Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke
Philipp Wille
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
1.0 Organizational Issues

• Lecture
 – 8:45-11:15h (3 lecture hours with a short intermediate break)
 – Exercises, detours, and home work discussion integrated into lecture

• 5 Credits

• Exams
 – Oral Exams
 – Individual appointments with our secretary
– Weekly exercises
 • You don‘t really need to do the exercises, but it will surely be helpful
 • Exercises will be neither collected, nor corrected, nor graded
1.0 Why should you be here?

• The increase of knowledge grows exponentially
 – e.g. in terms of new publications

• Huge amounts of data have to be sifted and analyzed to gain intelligence from data
 – Need knowledge-based technology for this task!
 – Analysts have interesting perspectives, i.e. exciting and well-paid work
 – Find out about the things you always wanted to know…

Data extracted from the Medline database
1.0 Why should you be here?

• But you can also go into the direction of **big bucks**…
 – Write an **automated reasoning system** and license call-center technology
 – Ronald A. Katz, founder of **Ronald A. Katz Technology Licensing, LP**)
 • Licensing the technology earned more than **one billion USD**
 • Customers include AT&T, Bank of America, Citibank, Delta Air Lines, Hewlett Packard, IBM, Microsoft…
1.0 What will you learn?

- What are knowledge-based systems? What can you do with them?
- Many KBS are based on formal logics. You will:
 - ...learn about different kinds of formal logic
 - ...learn syntactic basics of predicate logic
 - ...learn of how to interpret logical expressions
 - ...learn how to efficiently evaluate logical expressions in a database setting
 - ...how to design a KBS using different flavors of formal logic

\[\forall x P(x) \land \forall x Q(x) \iff \forall x (P(x) \land Q(x)) \]
1.0 What will you learn?

• We will show you how the vision of knowledge based systems was born and what became of it
• We will show you how all KBS ideas have been reborn within the semantic web
• We will show you how the semantic web works and what it tries to achieve
1.0 Recommended Literature

- There is no “standard literature”
- General literature
1.0 Recommended Literature

• German titles

• … and many academic papers…
1. Knowlegde-based Systems

1.1 Dreams of Artificial Intelligence
1.2 Applications of Knowledge-Based Systems
1.2 Deduction in Databases
1.4 The Semantic Web
1.1 AI Dreams

• Since ancient times, people dream of intelligent machines
 – Golden robots of Hephaestus
 – Archytas’ wooden pigeon (400 BC)
 – Leonardo da Vinci’s mechanical knight (1495)
 – The Turk of Wolfgang von Kempelen (1770)
 – …

• In computer science, this gave birth to the field of Artificial Intelligence
1.1 AI Dreams

• In the 20th century, the field of A.I. (Artificial Intelligence) became popular
 – 1950: Alan Turing
 • “The brain is just like a complex machine.”
 • Turing test
 – 1956: Dartmouth Conference
 • Founding of the A.I. laboratories
 – 1965: Herbert A. Simon
 • "Machines will be capable, within twenty years, of doing any work a man can do"
 – 1967: Marvin Minsky
 • "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."
In the initial phase of A.I. research, people were highly motivated and full of visions

– High amount of research money available, mainly from the military (DARPA)

In the mid seventies, the great visions died…

– A long series of failures took its toll
– The A.I. winter – funding stopped

Change of research direction

– Do not imitate the full human brain, but find intelligent algorithms for solving some particular, difficult problems
– Today the basic ideas are part of the Semantic Web efforts
Main critique – Hubert Dreyfus (UC Berkeley, USA)

- Expertise **cannot readily be extracted** from human experts
- Much knowledge is not explicit, but somehow **embodied**

 - The brain is not simply hardware running a program based on discrete symbolic calculations
In the 1980ies, A.I. focused on well-defined problem domains building first commercially successful systems

- **Knowledge-based systems** or ‘expert systems’

Idea: Create a system which can draw **conclusions** and thus support people in difficult decisions

- Simulate a **human expert**
- **Main idea:** extract knowledge of experts and just cheaply copy it to all places you might need it
• **Expert Systems** were supposed to be especially useful in

 – Medical diagnosis
 • Great failure up to now

 – Production and machine failure diagnosis
 • Works quite well

 – Financial services
 • Widely used
1.2 Notable Expert Systems

• **MYCIN**
 - Developed 1970 at Stanford University, USA
 - Medical expert system for treating *infections*
 - Diagnosis of infection types and recommended antibiotics (antibiotics names usually end with ~mycin)
 - Around 600 rules (also supporting uncertainty)
 - MYCIN was treated as a success by the project team…
 - Experiments showed good results, especially with rare infections
 - … but was never used in practice
 - Too clumsy
 - Technological constraints
1.2 Notable Expert Systems

• **MYCIN** example rule

 If the organism 1) stains grampos 2) has coccus shape 3) grows in chains
 then there is a suggestive evidence of 0.7 that it is *streptococcus*

• **MYCIN** used backward chaining from goal to facts for reasoning

 – Try to apply rules concluding the reasoning process by asking the user about the rules premises
• **MYCIN** example

```
--------PATIENT-1--------
1) Patient's name: FRED SMITH
2) Sex: MALE
3) Age: 55
4) Have you been able to obtain positive cultures from a site at which Fred Smith has an infection?
   YES
--------INFECTION-1--------
5) What is the infection? **PRIMARY-BACTEREMIA**
6) Please give the date when signs of INFECTION-1 appeared. **5/5/75**
The most recent positive culture associated with the primary bacteremia will be referred to as:
--------CULTURE-1--------
7) From what site was the specimen for CULTURE-1 taken? **BLOOD**
8) Please give the date when this culture was obtained. **5/9/75**
The first significant organism from this blood culture will be called:
--------ORGANISM-1--------
9) Enter the identity of ORGANISM-1. **UNKNOWN**
10) Is ORGANISM-1 a rod or coccus (etc.)? **ROD**
11) The gram stain of ORGANISM-1: **GRAMNEG**
```
** MYCIN explanations example **

** Did you use RULE 163 to find out anything about ORGANISM-1? **
RULE163 was tried in the context of ORGANISM-1, but it failed because it is not true that the patient has had a genito-urinary tract manipulative procedure (clause 3).

** Why didn't you consider streptococcus as a possibility? **
The following rule could have been used to determine that the identity of ORGANISM-1 was streptococcus: RULE033
But clause 2 (“the morphology of the organism is coccus”) was already known to be false for ORGANISM-1, so the rule was never tried.
1.2 Notable Expert Systems

• **Dipmeter Advisor**
 - Developed 1980 by Schlumberger Doll Research
 - Support for **oil drilling operations**
 - Very simple system with ~90 rules
 - However, system was a **huge success**
 • Heavily used in field and appreciated by it’s users
 • Sold as fully functional unit including hardware
 • A great success story before A.I. winter!
• **Dipmeter Advisor**: functionality
 – Dipmeters analyze ground properties by conductivity measurements
 – Usually end up with a ‘dipmeter log’
 • Hard to interpret, even by experts
1.2 Notable Expert Systems

• **Dipmeter Advisor**: functionality
 – Dipmeter advisor creates log analysis and provides a summary using rules

Example rule

```
IF
  there exists a delta-dominated, continental-shelf marine zone, and
  there exists a sand zone intersecting the marine zone, and
  there exists a blue pattern within the intersection
THEN
  assert a distributary fan zone
  top = top of blue pattern
  bottom = bottom of blue pattern
  flow = azimuth of blue pattern
```

Example summary

```
STRUCTURAL DIP
From 13140 to 13770: 3.9 degrees at azimuth of 327.
From 13780 to 14444: 5.7 degrees at azimuth of 213.
From 14444 to 15500: 25.9 degrees at azimuth of 243.

FAULTS AND MISSING SECTIONS
From 13762 to 13790: there is a growth fault
  oriented along the line from 63 to 243 degrees,
  with the downthrown block at 163 degrees.
From 14352 to 14444 there is an unconformity or
  middle age fault.

STRATIGRAPHY
From 15114 to 15168 there is a distributary-front
  with an associated channel. The channel axis is
  at 163 degrees, flow was at 75 degrees.
```
1.2 Notable Expert Systems

• NASA Shine
 – **Spacecraft Health Inference Engine**
 – Development started in mid 70s by NASA and JPL (Jet Propulsion Lab) for the Deep Space Network
 • Commercially used by ViaSpace
 – Multi-purpose inference system
 – Detects system failures within complex mission critical machineries
 – Designed to run in real-time in embedded and distributed systems
• **NASA Shine**: currently used by
 – Deep Space Network
 – Lockheed Martin F-35 Lightning 35
 – McDonnel Douglas F/A-18 Hornet
 – NASA CEV (Crew Exploration Vehicle)
 – NASA Ares Rocket Program
 – NASA Voyager spacecrafts
 – Lockheed Martin X-33
 – Galileo Space Probe
 – Extreme Ultraviolet Explorer
 – …
1.3 Deduction in Databases

- System may deduce new **facts** using **rules**
 - Leads to **inference chains**
- Most systems heavily rely on mathematical logics
 - **First-Order Predicate Logics**
1.3 Deduction in Databases

- Usually deriving new knowledge is based on inference rules and specific problem data
 - **Fact**: Hektor is a frog
 - **Rule**: All frogs are green
 - Implies new **fact**: Hektor is green

- Also, **uncertainty** can be supported
 - **Fact**: Tweety is a bird
 - **Rule**: Almost all birds can fly except ostriches, chicken and some others
 - **Query**: Can Tweety fly?
 - Only few species are ostrichs, chicken or penguins
 - **Tweety** can fly with high probability
1.3 Deduction in Databases

• But sometimes **several steps** are needed
 – **Fact:** Hektor is a frog
 – **Rules:** All frogs are green
green things can hide in undergrowth
 – **Implies:** Hektor can hide in undergrowth

• Needs to apply the second rule **on the result** of the first rule
 – **Recursion!**
1.3 Deduction in Databases

• Rules can be used to **derive new knowledge** over data collections (called **facts**)
 – Based on **symbolic calculation** the 70ies saw the development of logic programming languages like LISP or Prolog

• But how do you deal with **large fact collections**?
 – It’s easy… use a database for storage and then reason over the database instance
1.3 Deduction in Databases

• Common **architecture** of an expert system
 – **User Interface**: Usually based on a question-response dialog
 – **Inference Engine**: Tries to deduce an answer based on the knowledge base and the problem data
 – **Explanation System**: Explains to the user why a certain answer was given or question asked
 – **Knowledge Base**: Set of rules and base facts
 – **Problem Data**: Facts provided for a specific problem via user interface
1.3 Deduction in Databases

- **Expert systems** have to keep and manage valuable data in their knowledge base
 - Basically expert systems just support another query type, but have the same requirements like a normal database system

- Can we simply build deductive databases on top of a **relational database engine**?
1.3 Recursion in DB-Queries

• Why don’t normal databases do the trick?
 – SQL queries can be read as follows
 • “If some tuples exist in the FROM-tables satisfying the WHERE-conditions, then the SELECT-tuples are the answer”
 – Datalog is a query language that has the same if-then flavor, but…
 • An intermediate answer table can appear in the FROM clause to facilitate recursion
1.3 Recursion in DB-Queries

• Example: a **public transport information system**

• Database stores **connected stops as facts**, e.g.,
 – `connection(Maschplatz, Hamburgerstr, 2 minutes)`.
 – **Transitive closure** contains all connections

• Additional **rule**
 – Connections are transitive. If you can go from A to B and from B to C, you can also go from A to C
1.3 Recursion in DB-Queries

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Line</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maienstr</td>
<td>Kälberwiese</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Kälberwiese</td>
<td>Rudolfplatz</td>
<td>19</td>
<td>1.5</td>
</tr>
<tr>
<td>Rudolfplatz</td>
<td>Amalienplatz</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Rudolfplatz</td>
<td>Petristr.</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Petristr.</td>
<td>Maschstr.</td>
<td>11</td>
<td>1.5</td>
</tr>
<tr>
<td>Amalienplatz</td>
<td>Maschstr.</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>
1.3 Recursion in DB-Queries

• How long does it take to go from ‘Maienstr.’ to ‘Maschstr.’ in **SQL-92**?
 – SQL-92 does not support transitive closures
 – Only solution: Create a view **materializing** all connections

• Big challenge on **storage space** and **data consistency**

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Line</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maienstr.</td>
<td>Kälberwiese</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Maienstr.</td>
<td>Rudolfplatz</td>
<td>19, 19</td>
<td>2.5</td>
</tr>
<tr>
<td>Maienstr.</td>
<td>Petristr.</td>
<td>19, 19, 11</td>
<td>3.5</td>
</tr>
<tr>
<td>Maienstr.</td>
<td>Maschstr.</td>
<td>19, 19, 11, 11</td>
<td>4.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfS – TU Braunschweig
1.3 Deduction in Databases

• Deductive queries/programs are often stated in Prolog or Datalog
 – Prolog is a logical programming language created in 1972
 – Datalog is a subset of Prolog especially designed for deductive databases
 • No predicates are allowed as arguments
 • Only fix-point iteration
 • Efficient bottom-up evaluation
1.3 Deduction in Databases

• **In Datalog**: Queries use **recursive** rules
 – Facts given by the single connections
 • ?connection(Maigenstr., Maschstr., L, X)
 • Can be answered efficiently by binding the start and goal
 stop and deducing everything in between
 – connection(X,Y, L, T) :- connection (X, Z, L₁, T₁),
 connection (Z, Y, L₂, T₂),
 \[T = T₁ + T₂, \quad L = L₁||,||L₂ \]

• Big challenge: **How can this query be evaluated efficiently?**
1.3 Deduction in Databases

A deductive DBS is a database system with limited support for reasoning:

- All the goodies of databases (transactions, recovery, etc.)
- Queries based on (recursive) views are possible
- Efficient (bottom up) query optimization
1.3 Deduction in Databases

• Typical example for the application of deductive databases:
 – **Facts**
 • parent(bill, mary).
 • parent(mary, john).
 – **Rules**
 • ancestor(X, Y) :- parent(X, Y)
 • ancestor(X, Y) :- ancestor(X, Z) , ancestor(Z,Y)
 – **Query**
 • :- ancestor(bill, X)
 – **Answer**
 • ancestor(bill, mary)
 • ancestor(bill, john)
1.3 History of Deductive DBs

• Since becoming popular, numerous deductive database systems have been developed
 – All of them are system-centered with proprietary storage engines
 – No usage of RDBMS or OODBMS

• Coral
 – Developed since 1988 by University of Wisconsin
 – Provides native interfaces directly into C++
 – Full transactional ACID support due to Exodus storage manager
1.3 History of Deductive DBs

• **LDL**
 – Developed since 1984 by MCC Research in Austin
 – Proprietary Query language based on Horn clauses
 – Initially developed for an special parallel logic computer hardware developed by MCC Research in Austin (which never went into production)
 – After the failure of the 5th generation computer project, also funds for LDL ceased
 – Project adopted by University of California, LA
 – Nowadays, it is part of the InfoSleuth Agent System Project

• **Lola/Butterfly**
 – Developed by University of Passau since 1995
 – Fully implemented in Common Lisp
 – Works Bottom-Up as well as Top-Down, focus on optimization

• **Declare, Nail!, …**

• **Unfortunately, deductive DBs were a commercial failure…**
1.3 History of Deductive DBs

• …but still, the spirit of deductive databases lives on!
 – Relational Databases adopted many deductive concepts in form of common table expressions
 • Standardized in SQL-99
 • Allow recursive querying
 – The currently very popular Semantic Web reuses many ideas and techniques developed for deductive databases
1.4 The Semantic Web

• The expression was notably coined in Tim Berners Lee’s article in Scientific American, May 2001
 – Describes his vision of a future Internet
 – Describes a story of a guy named Pete looking for medical care for his mom
 • He uses a Semantic Web Agent
 • The agent is able to plan complex tasks by just accessing information in the internet
 • E.g. Finding a specialist doctor within direct vicinity of Pete’s home, offering the exact treatment necessary, available for a meeting at times fitting into Pete’s schedule.
The semantic web agent is able to perform those tasks by accessing and understanding the Web pages:

- e.g. recognize the opening times of the clinic, finding out, if it is close or if it is covered by the health plan.
- Also, it is able to deduce new information:
 - “Asthma is a chronic lung disease.”
 - “A pulmonologist is a doctor for diseases of the lung and the respiratory tract.”
 - “A doctor can offer treatments in his/her special field.”

• Dr. Paul is a pulmonologist \(\Rightarrow\) Dr. Paul can offer asthma treatments.
The goal of the semantic web is **not** to understand natural language, but provide web pages in an **computer readable form**

The Semantic Web is a **web of data**. There is lots of data we all use every day, and it is not part of the web. I can see my bank statements on the web, and my photographs, and I can see my appointments in a calendar. But can I see my photos in a calendar to see what I was doing when I took them? Can I see bank statement lines in a calendar? Why not? Because we don't have a web of data. Because data is controlled by applications, and each application keeps it to itself.

The Semantic Web is about two things. It is about **common formats for integration and combination of data** drawn from diverse sources, where on the original Web mainly concentrated on the interchange of documents. It is also about language for recording **how the data relates to real world objects**. That allows a person, or a machine, to start off in one database, and then move through an unending set of databases which are connected not by wires but by being about the same thing.
• This is how a website looks to a machine
 – Example: A personal website of an faculty member…
• Now, you could start adding some **tags** describing the **semantic** nature of some parts of the text.
• Unfortunately, the machine also does not understand the tags…
• A first step in helping the machine is providing a schema of valid documents
 – Still, this does not really help to understand the text
 name [εδυχατιον] [ωρκ] [πριωατε]
1.4 The Semantic Web

- ...especially if somebody uses a different schema

- At least, schemas can be matched:
 - name [εδυχατιον] [work] [πρωσατε] =
 - δομ [m άν·μ άν·ψ χωρ] [σύνδες] [δάφνης] [μ άν·μ άν·ψ χωρ]
• The semantic web goes one step further by providing also **ontologies** describing all possible tags, what they mean and how they are related
 – What is a CV? How can it be read?
 – If there a listing of recent lectures, then is also contributes to the education history
 – etc.
1.4 The Semantic Web

• During the **semantic web** section of this lecture, we will show you:
 – How to model knowledge as **ontologies or taxonomies**
 – How to perform **reasoning** on ontologies
 – Existing standards and languages
 • RDF, RDF/S, OWL, DAML, OIL, SPARQL, etc.
 – Other cool stuff!
1.4 Taxonomies & Ontologies

- The Semantic Web is based on ontologies
 - What are these? Where do they come from?
- Science and philosophy always strived to explain the world and the nature of being
 - First formal school of studies: Aristotle’s metaphysics (‘beyond the physical’, ca. 360 BC)
 - Traditional branches of metaphysics
 - Ontology
 - Study of being and existence
 - Natural theology
 - Study of God, nature and creation
 - Universal science
 - “First Principles”, logics
• **Ontology** tries to describe everything which is (exists), and it’s relation and categorization with respect to other things in existence
 – What is **existence**? Which **things** exists? Which are **entities**?
 – Is existence a property?
 – Which **entities** are fundamental?
 – What is a **physical object**?
 – How do the **properties** of an object relate to the object itself? What features are the **essence**?
 – What does it means when a physical object exists?
 – What constitutes the **identity** of an object?
 – When does an object **go out of existence**, as opposed to merely **change**?
 – Why does anything exist rather than nothing?
Parts of metaphysics evolved into **natural philosophy**

- Study of **nature** and the **physical universe**
- In the late 18th century, it became just ‘**science**’
- Ontology is still a dominant concept in science
 - Representation of all knowledge about things
• **Taxonomies** (τάξις: arrangement) are part of ontology
 – Groups things with similar properties into **taxa**
 – Taxa are put into an **hierarchical structure**
 • Hierarchy represents supertype-subtype relationships
 • Represents a **specialization** of taxa, starting with the most general one
 – Taxonomies thus **model** information into a **data structure**
 • Most notable: Linnaean Taxonomy of Life
• **Ars Generalis Ultima**

 – Created in 1305 by Ramon Llull

 – “Ultimate” solution for the **Ars Magna** (Great Art)

 • Mechanical combination of terms to create knowledge

 • Base hope: all facts and truths can be created in such a way

 – Heavy use of Arbor Scientiae (Tree of Knowledge)

 • Tree structure showing an hierarchy of philosophical concepts

 • Together with various “machines” (paper circles, charts, etc.) reasoning was possible
• Recently, creating **ontological models** became fashionable in CS
 – So called **ontologies**
 – Widely used in medical informatics, bio-informatics, Semantic Web, etc.
• In addition to ‘normal’ data models, ontologies offer **reasoning capabilities**
 – Allow to classify instances automatically
 – Allow to extract additional facts from the model
• Computer ontologies are usually modeled using **special languages**
 – OWL, DAML+OIL, IDEF,
• Most notably, ontologies can be found within the semantic web
• Expert systems are cool!
 – They are born in early 60ties as a major AI application
 – Mostly based on formal logics
 – Early expert systems failed their high expectations, topic became infamous
 – …but: every good thing returns, expert systems are back!

• The semantic web are also based on ideas from expert systems
 – Ontologies represent knowledge
 • Idea of Ontologies are as old as science itself…
 • Technology is “new”
• **Next Lecture**

 – Basics of Knowledge Based Systems:
 The 1x1 of Boolean and First Order Logics