Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke
Jan-Christoph Kalo
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
• **Datalog** can be converted to **Relational Algebra** and vice versa

 – This allows to **merge** Datalog-style reasoning techniques with relational databases
 • e.g. Datalog on RDBs, Recursive SQL, etc.

 – The **elementary production rule** (and thus the fixpoint iteration) has been implemented with relational algebra in the last lecture
• In addition to **bottom-up** approaches (like fix-point iteration), there are **also top-down** evaluation schemes for Datalog

 – Idea: Start with query and try to construct a proof tree down to the facts

 – Simple Bottom Up approach: Construct all possible search trees by their depth

 • **Search tree**: Parameterized **proof tree**

 – Search tree can be transformed to a proof tree by providing a valid substitution
Search trees are constructed by **backwards-chaining** of rules

Problem: **When to stop?**

- A naïve solution: Compute the theoretical maximal chain length and use as limit

Outlook for today: **Optimization techniques**

- Evaluation optimization
- Query rewriting
• More implementation and optimization techniques
 – Design Space
 – Delta Iteration
 – Logical Rewriting
 – Magic Sets
• The computation algorithms introduced in the previous weeks were all far from optimal
 – Usually, a lot of unnecessary deductions were performed
 – Wasted work
 – Termination problems, etc…

• Thus, this week we will focus on optimization methods
Optimization and evaluation methods can be classified along several criterions:

- Search technique
- Formalism
- Objective
- Traversal Order
- Approach
- Structure
7.1 Query Optimization

- **Search Technique:**
 - **Bottom-Up**
 - Start with extensional database and use **forward-chaining** of rules to generate new facts
 - Result is subset of all generated facts
 - **Set oriented-approach** → Very well-suited for databases
 - **Top-Down**
 - Start with queries and either construct a proof tree or a refutation proof by **backward-chaining** of rules
 - Result is generated **tuple-by-tuple** → More suited for complex languages, but less desirable for use within a database
7.1 Query Optimization

• Furthermore, there are two possible (non-exclusive) formalisms for query optimization
 – **Logical**: A Datalog program is treated as logical rules
 • The predicates in the rules are connected to the query predicate
 • Some of the variables may already be bound by the query
 – **Algebraic**: The rules in a Datalog program can be translated into algebraic expressions
 • Thus, the IDB corresponds to a system of algebraic equations
 • Transformations like in normal database query optimization may apply

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfIS – TU Braunschweig
• Optimizations can address different objectives

 – Program Rewriting:
 • Given a specific evaluation algorithm, the Datalog program \mathcal{P} is rewritten into a semantically equivalent program \mathcal{P}'
 • However, the new program \mathcal{P} can be executed much faster than \mathcal{P} using the same evaluation method

 – Evaluation Optimization:
 • Improve the process of evaluation itself, i.e. program stays as it is but the evaluation algorithm is improved
 • Can be combined with program rewriting for even increased effect
7.1 Query Optimization

- Optimizations can focus on different traversal-orders
 - **Depth-First**
 - Order of the literals in the body of a rule may affect performance
 - e.g. consider top-down evaluation with search trees for
 \(P(X,Y) :- P(X,Z), Q(Z,Y) \) vs. \(P(X,Y) :- Q(Z,Y), P(X,Z) \)
 - In more general cases (e.g. Prolog), may even affect decidability
 - It may be possible to quickly produce the first answer
 - **Breadth-First**
 - Whole right hand-side of rules is evaluated at the same time
 - Search trees grow more balanced
 - Due to the restrictions in Datalog, this becomes a set-oriented operation and is thus very suitable for DB’s
When optimizing, two approaches are possible

– **Syntactic**: just focus on the syntax of rules
 - Easier and thus more popular than semantics
 - e.g. restrict variables based on the goal structure or use special evaluation if all rules are linear, etc.

– **Semantic**: utilize external knowledge during evaluation
 - E.g., integrity constraints
 - External constraints: “Lufthansa flights arrive at Terminal 1”
 - Query: “Where does the flight LH1243 arrive?”
7.1 Query Optimization

- **Summary** of optimization classification with their (not necessarily exclusive) alternatives

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search technique</td>
<td>bottom-up</td>
</tr>
<tr>
<td></td>
<td>top-down</td>
</tr>
<tr>
<td>Formalism</td>
<td>logic</td>
</tr>
<tr>
<td></td>
<td>relational algebra</td>
</tr>
<tr>
<td>Objective</td>
<td>rewriting</td>
</tr>
<tr>
<td></td>
<td>pure evaluation</td>
</tr>
<tr>
<td>Traversal order</td>
<td>depth-first</td>
</tr>
<tr>
<td></td>
<td>breadth-first</td>
</tr>
<tr>
<td>Approach</td>
<td>syntactic</td>
</tr>
<tr>
<td></td>
<td>semantic</td>
</tr>
<tr>
<td>Structure</td>
<td>rule structure</td>
</tr>
<tr>
<td></td>
<td>goal structure</td>
</tr>
</tbody>
</table>
• Not all combinations are feasible or sensible
 – We will focus on following combinations

<table>
<thead>
<tr>
<th>Evaluation Methods</th>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naïve (Jacobi, Gauss-Seidel)</td>
<td>Naïve Top-Down with</td>
</tr>
<tr>
<td></td>
<td>Semi-naïve (Delta Iteration)</td>
<td>Search trees</td>
</tr>
<tr>
<td></td>
<td>Henschen-Naqvi</td>
<td>Query-Subquery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rewriting Methods</th>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Magic Sets</td>
<td>Variable reduction</td>
</tr>
<tr>
<td></td>
<td>Counting</td>
<td>Constant reduction</td>
</tr>
<tr>
<td></td>
<td>Static Filtering</td>
<td></td>
</tr>
</tbody>
</table>
7.1 Query Optimization

- Optimization techniques may be **combined**
 - Thus, **mixed execution** of rewriting and evaluation techniques based on logical and algebraic optimization is possible

- Start with logic program L_P

![Diagram showing the process of query optimization with logical and algebraic rewriting and evaluation steps.](Image)
7.1 Query Optimization

Logical rewriting

Datalog program \(\mathcal{P} \)

Transformation into Relational Algebra

Relational algebra equations

Algebraic rewriting

Datalog program \(\mathcal{P}' \)

Logical query evaluation methods

Algebraic query evaluation methods

Query result

Logical query evaluation methods

Algebraic query evaluation methods

Relational algebra equations

Transformation into Relational Algebra

Datalog program \(\mathcal{P} \)

Logical rewriting

Algebraic rewriting

Query result

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfIS – TU Braunschweig
7.2 Evaluation Methods

• Evaluation methods actually compute the result of an (optimized or un-optimized) program \mathcal{P}

<table>
<thead>
<tr>
<th>Evaluation Method</th>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve (Jacobi, Gauss-Seidel)</td>
<td>Naïve Top-Down with Search trees Query-Subquery</td>
<td></td>
</tr>
<tr>
<td>Semi-naïve (Delta Iteration)</td>
<td>Henschen-Naqvi</td>
<td></td>
</tr>
<tr>
<td>Henschen-Naqvi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– Better evaluation methods skip unnecessary evaluation steps and/or terminate earlier
Datalog programs can easily be evaluated in a **bottom-up** fashion, but this should also be efficient

- The naïve algorithm derives **everything that is possible** from the facts
- But naively answering queries **wastes valuable work**...
- For dealing with recursion we have to **evaluate fixpoints**
 - For stratified Datalog\(^f,neg\) programs we apply the fixpoint algorithms to every stratum
• **Bottom-up evaluation** techniques are usually based on the **fixpoint iteration**

• Remember: Fixpoint iteration itself is a **general concept** within all fields of mathematics

 – Start with an **empty initial solution** X_0
 – Compute a new X_{n+1} from a given X_n by using a **production rule**
 • $X_{n+1} := T(X_n)$
 – As soon as $X_{n+1} = X_n$, the algorithm stops
 • Fixpoint reached
7.2 Bottom-Up Evaluation

• Up to now we have stated the elementary production rule declaratively

 \[T_P : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance } B ::= A_1, A_2, \ldots, A_n \text{ of a program clause such that } \{A_1, A_2, \ldots, A_n\} \subseteq I \} \]

• However, we need an operative implementation

 – The set \(I_{i+1} \) is computed from \(I_i \) as follows:
 • Enumerate all ground instances \(GI \)
 – Each ground instance is given by some substitution (out of a finite set)
 • Iterate over the ground instances, i.e. try all different substitutions
 – For each \(B ::= A_1, A_2, \ldots, A_n \in GI \), if \(\{A_1, A_2, \ldots, A_n\} \subseteq I_i \), add \(B \) to \(I_{i+1} \)
7.2 Bottom-Up Evaluation

a) **Full Enumeration**: Consecutively generate and test all instances by enumeration

- Loop over all rules
 - Apply each possible substitution on each rule

Constant symbols: \{1,2,3\}

Rules: \{\(p(X,Y) : - e(X,Y)\). \(p(X,Y) : - e(X,Z), p(Z,Y)\)\}.

Enumeration of instances:

Rule 1:

\[
\begin{align*}
 p(1,1) : & - e(1,1). \\
 p(1,2) : & - e(1,2). \\
 p(1,3) : & - e(1,3). \\
 p(2,1) : & - e(2,1). \\
 p(2,2) : & - e(2,2). \\
 p(2,2) : & - e(2,2). \\
 p(3,1) : & - e(3,1). \\
 p(3,2) : & - e(3,2). \\
 p(3,2) : & - e(3,2). \\
\end{align*}
\]

Rule 2:

\[
\begin{align*}
 p(1,1) : & - e(1,1), p(1,1). \\
 p(1,1) : & - e(1,2), p(2,1). \ldots \\
 p(1,2) : & - e(1,1), p(1,2). \\
 p(1,2) : & - e(1,2), p(2,2). \ldots \\
 \ldots \\
\end{align*}
\]
7.2 Bottom-Up Evaluation

b) Restricted enumeration

- Loop over all rules
 - For each rule, generate all instances possible when trying to unify the rules right hand side with the facts in I
 - Only instances which will trigger a rule in the current iteration will be generated

Constant symbols: \{1,2,3\}

Rules: \{p(X,Y) :- e(X,Y). p(X,Y) :- e(X,Z), p(Z,Y).\}

I: \{e(1,2), e(2,3)\}

Enumeration of instances:

Rule 1:

\[
p(1,2) :- e(1,2). \quad p(2,3) :- e(2,3).
\]

Rule 2: Nothing. \(p(Z,Y)\) can not be unified with any fact in I
7.2 Jacobi Iteration

• The most naïve fixpoint algorithm class are the so-called **Jacobi-Iterations**
 – Developed by Carl Gustav Jacob Jacobi for solving **linear equation systems** $Ax=b$, early 18th century
 – Characteristics:
 • Each intermediate result X_{n+1} is **wholly computed** by utilizing all data in X_n
 • **No reuse** between both results
 • Thus, the memory complexity for a given iteration step is roughly $|X_{n+1}| \times |X_n|$
7.2 Jacobi Iteration

• Both fixpoint iterations introduced previously in the lecture are Jacobi iterations
 – i.e. fixpoint iteration and iterated fixpoint iteration
 – i.e. \(I_{n+1} := T_p(I_n) \)
 • “Apply production rule to all elements in \(I_n \) and write results to \(I_{n+1} \). Repeat”
7.2 Jacobi Iteration

• Please note
 – Within each iteration, **all already deduced facts of the previous iteration are deduced again**
 • We just used the union notation for convenience
 – \(I_1 := I_0 \cup \{e(1,2), e(1,3)\} \)
 – \(I_2 := I_1 \cup \{p(1,2), p(1,3)\} \) was actually not reflecting this correctly
 – \(I_1 := \{e(1,2), e(1,3)\} \)
 – \(I_2 := \{e(1,2), e(1,3), p(1,2), p(1,3)\} \) matches algorithm better…
 – Furthermore, both sets \(I_{n+1} \) and \(I_n \) involved in the iteration are treated strictly **separately**
 • Elementary production checks which rules are true using \(I_i \) and puts results into \(I_{i+1} \)
7.2 Gauss-Seidel Iteration

• Idea:
 – The convergence speed of the Jacobi iteration can be improved by also respecting **intermediate results of current iterations**

• This leads to the class of **Gauss-Seidel-Iterations**
 – Historically, an improvement of the Jacobi equation solver algorithm
 • Devised by **Carl Friedrich Gauss** and **Philipp Ludwig von Seidel**
 – **Base property:**
 • If new information is produced by current iteration, it should also be possible to use it in the moment it is created (and not starting next iteration)
7.2 Gauss-Seidel Iteration

• A Gauss-Seidel fixpoint iteration is obtained by modifying the elementary production

\[T_P : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance} \]
\[\text{which has not been tested before in this iteration} \]
\[B :: A_1, A_2, ..., A_n \text{ of a program clause such} \]
\[\text{that } \{A_1, A_2, ..., A_n\} \subseteq \{I \cup \text{new}_B's\} \]

– new_B’s refers to all heads of the ground instances of rules considered in the current iteration which had their body literals in I

• Some of these are already in I, but others are new and would usually only be available starting next iteration → improved convergence speed
7.2 Gauss-Seidel Iteration

• Example program \mathcal{P}

 edge(1, 2).
 edge(1, 3).
 edge(2, 4).
 edge(3, 4).
 edge(4, 5).

 path(X, Y) :- edge(X, Y).
 path(X, Y) :- edge(X, Z), path(Z, Y).

 $I_0 = \{\}$
 $I_1 = \{\text{edge}(1, 2). \text{edge}(1, 3). \text{edge}(2, 4). \text{edge}(3, 4). \text{edge}(4, 5).
 \text{path}(1, 2). \text{path}(1, 3). \text{path}(2, 4). \text{path}(3, 4). \text{path}(4, 5).
 \text{path}(1, 4). \text{path}(2, 5). \text{path}(3, 5) \}$
 $I_2 = \{\text{path}(1, 5)\}$
• Please note:
 – The **effectiveness** of **Gauss-Seidel** iteration for increasing convergence speed varies highly with respect to the chosen **order of instance enumeration**
 • e.g. “Instance K tested - generates the new fact B_1 from I”, “Instance L tested – generates the new fact B_2 from $I \cup B_1$”
 – Good luck: improvement over Jacobi
 • vs. “Instance L tested – does not fire because it needs fact B_1”, “Instance K tested – generates the new fact B_1 from I”
 – Bad luck: no improvement
 – Each single iteration saved, improves the performance dramatically as each iteration recomputes all known facts!
For both Gauss-Seidel and Jacobi, a lot of wasted work is performed
 - Everything is recomputed times and times again
But it can be shown that the elementary production rule is strictly monotonic
 - Thus, each result is a subset of the next result
 • i.e. $I_i \subseteq I_{i+1}$
This leads to the semi-naïve evaluation for linear Datalog
7.2 Semi-Näive Evaluation

• The main operator for the fixpoint iteration is the elementary production T_P
 – Naïve Fixpoint Iteration
 • $I_{n+1} := T_P(I_n)$
 – Is there a better algorithm?
 • Idea: avoid re-computing known facts, by making sure that at least one of the facts in the body of a rule is **new**, if a new fact is computed!
 • Really new facts, always involve new facts of the last iteration step, otherwise they could already have been computed before…
7.2 Semi-Naïve Evaluation

- Semi-naïve linear evaluation algorithms for Datalog are generally known as **Delta-Iteration**

 - In each iteration step, compute just the difference between successive results $\Delta I_i := I_i \setminus I_{i-1}$

 - i.e. $\Delta I_1 := I_1 \setminus I_0 = T_P(\emptyset)$

 $\Delta I_{i+1} := I_{i+1} \setminus I_i = T_P(I_i) \setminus I_i$

 $= T_P(I_{i-1} \cup \Delta I_i) \setminus I_i$

- Especially: $\Delta I_i \cup I_{i-1} := I_i$
• It is important to efficiently calculate
\[\Delta I_{i+1} := T_\mathcal{P} (I_{i-1} \cup \Delta I_i) \setminus I_i \]

 – The \(T_\mathcal{P} \) operator is often inefficient, because it simply applies all rules in the EDB

 – More efficient is the use of auxiliary functions

 • Define an auxiliary function of \(T_\mathcal{P} \) aux_\mathcal{P} : \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P} \), such that
 \[T_\mathcal{P} (I_{i-1} \cup \Delta I_i) \setminus I_i = \text{aux}_\mathcal{P}(I_{i-1}, \Delta I_i) \setminus I_i \]

 • Auxiliary functions can be chosen intelligently by just taking recursive parts of rules into account

 • A classic method of deriving auxiliary functions is symbolic differentiation
• The **symbolic differentiation operator** \(dF\) can be used on the respective relational algebra expressions \(E\) for Datalog programs

Definition \(dF(E)\):

- \(dF(E) := \Delta R\), if \(E\) is an IDB relation \(R\)
- \(dF(E) := \emptyset\), if \(E\) is an EDB relation \(R\)

- \(dF(\sigma_\vartheta(E)) = \sigma_\vartheta(dF(E))\) and
- \(dF(\pi_\vartheta(E)) = \pi_\vartheta(dF(E))\)

- \(dF(E_1 \cup E_2) = dF(E_1) \cup dF(E_2)\)

Not affected by selections, projections, and unions
7.2 Semi-Naïve Evaluation

- \(dF(E_1 \times E_2) = E_1 \times dF(E_2) \)
 \(\bigcup dF(E_1) \times E_2 \)
 \(\bigcup dF(E_1) \times dF(E_2) \)

- \(dF(E_1 \bowtie_9 E_2) = E_1 \bowtie_9 dF(E_2) \)
 \(\bigcup dF(E_1) \bowtie_9 E_2 \)
 \(\bigcup dF(E_1) \bowtie_9 dF(E_2) \)

For Cartesian products and joins mixed terms need to be considered.
7.2 Semi-Naïve Evaluation

• Consider the program

 • ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

 • The respective expression in relational algebra for ancestor is
 \[\text{parent} \cup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1}\text{ancestor}) \]

 – **Symbolic differentiation**

 \[
 dF(\text{parent} \cup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1}\text{ancestor})) \\
 = dF(\text{parent}) \cup \pi_{#1, #2}(dF(\text{parent} \bowtie_{#2=#1}\text{ancestor})) \\
 = \emptyset \cup \pi_{#1, #2}(dF(\text{parent}) \bowtie_{#2=#1}\text{ancestor} \cup \text{parent} \bowtie_{#2=#1}dF(\text{ancestor})) \\
 = \pi_{#1, #2}(\emptyset \cup \text{parent} \bowtie_{#2=#1}dF(\text{ancestor}) \cup \emptyset) \\
 = \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1}\Delta\text{ancestor})
 \]
Having found a suitable auxiliary function the \textbf{delta iteration} works as follows

- **Initialization**
 - \(I_0 := \emptyset \)
 - \(\Delta I_1 := T_P(\emptyset) \)

- **Iteration until** \(\Delta I_{i+1} = \emptyset \)
 - \(I_i := I_{i-1} \cup \Delta I_i \)
 - \(\Delta I_{i+1} := \text{aux}_P(I_{i-1}, \Delta I_i) \setminus I_i \)

- Again, for stratified Datalog\(^{f,\text{neg}}\) programs the iteration has to be applied to every stratum
• Let's consider our ancestor program again

- \text{parent}(\text{Thomas}, \text{John}).
- \text{parent}(\text{Mary}, \text{John}).
- \text{parent}(\text{George}, \text{Thomas}).
- \text{parent}(\text{Sonja}, \text{Thomas}).
- \text{parent}(\text{Peter}, \text{Mary}).
- \text{parent}(\text{Karen}, \text{Mary}).

- \text{ancestor}(X,Y) :- \text{parent}(X,Y).
- \text{ancestor}(X,Y) :- \text{parent}(X,Z), \text{ancestor}(Z,Y).

- \text{aux}_{\text{ancestor}}(\text{ancestor}, \Delta_{\text{ancestor}}) := \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \Delta_{\text{ancestor}})
7.2 Semi-Naïve Evaluation

\[\text{ancestor}_0 := \emptyset \]

\[\Delta \text{ancestor}_1 := \text{T}_\mathcal{P} (\emptyset) \]
\[= \{ (T, J), (M, J), (G, T), (S, T), (P, M), (K, M) \} \]

\[\text{ancestor}_1 := \text{ancestor}_0 \cup \Delta \text{ancestor}_1 \]
\[= \Delta \text{ancestor}_1 \]

\[\Delta \text{ancestor}_2 := \text{aux}_{\text{ancestor}} (\text{ancestor}_0, \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 \]
\[:= \pi_{#1, #2} (\text{parent} \bowtie_{#2=#1} \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 \]
\[= \{ (G, J), (S, J), (P, J), (K, J) \} \]
7.2 Semi-Naïve Evaluation

- $\text{ancestor}_2 := \text{ancestor}_1 \cup \Delta\text{ancestor}_2$
 \[= \{(T, J), (M, J), (G, T), (S, T), (P, M), (K, M), (G, J), (S, J), (P, J), (K, J)\}\]

- $\Delta\text{ancestor}_3 := \text{aux}_{\text{ancestor}}(\text{ancestor}_1, \Delta\text{ancestor}_2) \setminus \text{ancestor}_2$
 \[:= \pi_{\#1, \#2}(\text{parent} \bowtie_{\#2=\#1}\Delta\text{ancestor}_2) \setminus \text{ancestor}_2\]
 \[= \emptyset\]

- Thus, the least fixpoint is $\text{ancestor}_2 \cup \text{parent}$
7.2 Push Selection

• Transforming a Datalog program into relational algebra also offers other optimizations
 – Typical relational algebra equivalences can be used for heuristically constructing better query plans
 • Usually an operator tree is built and transformed
 – Example: push selection
 • If a query involves a join or Cartesian product, pushing all selections down to the input relations avoids large intermediate results
 – But now we have a new operator in our query plan: the least fixpoint iteration (denoted as LFP)
7.2 Push Selection

• Consider an example
 – edge(1, 2).
 edge(4, 2).
 edge(2, 3).
 edge(3, 5).
 edge(5, 6).
 – path(X,Y) :- edge(X,Y).
 path(X,Y) :- edge(X,Z), path(Z,Y). \(R1 \)
 \(R2 \)
 – Relational algebra: \(\text{edge} \cup \pi_{#1, #2}(\text{edge} \Join_{#2=#1} \text{path}) \)
Now consider the query \(?\text{path}(X, 3)\):

- \(\pi_{#1} \sigma_{#2=3}(\text{LFP (edge } \bigcup \pi_{#1, #2}(\text{edge } \bowtie_{#2=#1}\text{path})))\)

 - From which nodes there is a path to node 3?

- The above query binds the second argument of \(\text{path}\).

 - \(\text{path}(X, Y) :- \text{edge}(X, Y)\).
 \(\text{path}(X, Y) :- \text{edge}(X, Z), \text{path}(Z, Y)\).

- Thus the selection could be pushed down to the \text{edge} and \text{path} relations.
To answer the query we now only have to consider the facts and rules having the correct second argument:

- `edge(2, 3).` \(\text{fact}\)
- `path(2,3).` \(\text{R1}\)
- `path(1,3).` \(\text{R2}\)
- `path(4,3).` \(\text{R2}\)

Result: \{2, 1, 4\}
Now let’s try a different query \(?\text{path}(3,Y)\):

- \(\pi_{#1} \sigma_{#1=3}(\text{LFP (edge } \cup \pi_{#1}, #2(\text{edge } \bowtie_{#2=#1}\text{path})))\)

 - To which nodes there is a path from node 3?

- The above query binds the first argument of \(\text{path}\)

 - \(\text{path}(X,Y) : \text{edge}(X,Y)\).
 - \(\text{path}(X,Y) : \text{edge}(X,Z), \text{path}(Z,Y)\).
To answer the query we now only have to consider the facts and rules having the correct first argument:

- `edge(3,5)`. \(\text{fact}\)
- `path(3,5)`. \(\text{R1}\)
- `Ø`. \(\text{R2}\)

Result: \{5\}

Obviously this is wrong.
More general: when can the least fixpoint iteration and selections be re-ordered?

- Let \(p \) be a predicate in a linear recursive Datalog program and assume a query \(? p(..., c, ...)?\), binding some variable \(X \) at the \(i \)-th position to constant \(c \).

- The selection \(\sigma_{#i=c} \) and the least fixpoint iteration LFP can be safely exchanged, if \(X \) occurs in all literals with predicate \(p \) exactly in the \(i \)-th position.
7.3. Logical Rewriting

• In the following, we deal with rewriting methods

<table>
<thead>
<tr>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewriting Method</td>
<td></td>
</tr>
<tr>
<td>Magic Sets</td>
<td>Variable reduction</td>
</tr>
<tr>
<td>Counting</td>
<td>Constant reduction</td>
</tr>
<tr>
<td>Static Filtering</td>
<td></td>
</tr>
</tbody>
</table>

• Basic Idea:
 – Transform program \mathcal{P} to a semantically equivalent program \mathcal{P}' which can be evaluated faster using the same evaluation technique
 • e.g. same result, but faster when applying Jacobi iteration
• **Clever** rewriting could work like this:

\[
\mathcal{P}:
\begin{align*}
\text{ancestor}(X, Y) & :\neg \text{parent}(X, Y). \\
\text{ancestor}(X, Y) & :\neg \text{ancestor}(X, Z), \text{parent}(Z, Y). \\
\text{ancestor}(Tilo, Y) & ?
\end{align*}
\]

– All valid proof trees for result tuples need a substitution for rule 1 and rule 2 such that \(X\) is substituted by *Tilo*
Thus, an equivalent program \mathcal{P}' for the query looks like this

\mathcal{P}':

\[
\text{ancestor}(Tilo, Y) :\text{-} parent(Tilo, Y).
\]
\[
\text{ancestor}(Tilo, Y) :\text{-} \text{ancestor}(Tilo, Z), \text{parent}(Z, Y).
\]
\[
\text{ancestor}(Tilo, Y) ?
\]

– This simple transformation will skip the deduction of many (or in this case all) useless facts

– Actually, this transformation was straightforward and simple, but there are also unintuitive, yet effective translations…

• Magic sets!
7.3. Magic Sets

• **Magic Sets**

 – Magic sets are a **rewriting** method exploiting the **syntactic** form of the **query**

 – The base idea is to capture some of the **binding patterns** of top-down evaluation approaches into rewriting

 • If there is a subgoal with a **bound argument**, solving this subgoal may lead to new instantiations of other arguments in the original rule

 • Only **potentially useful** deductions should be performed
• Who are the ancestors of Tilo?
7.3. Magic Sets

- A typical **top-down search tree** for the goal `ancestor(Tilo, X)` looks like this
 - Possible substitutions already restricted

\[Q \equiv \text{ancestor}(Tilo, X) \]

\[\text{anc.}(Tilo, X) :- \text{anc.}(Tilo, Z), \text{par.}(Z, X). \]

\[\text{anc.}(Tilo, Z) \]

\[\text{par.}(Z, X) \]

\[\text{anc.}(Tilo, X) :- \text{par.}(Tilo, Z). \]

\[\text{par.}(Tilo, Z) \]

- How can such a restriction be incorporated into rewriting methods?
7.3. Magic Sets

• For rewriting, propagating binding is more difficult than using top-down approaches

• **Magic Set** strategy is based on augmenting rules with additional **constraints** (collected in the magic predicate)

 – This is facilitated by “adorning” predicates

 – **Sideways information passing** (SIP) is used to propagate binding information
7.3. Magic Sets

• Before being able to perform the magic set transformation, we need some **auxiliary definitions** and considerations

 – Every **query** (goal) can also be seen as a **rule** and thus be added to the program

 • e.g. ancestor(\textit{Tilo}, X)? \iff q(X) :- ancestor(\textit{Tilo}, X)
7.3. Logical Rewriting

- Arguments of predicates can be distinguished
 - Distinguished arguments have their range restricted by either constants within the same predicate or variables which are already restricted themselves
 - i.e. an argument is distinguished, if
 - it is a constant
 - OR it is bound by an adornment
 - OR it appears in some EDB fact that has a distinguished argument
7.3. Logical Rewriting

• **Predicates occurrences** are distinguished, if all its arguments are distinguished
 – In case of EDB facts, either all or none of the arguments are distinguished

• Predicate occurrences are then **adorned** (i.e. annotated) to express which arguments are distinguished
 – Adornments are added to the predicate, e.g. \(p^{fb}(X, Y) \) vs. \(p^{bb}(X, Y) \)
For each argument, there are two possible adornments:

- For bound, i.e. distinguished variables
- For free, i.e. non-distinguished variables

Thus, for a predicate with n arguments, there are 2^n possible adorned occurrences:

- e.g., $p^{bb}(X, Y)$, $p^{fb}(X, Y)$, $p^{bf}(X, Y)$, $p^{ff}(X, Y)$

Those adorned occurrences are treated as if they were different predicates, each being defined by its own set of rules.
7.3. Magic Sets

- Example output of magic set algorithm

\(\mathcal{P} \):
ancestor(Tilo, Y) ?
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).

\(\mathcal{P}' \):
magic(Tilo).
magic(Y) :- magic(Z), parent(Z, Y).
qf(Y) :- ancestorbf(Tilo, Y).
ancestorbf(X, Y) :- magic(X), parent(X, Y).
ancestorbf(X, Y) :- magic(X), ancestorbf(X, Z), parent(Z, Y).
7.3. Magic Sets

• The idea of the magic set method is that the magic set contains all possibly interesting constant values
 – The magic set is recursively computed by the magic rules

• Each adorned predicate occurrence has its own defining rules
 – In those rules, the attributes are restricted according to the adornment pattern to the magic set
7.3. Magic Sets

• Now, following problems remain
 – How is the **magic set** computed?
 – How are the **rules for adorned predicate occurrences** actually defined?

• Before solving these problems, we have to find out which adorned occurrences are needed.

• Thus, the **reachable adorned system** has to be found
 – i.e. incorporate the query as rule and replace all predicate by it’s respective adornments.
7.3. Magic Sets

• **Incorporate goal query**

\[
\text{ancestor}(X, Tilo)\
\text{ancestor}(X, Y) :\text{parent}(X, Y)\
\text{ancestor}(X, Y) :\text{ancestor}(X, Z), \text{parent}(Z, Y)
\]

\[
q(X) :\text{ancestor}(X, Tilo)\
\text{ancestor}(X, Y) :\text{parent}(X, Y)\
\text{ancestor}(X, Y) :\text{ancestor}(X, Z), \text{parent}(Z, Y)
\]

• **Adorn predicate occurrences**

\[
q^f(X) :\text{ancestor}^{fb}(X, Tilo)\
\text{ancestor}^{fb}(X, Y) :\text{parent}(X, Y)\
\text{ancestor}^{fb}(X, Y) :\text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y)
\]

reachable adorned system
7.3. Magic Sets

• For defining the magic set, we create **magic rules**

 – For each adorned predicate occurrence in a rule of an intensional DB predicate, a magic rule corresponding to the right hand side of that rule is created

• Predicate occurrences are **replaced by magic predicates**, bound arguments are used in rule head, free ones are dropped

• Magic predicates in the head are **annotated** with its origin (rule & predicate), those on the right hand side just with the predicate

 – \(q^f(X) :\) ancestor\(^fb\)(X, \(Tilo\)).
 \[\Rightarrow magic_r0_ancestor\(^fb\)(Tilo).\]

 – ancestor\(^fb\)(X, Y) :\) ancestor\(^fb\)(X, Z), parent(Z, Y).
 \[\Rightarrow magic_r2_ancestor\(^fb\)(Z):\) magic_ancestor\(^fb\)(Z), parent(Z, Y).\]
Thus, we obtain **multiple** magic predicates for a single adorned predicate occurrence

- Depending on the creating rule
 - e.g. `magic_r0_ancestor^{fb}`, `magic_r2_ancestor^{fb}` both using `magic_ancestor^{fb}`

- Now we need complementary rules connecting the magic predicates
 - Adorned magic predicate follows from special rule magic predicate with same adornment
 - `magic_ancestor^{fb} (X) :- magic_r0_ancestor^{fb} (X)`.
 - `magic_ancestor^{fb} (X) :- magic_r2_ancestor^{fb} (X)`.
Finally, we have a complete definition of magic predicates with different adornments

- In our case, we have only the fb-adornment
 - magic_r0_ancestor^{fb}(Tilo).
 - magic_r2_ancestor^{fb}(Z) :- magic_ancestor^{fb}(Z), parent(Z, Y).
 - magic_ancestor^{fb}(X) :- magic_r0_ancestor^{fb}(X).
 - magic_ancestor^{fb}(X) :- magic_r2_ancestor^{fb}(X).

- The magic magic_ancestor^{fb} set thus contains all possibly useful constants which should considered when evaluating an ancestor subgoal with the second argument bound for the current program
 - Like, e.g. our query…
7.3. Magic Sets

• As all magic sets are defined, the original rules of the reachable adorned system have to be restricted to respect the sets

 – Every rule using an adorned IDB predicate in its body is augmented with an additional literal containing the respective magic set

 – e.g.

 • \(\text{ancestor}^{fb}(X, Y) :\text{-} \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y). \)

 \(\Rightarrow \text{ancestor}^{fb}(X, Y) :\text{-} \text{magic}_\text{ancestor}^{fb}(X), \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y). \)
Finally, the following program is created

\[
\text{ancestor}(X, Y) :\text{parent}(X, Y).
\]
\[
\text{ancestor}(X, Y) :\text{ancestor}(X, Z), \text{parent}(Z, Y).
\]
\[
\text{ancestor}(X, Tilo)?
\]

\[
\text{magic}_r0_\text{ancestor}^{fb}(Tilo).
\]
\[
\text{magic}_r2_\text{ancestor}^{fb}(Z) :\text{magic}_\text{ancestor}^{fb}(Y), \text{parent}(Z, Y).
\]
\[
\text{magic}_\text{ancestor}^{fb}(X) :\text{magic}_r0_\text{ancestor}^{fb}(X).
\]
\[
\text{magic}_\text{ancestor}^{fb}(X) :\text{magic}_r2_\text{ancestor}^{fb}(X).
\]
\[
\text{ancestor}^{fb}(X, Y) :\text{parent}(X, Y).
\]
\[
\text{ancestor}^{fb}(X, Y) :\text{magic}_\text{ancestor}^{fb}(Y), \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y).
\]
\[
q^{f}(X) :\text{ancestor}^{fb}(X, Tilo).
\]
• In this example, following further optimizations are possible
 – In this case, it is not necessary to separate the two occurrences of `magic_r0_ancestor^{fb}` and `magic_r2_ancestor^{fb}`
 • No dependencies between both
 • We can unify and rename them
 – We have only one adornment pattern (fb) and can thus drop it
 – This final program can be evaluated using any evaluation technique with increased performance

```
magic(Tilo).
magic(Y) :- magic(Z), parent(Z, Y).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- magic(X), ancestor(X, Z), parent(Z, Y).
```
7.3. Magic Sets

• Magic Sets in short form
 – Query is part of the program
 – Determine **reachable adorned system**
 • i.e. observe which terms are distinguished and propagate the resulting adornments
 • Reachable adorned system contains separated **adorned predicate occurrences**
 – Determine the **magic set** for each adorned predicate occurrence
 • Use **magic rules** and **magic predicates**
 – **Restricts rules** using adorned predicates to using only the constant in the respective magic set
• Uncertain Reasoning!