class EMPL_IMPL;

The object class EMPL_IMPL realizes the implementation of ‘employee’ instances onto
the single object realization. The last step is to hide implementation details (encapsula-
tion) by defining an interface class EMPL for EMPL_IMPL.

interface class EMPL
encapsulating EMPL_IMPL
attributes
EmpName: string;
EmpBirth: date;
Salary: integer;
events
IncreaseSalary(integer);
HireEmployee;
FireEmployee;
end interface class EMPL;

To show the correctness of our implementation, we have to prove that all properties of
the original EMPLOYEE specification can be derived from EMPL, too. It is outside the scope
of this paper to present a proof theory for formal object implementation. Basic concepts
for a proof theory for object specifications can be found in [FSMS90, FM91].

An implementation may use several base objects to implement an abstract object, for
example if normalization of relations becomes necessary to realize nested structures. In
general, each formal implementation consists of the following steps :

1. First of all, a complex object is constructed consisting of all base objects needed for
the implementation.

2. An object (class) interface defines the encapsulation of implementation details.
Formal implementation of objects over objects enables consistency checks and formal
verification because it is done in the same formal framework [FSMS90].
6 Schema Architecture and Modularization
In this section, we will briefly discuss some ideas towards the development large systems
using modularization principles for object systems. After several facets of modulariza-

tion object systems are informally discussed, we propose the use of a layered schema
architecture for object bases modules.

17

6.1 Modularization of Object Systems

The main motivation for introducing additional modularization constructs to the pre-
sented object specification language is the problem of managing large object system de-
scriptions. Objects are encapsulated modules of small granularity, but for really large
systems we need further modularization constructs supporting specification in the large.
Another motivation is the safe access to existing system components encapsulated by
an object-oriented access interface during the specification process of components to be
developed. Other important topics are the support of cooperative work by system mod-
ularization, modules as units for access rights, and local consistency checking.

In the area of object system specification, we can distinguish several kinds of modu-
larization principles occuring in design documents:

e The first structuring principle for large specification documents is the use of object
specification libraries to support reusability of object descriptions. We call this
principle syntactical reuse of specifications text.

We will not discuss syntactical reuse and related aspects like parametrization of
object descriptions in this paper. For a proposal to integrate syntactical reuse in a
framework for object specification we refer to [SRGS91].

e The classical case for modularization is the support of a hierarchical system structure
as known from modern programming languages. The main aspect of this approach
for system design is the support of divide-and-conquer methods in the design process.

An interesting special case is the support of module refinement by formal implemen-
tation steps where one (more abstract) module is implemented in terms of dependent
other modules, where the control flow follows the hierarchy.

e The more general case are object system modules as communicating subsystems.
In our framework, we call such systems communicating object societies. This idea
corresponds to horizontal composition of independent object systems in contrast to
the strict hierarchical composition of dependent subsystems mentioned before.

In contrast to the first case, we can characterize the cases of hierarchical and horizontal
composition as semantical (reJuse of object system modules by other object systems.
Typical examples for this general kind of system modularization are

e the case of shared databases, where different subsystems have access using applica-
tion-specific view interfaces only,

e a shared system clock or calendar, where we have both read access to the current
time or date as well as an active triggering mechanism for time-dependent system
activities,

e and as general case we have cooperating object systems as connected autonomous
systems realizing cooperating applications, where we have again both passive access
and active communication.

18

External Schema 1 | - - - - External Schema n

External / Conceptual
Mapping

Conceptual Schema

Conceptual / Internal Mapping

Internal Schema

Figure 1: Schema structure of the three-level architecture.

What unit of modularization can support such different system architectures 7 A
single module must be expressed by an arbitrary object society to allow adequate module
specifications. We need a concept of society interface structured like usual object societies
but hiding module realization details. Of course, we can define such societies as collections
of object interfaces as discussed in section 5.1.

Furthermore, we need language features for import and export of object society inter-
faces. Society interfaces can be passive or active interfaces; the passive case corresponds to
hierarchical dependent subsystems and the active case to horizontal composition of inde-
pendent systems. We need several different export interfaces for one module for modelling
a controlled communication of autonomous subsystems.

As a summary of these considerations, we need a module concept supporting both the
classical hierarchical refinement step for single modules and the general case of interacting
modules with controlled module access using different export interfaces. Therefore, we
propose to adopt the three-level schema architecture developed for database applications
as structuring principle for object system modules.

6.2 Three-level Schema Architecture for Modules

To organize the description of an object subsystem, we propose the three-level schema
architecture successfully introduced for structuring database applications [DAFTG86].
This three-level schema architecture for database applications can easily be explained
using figure 1. This architecture organizes the schema in three different levels :

e The central conceptual schema represents the conceptual view on the complete data-
base using an abstract data model schema. ‘Abstract’ data model means that the
conceptual schema abstracts from implementation details.

e The internal schema describes the implementation details in terms of the used
implementation platform (the used DBMS). This may require a change of the used
data model. Typical description issues for classical DBMSs are access paths and
their realization.

19

e The external schemata describe several views on the conceptual schema specific to
particular applications or user groups.

We propose to adapt this three-level schema architecture for our abstract concept of
dynamic objects (i.e., objects evolving over time). To realize such a schema architecture,
we have to make use of several formalisms and languages :

e We need a formal concept of objects to define the semantics of an object base both
on the conceptual and implementation level.

e Conceptual object base schemata must be defined using a language that enables an
implementation-independent abstract description of object bases.

e A formal concept of object interfaces is required to define external schemata as views
on an object base.

e Finally, we need a formal concept of object implementation to define the relation
between conceptual schema and internal schema.

As this list shows compared with the topics of this contribution, the TRgLL language
and the theory behind it is well suited for using this architecture for object system mod-
ules.

Having modules organized following this architecture proposal, arbitrary systems can
be built by connecting object system modules using society interface import. The imple-
mentation of single modules is hidden to the outside allowing the integration of already
existing subsystems, too. The possibility of defining several external schemata as export
interfaces allows to include access control and security mechanisms already on the system
specification level.

7 Conclusions

In this paper, we have introduced a framework that attemps to overcome the gap between
the description of static and dynamic properties of conceptual models. Object descriptions
are the units of design and encapsulate all static and dynamic aspects local to an object.
Object systems are collections of objects related by the notions of class membership,
interaction, inheritance and object aggregation. We gave a formalization of our concept
of object and introduced the language TRoLL for the abstract description of object-oriented
conceptual models. Besides the underlying framework, TRoLL is based on concepts from
semantic data modeling, from algebraic specification and from the specification of reactive
systems and tries to combine the advantages of these approaches. TRoLL offers a variety of
structuring mechanisms for specifications, among them roles, complex objects and global
interactions. With TRQLL, system specifications may be constructed from components
that can be analyzed locally.

Further work will focus on finding subsets of TRoLL which are sufficient for the de-
scription of models on lower levels of abstraction. Using formal transformations, abstract
specifications shall be refined and implemented. Other topics are modularization issues,
in-the-large specification, reusability and graphical notations for TRQLL.

20

Acknowledgements

Thanks to all IS-CORE colleagues, who contributed to the development of the concepts
presented and in the definition of the TRgLL specification language. In particular, Amilcar
Sernadas and Cristina Sernadas participated in developing basic ideas of objects and
object descriptions. Cristina Sernadas and Thorsten Hartmann were heavily involved in
defining the TRoLL language.

References

[Bee90]

[Boo90]

[DAFTG86]

[Day88]

[Dit88]

[EGS90]

[ES91]

[FM91]

[FSMS90]

[JHSS91]

Beeri, C.: A Formal Approach to Object Oriented Databases. Data & Knowledge
Engineering, Vol. 5, No. 4, 1990, pp. 353 382.

Booch, G.: Object-Oriented Design. Benjamin/Cummings, Menlo Park, CA,
1990.

Database Architecture
Framework Task Group (DAFTG) of the ANSI/X3/SPARC Database System
Study Group: Reference Model for DBMS Standardization. ACM SIGMOD
Records, Vol. 15, No. 1, 1986, pp. 19-58.

Dayal, U.: Active Database Management Systems. In: Proc. Conf. on Data and
Knowledge Bases, Jerusalem, 1988. pp. 150 169.

Dittrich, K. R. (ed.): Advances in Object-Oriented Database Systems. Lecture
Notes in Comp. Sc. 334. Springer Verlag, Berlin, 1988.

Ehrich, H.-D.; Goguen, J. A.; Sernadas, A.: A Categorial Theory of Objects as
Observed Processes. In: Bakker, J. de; Roever, W. de; Rozenberg, G. (eds.):
Foundations of Object-Oriented Languages (Proc. REX School/Workshop), No-
ordwijkerhood (NL), 1990. LNCS 489, Springer-Verlag, Berlin, 1991, pp. 203—228.

Ehrich, H.-D.; Sernadas, A.: Fundamental Object Concepts and Constructions.
In: Saake, G.; Sernadas, A. (eds.): Information Systems Correctness and
Reusability, Technical Report 91-03, Technische Universitat Braunschweig, 1991.
pp- 1-24.

Fiadeiro, J.; Maibaum, T.: Towards Object Calculi. In: Saake, G.; Sernadas,
A. (eds.): Information Systems Correctness and Reusability, Technical Report
91-03, Technische Universitat Braunschweig, 1991. pp. 129-178.

Fiadeiro, J.; Sernadas, C.; Maibaum, T.; Saake, G.: Proof-Theoretic Semantics
of Object-Oriented Specification Constructs. In: Meersman, R.; Kent, W. (eds.):
Object-Oriented Databases: Analysis, Design and Construction (Proc. 4th IFIP
WG 2.6 Working Conference DS-/), Windermere (UK), 1990. North-Holland,
Amsterdam. In print.

Jungclaus, R.; Hartmann, T.; Saake, G.; Sernadas, C.: Introduction to TRQLL

Textual Language for Object-oriented Specification. In: Saake, G.; Sernadas,
A. (eds.): Information Systems — Correctness and Reusability, Technical Report
91-03, Technische Universitat Braunschweig, 1991. pp. 97 128.

21

[JSHO1]

[1SS91]

[Kim90]

[KS90]

[MK90]

[SE90]

[SFSESY)]

[SJ90]

[SJ91]

[SJS91]

[SRGS91]

[SSES7]

[Weg90]

Jungclaus, R.; Saake, G.; Hartmann, T.: Language Features for Object-Oriented
Conceptual Modeling. In: Teory, T. (ed.): Proc. ER’91, 1991. to appear.

Jungclaus, R.; Saake, G.; Sernadas, C.: Formal Specification of Object Systems.
In: Abramsky, S.; Maibaum, T. (eds.): Proc. TAPSOFT’91, Brighton (UK),
1991. LNCS 494, Springer-Verlag, Berlin, pp. 60 82.

Kim, W.: Object-Oriented Databases: Definition and Research Directions. IEEFE
Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, 1990, pp. 327-
341.

Kappel, G.; Schrefl, M.: Object/Behavior Diagrams. Technical Report CD-TR
90/12, TU Wien, 1990. To appear in Proc. Int. Conf. on Data Engineering 1991.

McGregor, J. D.; Korson, T. (Guest editors): Special Issue on Object-Oriented
Design. Communications of the ACM, Vol. 33, No. 9, 1990.

Sernadas, A.; Ehrich, H.-D.: What Is an Object, After All? In: Meersman, R.;
Kent, W. (eds.): Object-Oriented Databases: Analysis, Design and Construction
(Proc. 4th IFIP WG 2.6 Working Conference DS-4), Windermere (UK), 1990.
North-Holland, Amsterdam. In print.

Sernadas, A.; Fiadeiro, J.; Sernadas, C.; Ehrich, H.-D.: The Basic Building
Blocks of Information Systems. In: Falkenberg, E.; Lindgreen, P. (eds.): Informa-
tion System Concepts: An In-Depth Analysis, Namur (B), 1989. North-Holland,
Amsterdam, 1989, pp. 225 246.

Saake, G.; Jungclaus, R.: Information about Objects versus Derived Objects. In:
Goers, J.; Heuer, A. (eds.): Second Workshop on Foundations and Languages for
Data and Objects, Aigen (A), 1990. Informatik-Bericht 90/3, Technische Univer-
sitat Clausthal, pp. 59 70.

Saake, G.; Jungclaus, R.: Specification of Database Applications in the TRQLL
Language. In: Harper, D. (ed.): Proc. Workshop on Specification of Database
Systems, SODS’91, Glasgow, 1991. Springer-Verlag, Berlin. to appear.

Saake, G.; Jungclaus, R.; Sernadas, C.: Abstract Data Type Semantics for Many-
Sorted Object Query Algebras. In: Thalheim, B. (ed.): Proc. 3rd Symp. on
Mathematical Fundamentals of Database and Knowledge Base Systems MFDBS-
91, Rostock, 1991. Springer-Verlag, Berlin, 1991.

Sernadas, C.; Resende, P.; Gouveia, P.; Sernadas, A.: In-the-large Object-
Oriented Design of Information Systems. In: Van Assche, F.; Moulin, B.; Rolland,
C. (eds.): Proc. The Object-Oriented Approach in Information Systems. North
Holland, 1991. to appear.

Sernadas, A.; Sernadas, C.; Ehrich, H.-D.: Object-Oriented Specification of
Databases: An Algebraic Approach. In: Hammerslay, P. (ed.): Proc. 13th
Int. Conf. on Very Large Databases VLDB’87, Brighton (GB), 1987. Morgan-
Kaufmann, Palo Alto, 1987, pp. 107 116.

Wegner, P.: Concepts and Paradigms of Object-Oriented Programming. ACM
SIGPLAN OOP Messenger, Vol. 1, No. 1, 1990, pp. 7-87.

22

[Wie90] Wieringa, R.J.: Equational Specification of Dynamic Objects. In: Meersman, R.;
Kent, W. (eds.): Object-Oriented Databases: Analysis, Design and Construction
(Proc. 4th IFIP WG 2.6 Working Conference DS-/), Windermere (UK), 1990.
North-Holland, Amsterdam. In print.

[ZM89] Zdonik, S. B.; Maier, D. (eds.): Readings in Object-Oriented Database Systems.
Morgan-Kaufmann, Palo Alto, CA, 1989.

23

