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Abstract. Fully concurrent models of distributed object systems are
specified using linear temporal logic that does not per se cope with
concurrency. This is achieved by employing the principle of local se-
quentiality: we specify from local viewpoints assuming that there is no
intra-object concurrency but full inter-object concurrency. Local for-
mulae are labelled by identity terms. For interaction, objects may refer
to actions of other objects, e.g., calling them to happen synchronously.
A locality predicate allows for making local statements about other ob-
jects. The interpretation structures are global webs of local life cycles,
glued together at shared communication events. These interpretation
structures are embedded in an interpretation frame that is a labelled
locally sequential event structure. Two initiality results are presented:
the category of labelled locally sequential event structures has initial
elements, and so has the full subcategory of those satisfying given tem-
poral axioms. As in abstract data type theory, these initial elements
are obvious candidates for assigning standard semantics to signatures
and specifications.

1 Introduction

In abstract data type theory, higher-order model classes like isomor-
phism classes of many-sorted algebras are specified with (conditional)
equational logic that does not per se allow for specifying such classes.
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The trick is to employ some general higher-order principle to specifiable
classes. A popular principle of this kind is initiality, i.e., restriction to
initial models.

This paper suggests an analogous trick for distributed systems spec-
ification. The higher-order principle is local sequentiality. Employing lo-
cal sequentiality, we can specify fully concurrent models of distributed
computation using a logic that does not per se cope with concurrency.

Local sequentiality means that we distinguish between local objects
and global families of objects, making the general assumption that there
is no intra-object concurrency but full inter-object concurrency.

Objects are locally specified in a sequential process logic, linear tem-
poral logic in our case. Local formulae are labelled by identity terms.
Interaction is specified by locally referring to actions of other objects,
e.g., calling them to happen synchronously. For making statements about
other objects, a locality predicate is introduced.

The interpretation structures for linear temporal logic are life cy-
cles, i.e., linear causality chains of events. Accordingly, our interpreta-
tion structures for local specification are global webs of local life cycles,
glued together at shared communication events. These interpretation
structures are embedded in an interpretation frame that is a labelled
locally sequential event structure. Interpretation frames are models of
processes.

This extends the simple models we used in our previous work where
interpretations were (sets of) life cycles [SEC90,EGS91] or menues [ES91].
The life cycle model has been used as a semantic basis for object spec-
ification languages OBLOG [SSE87,SSG+91], TROLL [JSHS91,SJE92]
[Ju93,HSJHK94], TROLL light, CGH92,GCH93, and GNOME [SR94].

Our work has been greatly influenced by related work on specifi-
cation languages and theoretical foundations. In a sense, we integrate
work on algebraic specification of data types [EGL89,EM85,EM90] and
databases [Eh86,EDG88], process specification [Ho85,Mi89], the spec-
ification of reactive systems [Se80] [MP89,Sa91a], conceptual modeling
[Ch76,Bo85,EGH+92,SF91,SJH93] and knowledge representation [ST89]
[MB89].

Approaches to logic and algebraic foundations of object-orientation
and concurrency have given essential input to the work reported here.
The results in [FSMS91,FM91,FM92,SSC92] have been influential.

FOOPS [GM87,GW90] has provided insights in the algebraic nature
of objects. Algebraic approaches to concurrency are given in [AR92]
[MM93,Br93].

The local specification logic and interpretation structures put for-
ward in this paper are influenced by the n-agent logic in [LMRT91], but
we deviate from that logic in essential respects: we have more elementary
temporal operators, and our interpretations are quite different.
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In a companion paper [ESSS95], the foundations outlined here are
applied to the semantic description of an abstract object specification
language.

2 Object signatures and interpretations

2.1 Data signatures

We assume that the reader is familiar with data signatures and their
algebraic interpretations, but we briefly introduce our notation and ter-
minology.

A data signature is a pair ΣD = (SD,ΩD) where SD is a set of data
sorts, and ΩD = {Ωx,s}x∈S∗

D
,s∈SD

is an S∗

D × SD-indexed family of sets

of data operation symbols. Given an SD-indexed set X = {Xs}s∈SD
of

variable symbols, the ΣD-terms over X are denoted by TΣD
(X).

If x = s1 . . . sn, we write ω : s1 × . . .× sn → s or ω : x → s [∈ Ω] for
ω ∈ Ωs1...sn,s.

An interpretation of ΣD is a ΣD-algebra U with carrier sets sU for
each s ∈ SD, and operations ωU : xU → sU for each operator ω : x →
s ∈ Ω. If x = s1 . . . sn ∈ S∗

D, then xU = s1U × . . . × snU is the cartesian
product. The interpretation of a term t ∈ TΣD

(X) in U with a given
variable assignment θ is denoted by tθU .

The class of all ΣD-algebras is structured by ΣD-algebra morphisms.
A ΣD-algebra morphism h : U → V is a family of maps h = {hs : sU →
sV }s∈SD

such that, for each operator ω : x → s ∈ Ω and each element
a ∈ xU , we have hs(ωU (a)) = ωV (hx(a)).

The nice properties of the category ΣD-alg of ΣD-algebras and ΣD-
algebra morphisms are well known and have been utilized for elegant se-
mantic constructions for abstract data type specifications [EGL89,EM85]
[EM90].

2.2 Class and instance signatures

Classes in the sense of what follows are object classes, not classes in the
sense of set theory.

Definition 1. Let ΣD be a data signature. A class signature over ΣD

is a triple ΣC = (SO, I, A) where SO is a set of object sorts, I =
{Ix,b}x∈S∗

DO
,b∈SO

is an S∗

DO × SO-indexed set family of instance oper-

ators, and A = {Ax,b}x∈S∗

DO
,b∈SO

is an S∗

DO × SO-indexed set family of
action operators. Here, SDO = SD ∪ SO.

Like for data operators, we use the notation i : x → b for i ∈ Ix,b
and a : x → b for a ∈ Ax,b.
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Example 1. We give a signature for a class of flip-flops using an intuitive
ad-hoc notation that easily translates to our formalism. The specification
says that flip-flops can be created, set, reset and destroyed. Moreover,
we have an infinite set of flip-flop identities: F1, F2, R(n) for all natu-
ral numbers n, and a “next” flip-flop N(f) for every flip-flop f . Each
flip-flop identity is associated with a flip-flop instance. This does not
necessarily mean that the system has infinitely many flip-flops, an in-
stance may have several “alias” names. This aspect is not persued in the
present paper.

class flip-flop;
object sort FF;
data sort nat;
actions create, set, reset, destroy;
instances F1, F2, R : nat, N : FF;

end flip-flop.

The notation is intended to mean the following class signature. The
underlying data signature is assumed to contain the sort nat of natural
numbers.

SO = {FF}
I = {F1 : → FF, F2 : → FF, R : nat → FF, N : FF → FF}
A = {create : → FF, destroy : → FF, set : → FF, reset : →

FF}
There are infinitely many flip-flop identities, e.g., F1, F2, R(0), R(1),

. . . , N(F1), N(F2), N(R(0)), N(N(R(0))), etc.
flip-flops can be created, set, reset, and destroyed. The “value” of

a flip-flop is represented by the fact that set or reset, respectively, is
enabled (cf. section 3). �

The interpretation of a class signature ΣC is indirectly given by (1)
extending the underlying data signature ΣD to cover the identities and
actions specified in the class signature, and (2) deriving an instance
signature ΣI for the identities and individual action alphabets of all
object instances.

The data signature extension is defined as follows. Each object sort
b goes with the two data sorts of object identities bi and object actions
ba, respectively. Thus, the object sorts SO give rise to two sets of data
sorts called Si

O and Sa
O. Let S

i = SD ∪ Si
O and Sa = SD ∪ Sa

O. For x =
s1 . . . sn ∈ S∗

DO, we define xi = si1 . . . s
i
n ∈ Si∗ where, for j ∈ {1, . . . , n},

sij = sj if sj ∈ SD. The notation xa is defined correspondingly.

Definition 2. Given a data signature ΣD = (SD,ΩD) and a class
signature ΣC = (SO, I, A) over ΣD, the extended data signature Σ =
(S,Ω) is given by

S = SD ∪ Sa
O ∪ Si

O
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where Sa
O = {ba | b ∈ SO} ∪ {ac} and Si

O = {bi | b ∈ SO} ∪ {id}, and

Ω = ΩD ∪Ω
a
O ∪Ω

i
O ∪Ω

ai
O

where, for every object sort b ∈ SO and every x ∈ S∗

DO, we have
Ωa

O;bixa,ba
= Ax,b, Ω

i
O;xi,bi

= Ix,b, Ω
ai
O;bapi,bool = {aibp}. The other sets

in the families are empty. Moreover, for every object sort b ∈ SO, we
assume bi ≤ id and ba ≤ ac.

Before we explain the transformation, we illustrate it by the flip-flop
example.

Example 2. The flip-flop class signature in example 1 transforms to
the following data signature extension.

sorts FFi ≤id, FFa ≤ac
ops F1, F2 : → FFi

R : nat→ FFi

N : FFi → FFi

create, set, reset, destroy : FFi → FFa

aiFF,FF : FFa×FFi → bool �

The sort id is to be interpreted by all identities in the system. Because
of the standard unique naming assumption in object-oriented systems,
this should be the disjoint union of the interpretations of the sorts bi

for b ∈ SO. Using order sorting, we have bi ≤ id for every object sort
b ∈ SO.

The sort ac is to be interpreted by all actions in the system, i.e.,
by the union of the interpretations of the sorts ba for b ∈ SO. We do
not require disjointness here, we will allow for overlap expressing that
actions are shared among objects. But still, using order sorting, we have
ba ≤ id for every object sort b ∈ SO.

The data identity operators i : xi → bi ∈ Ωi
O are derived from the

object identity operators i : x → b ∈ I. They may be parameterized over
data, including identities but not actions. So we can cope with objects
identified by other objects.

The data action operators a : bi × xa → ba ∈ Ωa
O are derived from

the object action operators a : x → b ∈ A. They may have actions
(“methods”) as parameters. Implicitly, this allows for identity parame-
ters as well since each action carries the identity of its object with it.
Data action operators are associated with object instances, so we have
identities of sort b as additional parameter. If a(i, t1, . . . , tn) ∈ TΣ(X)ba ,
we call i the identity of action a(i, t1, . . . , tn).

For any object sorts b, p ∈ SO, the id-of-action operators aibp :
ba × pi → bool are to be interpreted by relations associating with each
individual action the identities of its objects. Of course, the equation
aibb(a(u, y), u) = true should hold for every a : bi × xa → ba ∈ Ωa

O.
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Moreover, if the occurrence of action a′ of sort i′ : b′ implies the occur-
rence of action a′′ of sort i′′ : b′′ (e.g., via synchronous action calling),
then a′ should also belong to the actions of i′′, i.e., aib′b′′(a

′, i′′) = true.
The idea is that aibp(a, i) = true should hold whenever action a affects
object i.

Definition 3. An instance signature is a pair ΣI = (Id,Ac) where Id
is a set of identities, and Ac = {Aci}i∈Id is an Id-indexed family of
action alphabets.

An instance signature is a distributed action alphabet, providing a
local action alphabet for each object. Communication is established by
actions shared among two or more objects.

Definition 4. The partners of an action α are P (α) = {i ∈ Id | α ∈
Aci}.

Let ΣC = (SO, I, A) be a class signature over the data signature
ΣD = (SD,ΩD). Let U be an interpretation of the extended data sig-
nature Σ.

Definition 5. The instance signature determined by Σ and U is ΣI =
(Id,Ac) where Id = idU is the global set of identities, and Ac =
{Aci}i∈Id is the Id-indexed family of action alphabets Aci = {α ∈ acU |
aiqb(α, i) = true for some sort q ∈ SO and the sort b of i}.

2.3 An event-based interpretation of instance signatures

The interpretations of instance signatures are concurrent processes syn-
chronized via shared events, i.e., action occurrences.

Suitable interpretation structures can be based on any distributed
process model, for instance Petri nets or distributed transition systems.
But the interpretation structures should fit to the specification logic.
Choosing the latter suggests the appropriate process model.

As an example, for simplicity, and because of its proven practicality
[MP89] [Se80,Sa91a,Sa91b], we use linear temporal logic for specifying
the local properties of individual objects. The suitable interpretation
structures for linear temporal logic are linear traces of events, also called
life cycles [SEC90,EGS91].

There is an obvious distributed model based on individual life cycles
and event sharing, namely global webs of life cycles glued together at
shared communication events. This is the model we adopt here. A frame
for this model is an event structure that is locally sequential.

Event structures were introduced by Winskel [Wi80]. A recent sur-
vey of models for concurrency including event structures is [WN93]. We
briefly give the definition and introduce our notation. Our main devia-
tion from standard notation is that we use →∗ for causality instead of
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the usual ≤ because we use the latter for order sorting, and we want to
use event structures where causality is the reflexive and transitive clo-
sure of a base relation → of “step” causality. The following definition
is taken from [WN93].

Definition 6. A (discrete prime) event structure is a triple E = (Ev,→∗

,#) where Ev is a set of events and →∗,# ⊆ Ev ×Ev are binary rela-
tions called causality and conf lict, respectively. Causality →∗ is a partial
ordering, and conf lict # is symmetric and irref lexive. For each event
e ∈ E, its local configuration ↓e = {e′ | e′ →∗ e} is finite. Conf lict prop-
agates over causality, i.e., e#e′ →∗ e′′⇒e#e′′ for all e, e′, e′′ ∈ Ev. Two
events e, e′ ∈ Ev are concurrent, e co e′ iff ¬(e →∗ e′ ∨ e′ →∗ e ∨ e#e′).

In the sequel, the order-theoretic notions refer to causality.

Definition 7. Let E be an event structure. A life cycle in E is a max-
imal totally ordered sub-event structure of E.

Definition 8. A sequential event structure E is an event structure in
which (1) there is a unique minimal element ε ∈ Ev, (2) every local
configuration ↓e is totally ordered, and (3) causally independent events
are always in conf lict, i.e., for all events e, f ∈ Ev, we have e#f iff
neither e →∗ f nor f →∗ e holds. The events Ev+ = Ev−{ε} are called
the proper events.

Intuitively, the causally minimal event represents an imaginary “ini-
tial event” where no action occurred so far. This represents the “pre-
natal” state of an object where nothing happened yet (not even a “birth”
action).

With respect to causality, a sequential event structure E is a rooted
tree. It represents a set of life cycles grouped together by equal prefixes.
A single life cycle is also a sequential event structure.

Sequential event structures are our model of objects. There is no
intra-object concurrency. Thus, conflict is a derived concept. We omit
it from notation. Assuming that causality →∗ is the reflexive and tran-
sitive closure of a base relation → of “step” causality, we arrive at the
notation

E = (Ev,→)

for sequential event structures. We will extend this notation to any event
structure where conflict is determined from causality by a general as-
sumption. Actually, this holds for all event structures we consider here.

The interpretation structures we envisage for a given instance sig-
nature ΣI are labelled locally sequential ΣI -event structures. This is
our model for fully concurrent families of sequential objects. For mod-
elling communication, the local event sets Evi may overlap: an event
e ∈ Evi ∩ Evj ∩ . . . is shared by objects i, j, . . . ∈ Id.
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We make these notions precise, but first we need some notation.
Given a set I and an I-indexed family M = {Mi}i∈I of sets, we denote
their union by

⋃
M =

⋃
i∈I Mi. If E = {Ei}i∈I is a family of event

structures, we denote their union by
⋃

E = (
⋃

i∈I Evi,
⋃

i∈I →i).
The notation is justified by the assumption that global conflicts are

only those inherited by local conflicts: for all events e, f ∈ E, we have
e#f iff, for some object i and some events e′, f ′ ∈ Evi, we have a local
conflict e′#if

′ while e′ →∗ e and f ′ →∗ f . That is, we globally assume
e co f as a default.

Definition 9. Let ΣI = (Id,Ac) be an instance signature. A ΣI-event
structure E is the union

⋃
E of an Id-indexed family E = {Ei}i∈I

of sequential event structures where Ei = (Evi,→i). The set family of
proper events is denoted by Ev+ = {Evi+}i∈Id, and Ev+ =

⋃
Ev+.

That is, ΣI -event structures are locally sequential. This model is
similar to the n-agent model described in [LMRT91].

Definition 10. Given a ΣI-event structure E, a distributed life cycle
L = (Lc,→) in E is an event structure L ⊆ E that is the union of a
family L = {Li}i∈Id ⊆ E of life cycles in E, i.e., Li ⊆ Ei for every
i ∈ Id.

A distributed life cycle is a system of life cycles for the individual
objects, glued together at shared “communication” events.

Our interpretation structures are labelled distributed life cycles within
labelled ΣI -event structures, so we have to introduce labelling.

Definition 11. Let E = (Ev,→) be a ΣI-event structure. A labelling
for E is a map ᾱ : Ev+ →

⋃
Ac that is the union ᾱ =

⋃
α of a family

of maps α = {αi : Evi+ → Aci}i∈Id satisfying the following condition:
for all events e′, e′′ ∈ Ev, we have ᾱ(e′) 6= ᾱ(e′′) whenever there is an
event e ∈ Ev such that e → e′ and e → e′′.

Intuitively, each proper event is the occurrence of an action, and the
label is supposed to be this action. The imaginary start events εi do not
have labels. The labels of the immediate successors of an event e are
the actions enabled at e (cf. definition 19). These must be distinct for
different successor events.

Definition 12. An interpretation frame for a given instance signature
ΣI is a labelled ΣI-event structure Ē = (E, ᾱ). An interpretation struc-
ture within Ē is a labelled distributed life cycle L̄ = (L, ᾱ |L) where
L ⊆ E.

Now we define one particular interpretation frame determined by a
given instance signature ΣI . The idea is obvious: the events are defined
to be all possible occurrences of actions.
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However, not every combination of local configurations is a mean-
ingful context for an action to occur. For instance, if I invite you to
meet, then both of us must “remember” that invitation, otherwise the
meeting cannot take place. More precisely, when we meet, the two of us
must not be in local configurations where you are sure I invited you, and
I am sure I never did.

The relevant concept is that of a consistent configuration for an ac-
tion in which it can possibly occur. In such a configuration, any two ob-
jects must agree on their past communication. Generalizing the notation
for local configurations ↓e to sets, we define ↓C = {e′ | ∃e ∈ C : e′ →∗ e}
for any subset C ⊆ Ev of events.

Definition 13. Given a ΣI-event structure E = (Ev,→), a configura-
tion in E is a set of events Cf ⊆ Ev with the properties (1) Cf =↓Cf
and (2) Cf is conf lict-free, i.e., (Cf ×Cf)∩# = ∅. If I ⊆ Id is a set of
object identities, then a configuration for I in E is a configuration that
is the range γ(I) of a map γ : I → Ev such that γ(i) ∈ Evi for every
i ∈ I.

A configuration Cf for I in E contains one event ei = γ(i) ∈ Evi for
every i ∈ I. These events ei need not be distinct. Two different objects
i, j ∈ I may share an event in Cf , i.e., we may have ei ∈ Evj as well.
In this case, ei and ej must be causally related because otherwise they
would be in conflict.

Definition 14. Given an instance signature ΣI = (Id,Ac), the inter-
pretation frame Ē(ΣI) = (E(ΣI), ᾱ) is inductively defined as follows.
E(ΣI) =

⋃
E(ΣI) where E(ΣI) = {Ei}i∈Id where Ei = (Evi,→i), for

each object i ∈ Id.

(1) εi ∈ Evi for every object i ∈ Id.
(2) if α is an action and Cf is a configuration for α’s partners P (α), then

Cf α ∈ Evi for every partner i ∈ P (α); as for labelling and causality:
we have ᾱ(Cf α) = α, and e →i Cf α for every e ∈ Cf ∩Evi and
every i ∈ P (α).

The basis of this inductive definition is given by birth events that
happen in configurations consisting of one or more “initial events” εi.
The event Cf α represents α occurring in the configuration Cf . This
event is shared by the partners of α.

We prove that the construction is sound.

Theorem 1. For each instance signature ΣI , Ē(ΣI) is an interpreta-
tion frame for ΣI .

Proof: We have to show that every local event structure Ei = (Evi,→i

), i ∈ Id, is sequential, and that the labels are ok, i.e., immediate suc-
cessors have different labels.
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We prove the first by induction over the structure of Ē(ΣI).
Let i ∈ Id be an identity, and let e ∈ Ei. If e = εi, then ↓i e = {εi}

is trivially totally ordered, where ↓i e =↓e ∩ Ei. Otherwise, we have
e ∈ Cf α for some action α ∈ Aci and some configuration Cf for P (α).
Assume that every life cycle prefix so far, i.e., every local configuration
↓j f for f ∈ Cf and j ∈ P (α), is totally ordered. Then we have to show
that ↓j Cf α is totally ordered as well for every j ∈ P (α).

Assume that, for some partner j ∈ P (α), g, g′ ∈ ↓j Cf . Since ↓j Cf
is a linear trace, g and g′ are causally related in Ej, say g →∗

j g′. Since
both are causal for Cf α, ↓j Cf α is totally ordered as well.

As for labelling, we have to show that labels of events with a common
immediate predecessor are different. But this is obvious from construc-
tion since the events are defined by the actions applied to the configura-
tions representing the current states of the action’s partners. �

Labelled ΣI -event structures are related by morphisms. Adapting
general event structure morphisms from [WN93] to our structures, we
arrive at the following definition. Let ΣI = (Id,Ac) be an instance
signature.

Definition 15. Let E1 = (Ev1,→1) and E2 = (Ev2,→2) be two ΣI-
event structures. A ΣI-event structure morphism h : E1 → E2 is the
union

⋃
h of an Id-indexed family of partial surjective maps h = {hi :

Ev1i · ·→→ Ev2i}i∈Id such that h : Ev1 · ·→→ Ev2 is a partial surjective
map, and for all e1, e2 ∈ Ev1, if h(e1) and h(e2) are both defined, then
h(e1) →2 h(e2) iff e1 →1 e2.

These morphisms are easily extended to labelled ΣI-event structures:
if h(e) is defined, then ᾱ2(h(e)) = ᾱ1(e).

Labelled ΣI -event structures and their morphisms form a category
ΣI-evt. We cannot go into a detailed analysis of this category, we just
mention that it has initial elements3. In fact, we can prove that the
labelled ΣI -event structure constructed in definition 14 is an initial ele-
ment.

Theorem 2. Ē(ΣI) is initial in ΣI-evt.

Proof: The initial morphism h : Ē(ΣI) → F̄ to some labelled ΣI -event
structure F̄ is defined by sending the minimal element εi to the corre-
sponding minimal element in Fi, for every i ∈ Id. The other events are
mapped as follows. If h(Cf) is defined for (every event in) a configura-
tion Cf , then we define, for every action α, h(Cf α) = h(Cf)α if the
latter exists, otherwise h(Cf α) is undefined. By h(Cf)α we mean the
immediate successor of all events in h(Cf ) labelled α. It is not hard to
see that this defines a morphism and that it is unique. �

3 For obvious reasons, we avoid the usual term “object” for an element of a category.
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3 Object specification

Our logic for object class specification is a linear temporal logic with
locality. We illustrate the idea by means of the flip-flop example.

It is beyond the scope of this paper to develop an abstract specifica-
tion language for class signatures like the one in the flip-flop example
1 (cf. [ESSS95]). We give the “target” logic directly into which such a
language is to be translated.

That is, we give a specification logic for the extended data signature
Σ = (S,Ω).

The S-indexed family TΣ(X) of sets of terms is defined as usual,
employing an S-indexed family X of sets of variables.

Definition 16. The set LΣ(X) of formulae is inductively defined as
follows:

– (t1 =ss t2) ∈ LΣ(X) provided that t1, t2 ∈ TΣ(X)s;
– τ(i) ∈ LΣ(X) provided that i ∈ TΣ(X)id;
– α(i), ⊲α(i) ∈ LΣ(X) provided that α(i) ∈ TΣ(X)ac where i ∈

TΣ(X)id is the identity of α;
– (¬ϕ) ∈ LΣ(X) provided that ϕ ∈ LΣ(X);
– (ϕ⇒ ϕ′) ∈ LΣ(X) provided that ϕ,ϕ′ ∈ LΣ(X);
– (∃x ϕ) ∈ LΣ(X) provided that x ∈ Xs for some s ∈ S and ϕ ∈

LΣ(X);
– (Xi ϕ), (Fi ϕ), (Yi ϕ), (Pi ϕ) ∈ LΣ(X) provided that i ∈ TΣ(X)id and

ϕ ∈ LΣ(X).

Definition 17. The set Lτ
Σ(X) of local formulae is the set {i : ϕ | i ∈

TΣ(X)id, ϕ ∈ LΣ(X)}.

The locality predicate τ(i) says that the formula is local to i, i.e., the
“owner” of the local formula is communicating with i. The predicate α(i)
means that action α has just occurred in object i. The predicate ⊲α(i)
means that action α is enabled in object i, i.e., it may happen next. Of
course, actions must be enabled when they occur (i.e., just before they
have just occurred). The symbols for the local temporal operators have
the following meaning: Xi means next in i, Fi means sometime in the
future of i, Pi means sometime in the past of i, and Yi means previous
(yesterday) in i. Xi and Yi are meant to be the strong versions, i.e., the
next and previous states, respectively, have to exist.

We apply the usual rules for omitting brackets, and we introduce fur-
ther connectives through abbreviations, e.g., (ϕ∨ϕ′) for ((¬ϕ)⇒ϕ′). The

same applies to temporal operators, e.g., (X?
i ϕ) for (¬(Xi(¬ϕ))), (Gi ϕ)

for (¬(Fi(¬ϕ))), (Y?
i ϕ) for (¬(Yi(¬ϕ))), and (Hi ϕ) for (¬(Pi(¬ϕ))).

Definition 18. An object specification is a pair Ospec = (Σ,Φ) where Σ
is an extended data signature, and Φ ⊆ Lτ

Σ(X) is a set of local formulae
as axioms.
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Example 3. We specify a class of flip-flops, based on the signature given
in example 2.

sorts nat, FFi ≤id, FFa ≤ac

ops F1, F2 : → FFi

R : nat→ FFi

N : FFi → FFi

create, set, reset, destroy : FFi → FFa

aiFF,FF : FFa×FFi → bool

axioms ∀f, g:FF, n:nat
f: create(g)⇒ τ(g)
f: set(g)⇒ τ(g)
f: reset(g)⇒ τ(g)
f: destroy(g)⇒ τ(g)

f: ⊲ create(f)⇔¬⊲ set(f) ∧ ¬⊲ reset(f)
f: create(f)⇒ Yf ⊲ create(f)
f: create(f)⇒ ⊲ set(f)
f: create(f)⇒ Gf (¬Pf destroy(f)⇒¬(⊲ set(f)⇔ ⊲ reset(f)))
f: set(f)⇒ Yf ⊲ set(f)
f: set(f)⇒ ⊲ reset(f)
f: reset(f)⇒ Yf ⊲ reset(f)
f: reset(f)⇒ ⊲ set(f)
f: destroy(f)⇒ Yf ⊲ destroy(f)
f: destroy(f)⇒¬⊲ set(f) ∧ ¬⊲ reset(f)

f: set(f)⇒ Xf set(N(f))

F1: set(F1)⇒ set(F2)
F2: destroy(F2)⇒ PF1 set(F1)

R(n): set(R(n))⇒ FR(n) set(R(n+ 1))

The first four axioms say that only shared actions may occur locally.
Actually, these axioms need not be given explicitly because they are
satisfied anyway in every interpretation (cf. definition 19 below).

Axiom five gives a necessary and sufficient condition for a flip-flop’s
creation to be enabled: it must neither be in a set nor in a reset state.
Axiom six is the instance of a general rule: no action occurs unless it
is enabled. Axioms seven and eight describe the state after creation:
the flip-flop is set, and from now on it is always either set or reset
as long as it is not destroyed. Axioms nine to twelve give the obvious
preconditions and effects of set and reset. Axiom thirteen is another
instance of the general rule mentioned. The fourteenth axiom puts a flip-
flop after destruction in the same state as before creation: resurrection
is possible!

12



The fifteenth axiom puts a clockwork of flip-flops into operation:
flip-flops in the chain N are set step by step, one after the other, once
an initial one is set.

The sixteenth axiom talks about two particular flip-flops, it says that
whenever F1 has been set, then F2 has been set at the same time. This
is an instance of synchronous action calling. As a consequence, we have
set(F1)⇒ τ(F2) and thus aiFF,FF(set(F1), F2) = true, i.e., set(F1) is
also an action of F2. The seventeenth axiom says that F2 can only be
destroyed if it has at least once been set by F1 via action calling.

The eighteenth and last axiom says that whenever R(n) has been set,
then R(n + 1) will eventually be set. R is a “lazy” version of clockwork
N. Consider the following alternative:

R(n) : set(R(n))⇒ FR(n+1) set(R(n+ 1))

This does not say the same: in the former case, a communication between
R(n) and R(n+1) is required at the moment when R(n+1) is set. In the
latter case, the communication must take place right now and reassure
R(n) that its successor R(n + 1) will eventually be set.

Here is a simple fact that is entailed by the axioms:

F1 : set(F1)⇒ τ(F2) ∧ PF2 create(F2).
�

The logic LΣ(X) over an extended data signature is interpreted over
an instance signature ΣI = (Id,Ac) based on a data signature ΣD

and a data universe U , and an interpretation structure L̄ = (L, ᾱ |L)
within an interpretation frame Ē = (E, ᾱ), as described in section 2.
Please remember that L =

⋃
{Li}i∈Id where Li = (Lci,→i), and E =⋃

{Ei}i∈Id where Ei = (Evi,→i).
In particular, the local formulas are interpreted in a local configura-

tion ↓e of L and a variable assignment θ. Of course, data terms are to
be interpreted globally in U .

Definition 19. The satisfaction relation |= is inductively defined by the
following rules:

– L̄, ↓e, θ |= i : (t1 =ss t2) iff t1
θ
U = t2

θ
U ;

– L̄, ↓e, θ |= i : τ(j) iff e ∈ Lciθ
U

∩ Lcjθ
U

;

– L̄, ↓e, θ |= i : α(j) iff e ∈ Lciθ
U

and ᾱ(e) = α(j);

– L̄, ↓e, θ |= i : ⊲α(j) iff e ∈ Lciθ
U

and, for some e′ ∈ Eviθ
U

, e →iθ
U

e′

and ᾱ(e′) = α(j);
– L̄, ↓e, θ |= i : (¬ϕ) iff e ∈ Lciθ

U

and not L̄, ↓e, θ |= i : ϕ;

– L̄, ↓e, θ |= i : (ϕ ⇒ ϕ′) iff e ∈ Lciθ
U

and L̄, ↓e, θ |= i : ϕ′ or not

L̄, ↓e, θ |= i : ϕ;
– L̄, ↓e, θ |= i : (∃x ϕ) iff e ∈ Lciθ

U

and L̄, ↓e, θ′ |= i : ϕ for some

x-equivalent assignment θ′;
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– L̄, ↓e, θ |= i : (Xj ϕ) iff e ∈ Lciθ
U

and L̄, ↓e′, θ |= j : ϕ for some event

e′ ∈ Lcjθ
U

such that e →iθ
U

e′ or e →jθ
U

e′;

– L̄, ↓e, θ |= i : (Fj ϕ) iff e ∈ Lciθ
U

and L̄, ↓e′, θ |= j : ϕ for some event

e′ ∈ Lcjθ
U

such that e →∗ e′;

– L̄, ↓e, θ |= i : (Yj ϕ) iff e ∈ Lciθ
U

and L̄, ↓e′, θ |= j : ϕ for some event

e′ ∈ Lcjθ
U

such that e′ →iθ
U

e or e′ →jθ
U

e;

– L̄, ↓e, θ |= i : (Pj ϕ) iff e ∈ Lciθ
U

and L̄, ↓e′, θ |= j : ϕ for some event

e′ ∈ Lcjθ
U

such that e′ →∗ e.

This requires some explanation.
The first rule is straightforward, equations between data terms are

interpreted globally. The second rule says that j is local in i iff i’s current
event is shared by j. The third rule says that, in any local configuration of
a proper event, there is precisely one action that just occurred (possibly
shared with some other object j), given by the label.

The forth rule is a little unusual in that it is not interpreted in an
isolated life cycle but in a life cycle in context. Intuitively, α(j) is enabled
if it may happen in some next step in the frame, not necessarily in the
life cycle. A more classic way to capture this would use life cycles with
one-step look-ahead (“barbed wires”) as interpretation structures.

Rules five to seven are adapted from predicate calculus.
The eighth rule requires some thought: the events e and e′ may be-

long to different life cycles! For i to know that ϕ holds for j tomorrow,
i and j may communicate either today or tomorrow.

Also in the nineth rule, e and e′ may belong to different objects.
i : Fj ϕ holds in a local configuration ↓e for i iff j : ϕ holds in some
future configuration ↓e′ for j where e′ causally depends on e. This causal
dependency may involve a chain of objects i = i1, . . . , in = j where
successive objects communicate via some shared event.

The last two rules are the past-directed analoga of future-directed
rules eight and nine.

Definition 20. A labelled distributed life cycle L̄ satisfies a local for-
mula i : ϕ , written L̄ |= i : ϕ, iff L̄, ↓e, θ |= i : ϕ for every local
configuration ↓e and every variable assignment θ. A local formula i : ϕ
is valid in the interpretation frame Ē, written Ē |= i : ϕ, iff L̄ |= i : ϕ
for every distributed life cycle L̄ in Ē.

Interpretation structures represent single runs of processes. Since
we are interested in entire processes, we may ask which interpretation
frames represent specified processes, i.e., have the property that all ax-
ioms are valid. In particular, it is interesting to look at these interpre-
tation frames within the category ΣI-evt of all interpretation frames,
with morphisms as defined in definition 15. Since there is an initial ele-
ment in ΣI-evt (theorem 2), the obvious question to ask is whether the
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same holds for the subcategory of interpretation frames satisfying given
axioms Φ. The answer is positive.

Let Ospec = (Σ,Φ) be an object specification (cf. definition 18),
and let ΣI be the instance signature determined by Σ and a given data
universe U (cf. definition 5). Let Ospec-evt be the full subcategory of
all elements in ΣI-evt satisfying Φ.

Theorem 3. Ospec-evt has initial elements.

Proof idea: an initial element is given by the largest labelled sub-event
structure of Ē(ΣI), the initial element of ΣI-evt (cf. theorem 2), con-
taining all distributed life cycles satisfying all axioms in Φ. �

As in abstract data type theory, the initial elements of ΣI-evt and
Ospec-evt are obvious candidates for assigning standard semantics to
signatures and specifications, respectively.

4 Concluding Remarks

The local specification logic and distributed semantics presented in this
paper deserve further study. An obvious next step is to provide a proof
system. [LMRT91] give a sound and complete proof system for their
propositional n-agent logic, but that does not carry over to our case. It
is not clear whether a complete proof system for our logic exists. But
still, there are software tools for analysing and animating temporal logic
specifications [Sa91b] that can be adapted to our approach.

Our theory will be extended towards structured specifications. That
means that we have to introduce and study appropriate signature and
specification morphisms and corresponding forgetful functors on inter-
pretation frames and structures. This would provide the basis for study-
ing composition as well as parameterization. For composition, there are
two aspects: composing sequential objects from components [ESSS95],
and composing concurrent families from subfamilies.

There is work in progress to incorporate reification issues in our
framework [De94,De95]. It is well known that the temporal operators
of our logic are not suitable for action refinement, the logic in [CE94]
(which is similar to Hennessy-Milner logic [HM85]) may be better suited.
This is an indication that we should work in a family of related logics,
as put forward in [MM94].

While reification requires a more “operational” logic, specification
expressiveness and comfort suggest to move in the opposite direction. An
obvious extension of our logic is to introduce branching-time operators.
Branching-time formulae cannot be interpreted in single life cycles. That
means that our interpretation frames will play the role of interpretation
structures.
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