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8. Deduction with Uncertainty



ÅWe have discussed ways of deriving new facts 

from other (ground) facts

ïBut often several rules can lead to a certain fact and 

we cannot be sure which one it was 

ÅA patient experiences toothaches, what is the reason?

ïSometimes a certain fact might be derived 

from ground facts only in certain cases 

ÅA normal bird can fly, except for 

penguins, ostriches,é 
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8.1 Uncertainty



ÅTypical sources of imperfect information in 
deductive databases areé 
ïIncomplete information
ÅInformation is simply missing, which might clash with the closed 

world assumption

ïImprecise information
ÅThe information needed has only been specified in a vague way, 

e.g., a person is young:  young(Tim).
ÅQueries, about Timõs age are difficult to answer, e.g., ?age(Tim, 

67) is false, but what about ?age(Tim, 25)?

ïUncertain information 
ÅA deduction is not always correct, e.g., the question whether a 

bird can fly:  fly(X) :- bird(X). 
ÅWhat about penguins,  dead birds, or birds with clipped wings?
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8.1 Uncertainty



ÅConsider an expert system for dentists

ïAll possible causes for toothaches are contained in a 
database and the reason should be deduced

ïcavities(X) :- toothache(X). 
periodontosis(X) :- toothache(X).
ÅNot very helpful, since all possible 
causes are listed. Thus, all rules fireé

ïcavities(X) :- toothache(X), ¬periodontosis(X). 
periodontosis(X) :- toothache(X), ¬cavities(X).
ÅNot very helpful either, because now we need to disprove 
all alternatives before any rule firesé

ÅRemember the assumption of ônegation as failureõ
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8.1 Uncertainty



ÅBut how do dentists deal with the problem?

ïLike in our second program look for positive or 

negative clues

Åe.g., bleeding of gums,é

ÅStill, how does a dentist know what to 

look for? 

ïWhat are probable causes?

ïWhat are possible causes? 

ïKnowing the patient, what is the 

(subjective) judgement ?
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8.1 Uncertainty



ÅBasic idea: assign a measure of validity to each 
rule or statement and propagate this measure 
through the deduction process
ïProbabilistic truth values
ÅUse statistics: how often is cavities the reason and how often is 

peridontosis?

ÅLeads to a probability distribution over possible worlds

ïPossibility values
ÅWhat are possible causes and to what degree do they cause 

toothache?

ÅLeads to a possibility distribution over possible worlds

ïBelief values
ÅLead to belief networks with facts that may influence each other

ïé
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8.1 Uncertainty



ÅUsually dealing with uncertainty needs an open 

world assumption

ïFacts not stated in the database may or may not be 

false

ÅBut the reasoning gets more difficult

ïRemember our discussion about the existence of 

several minimal models in Datalogneg

ïThe reasoning process is not monotonic any more

ÅIntroduction of new knowledge might lead to a revision 

(and sometimes refutation) of previously derived facts  
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8.1 Uncertainty



ÅNon -monotonic reasoning considers that 

sometimes statements considered true, have to 

be revised in the light of new facts 

ïTweetyis a bird. 

ÅCan Tweetyfly?   Yes! 

ïTweetyis a bird.  Tweetyis 2.5 meters. 

ÅCan Tweetyfly?  No!

ïThe introduction of a new fact has 

challenged the general rule that birds can fly

ÅOnly ostriches reach a height of 2.5 meters!
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8.1 Non -Monotonic Reasoning



ÅThere are several classical 

approaches of dealing with 

the problem

ïDefault logic

ïPredicate circumscription

ïAutoepistemicreasoning

ïé

Knowledge-Based Systems and Deductive Databases ςWolf-Tilo Balk ςIfIS ςTU Braunschweig 10

8.1 Non -Monotonic Reasoning



ÅDefault logic wasproposedby Raymond Reiter 

(University ofToronto) in 1980

ïCan express logical facts like 

ôby default, something is trueõ

ïBasically a default theory consists of 

two parts D and W

ÅW is a set of first order logical formulae known to be true

ÅD is a set of default rules of the form

prerequisite :  justification1ȟ ȣȟ justification n

conclusion
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8.1 Default Logic



ïprerequisite :  justification1ȟ ȣȟ justification n

conclusion

ïIf we believe the prerequisite to be true , and each of 

justification i is consistent with our current beliefs, we 

are led to believe that conclusion is true

ÅExample:  bird(X) :  fly(X) with {bird(condor), bird(penguin),  
fly(X)                      fly(eagle), ¬fly(penguin)}

Åfly(condor) is true by default, since it is a bird and we have no 

justification to believe otherwise

ÅBut fly(penguin) cannot be derived here, since although 

bird(penguin) is true, we know that the justification is false

ÅNeither can we deduce bird(eagle) which would be abduction 
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8.1 Default Logic



ÅA common default assumption is the closed world 
assumption true : ¬F

¬F

ÅThe semantics of default logics is again based on 
fixpoints
ïUse set W as initial theory T
ïAdd to a theory T every fact that can be deduced by using 

any of the default rules in D, so-called extensions to the 
theoryT
ïRepeat until nothing new can be deduced 

ïIf T is consistent with all justifications of the default 
rules used to derive any extension, output T

Knowledge-Based Systems and Deductive Databases ςWolf-Tilo Balk ςIfIS ςTU Braunschweig 13

8.1 Default Logic



ÅThe last check in the algorithm is necessary to 

avoid inconsistent theories

ïi.e. something has been deduced using a justification 

that was later proven to be false

ïE.g. consider a default rule   true :  A(X) and  W := Ø
¬ A(X)

ÅSince A(X) is consistent with W we may conclude ¬A(X), 
which however is inconsistent with the previously 

assumed A(X)

ÅIn this case the theory simply has no extensions

Knowledge-Based Systems and Deductive Databases ςWolf-Tilo Balk ςIfIS ςTU Braunschweig 14

8.1 Default Logic



ÅInterestingly, the semantics is non-deterministic

ïThe deduced theory may depend on the sequence in 

which defaults are applied

ÅExample: D:={ bird(X) : fly(X) ,  penguin(X) : ¬fly(X) }
fly(X)                          ¬fly(X)

with {bird( Tweety), penguin(Tweety)} 

ÅStarting with W both default rules are applicable

ÅIf we use the first rule, the extension fly( Tweety) would be 

added, and the second default rule is no longer applicable

ÅIn case we apply the second rule first, the extension would 

be ¬fly( Tweety)
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8.1 Default Logic



ÅEntailment of a formula from a default theory 
can be defined in two ways

ïSkeptical entailment

ÅA formula is entailed by a default theory if it is entailed by all its 
extensions

ïCredulous entailment 

ÅA formula is entailed by a default theory if it is entailed by at 
least one of its extensions

ïFor example our Tweetytheory has two extensions , one 
in which Tweetycan fly and one in which he cannot fly

ÅNeither extension is skeptically entailed

ÅBoth of them are credulously entailed
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8.1 Default Logic



ÅPredicate circumscription was introduced by 

John McCarthy (Stanford University) in 1978

ïInventor of LISP and the ôspace 

fountainõ

ïBasically circumscription tries to 

formalize the common sense 

assumption that things are as 

expected, unless specified 

otherwise
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8.1 Predicate Circumscription



ÅConsider the problem whether Tweety can fly , 

if we assume that Tweety is a penguiné 

ïSure, Tweetycan fly, é 

ébecause he takes a helicopter!

ïThis solution is intuitively

not valid, since no helicopter 

was mentioned in our facts

ïOf course we could exclude

all possible ways to fly in our 

program, buté  
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8.1 Predicate Circumscription



ÅCircumscription is a rule of conjecture that can 

be used for jumping to certain conclusions

ïThe objects that can be shown to have a certain 

property P by reasoning from certain facts A, are all 

the objects that satisfy P

ÅMore generally, circumscription can be used to conjecture 

that the substitutions that can be shown to satisfy a 

predicate, are all the tuples satisfying this predicate 

ïThus, the set of relevant tuples is circumscribed
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8.1 Predicate Circumscription



ÅExample:  by circumscription a bird can be 
conjectured to fly unless something prevents it

ïThe only entities that can prevent the bird from flying 
are those whose existence follows from the facts 

ÅIf no clipped wings, being a penguin or other circumstances 
preventing flight are deducible, then the bird is concluded to 
fly

ÅBasically, this can be done by adding a predicate 
¬abnormal(X) to all rules about flying

ïThe correctness of this conclusion depends on having 
taken into account all relevant facts when the 
circumscription was made 
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8.1 Predicate Circumscription



ÅCircumscription therefore tries to derive all 

minimal models of a set of formulae

ïIf we have a predicate p(X1ȟ ȣȟ Xn) then a model tells 

whether the predicate is true for any possible substitution 

with terms for Xi

ÅThe extension of p(X1ȟ ȣȟ Xn) in a model is the set of 

substitutions for which p(X1ȟ ȣȟ Xn) evaluates to true

ïThe circumscription of a formula is a minimization 

believing only the least possible number of predicates

ÅThe circumscription of p(X1ȟ ȣȟ Xn) in a formula is obtained by 

selecting only models with a minimal extension of p(X1ȟ ȣȟ Xn)
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8.1 Predicate Circumscription



ÅExample 

ïConsider a formula of the type ! Ẓ " ẓ #  ­D like
fly(X) :- bird(X), eagle(X).
fly(X) :- bird(X), condor(X).
ÅObviously bird(X) has to be true in any model, but to be 

minimal only eagle(X) or condor(X) has to be true

ÅHence there are two circumscriptions of the formula 
{bird(X), eagle(X)} and {bird(X), condor(X)} , but not 
{bird(X), eagle(X), condor(X)}

ïNote that predicates are only evaluated 
as false, if it is possible

Åeagle(X) andcondor(X) cannot both be false
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8.1 Predicate Circumscription



ÅBut sometimes circumscription handles disjunctive 
information incorrectly
ïToss a coin onto a chess board and consider the predicate 

lies_on(X, Y) where it lies

ïThere are several possibilities of models
ÅObviously {lies_on(coin, floor)} should be false, since it was not 

mentioned that the coin could miss the board

ÅThat leaves {lies_on(coin, white)}, { lies_on(coin, black)}, and 
{lies_on(coin, white), lies_on(coin, black)} for the overlapping 
case

ïBut the last model would be filtered out as not being 
minimal by circumscription
ÅOne possibility to remedy this case is theory curbing , where 

iteratively the least upper bound(s) of the minimal models is 
added until the set of models is closed 
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8.1 Predicate Circumscription



ÅAutoepistemic Logic was introduced 
by Robert C. Moore (Microsoft Research) 
in 1985

ÅAutoepistemiclogic cannot only express 
facts, but also knowledge and lack of knowledge 
about facts

ÅFormalizes non-monotonicityusing statements with a 
belief operator B
ïFor every well-formed formula F, the ôbelief atomõ B(F) 

means that F is believed

ï¬B( F) means that F is not believed
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8.1 Autoepistemic Logic



ÅIt uses the following axioms

ïAll propositional tautologies are axioms

ïIf we believe in B(X) :- A(X)., then whenever we 

believe in A(X), we also have to believe in B(X)

ïInconsistent conclusions are never believed, i.e. 

¬B( false)

ÅIt uses modus ponens as inference rule

ïGiven an conditional claim A­ B and the truth of the 

antecedent  A, it can be logically concluded that the 

consequent B must be true as well
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8.1 Autoepistemic Logic



ÅThis can be used to derive stable sets of 

sentences which are then believed 

ïi.e. the reflection of our own state of knowledge

ÅIf we do not believe in a fact, then we believe

that we do not believe it

ïB ÂÉÒÄ 8  Ẓ B(¬fly(X)) ­ fly(X)

ïIf I believe that Xis a bird and if I donõt believe that X
cannot fly, then I will conclude that X flies
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8.1 Autoepistemic Logic



ÅA belief theory T describesthe knowledgebase

ïA restricted belief interpretation of T is a set of 

belief atoms I such that for each B(F) appearing in T
either B(F) ÍI or ¬ B(F) ÍI (but not both)

ïA restricted belief model of 

T is a belief interpretation I
such that 4 ẕ ) is consistent
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8.1 Autoepistemic Logic



ÅAgain expansions to the theory can be derived 

ïSince all belief atoms have to be either true or false, 

the theory can be treated like propositional

formulae

ïIn particular, checking whether T entails F can be 

done using the rules of the propositional calculus

ïIn order for an initial assumption to be an 

expansion, it must be that F is entailed, iff B(F) has 

been initially assumed true
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8.1 Autoepistemic Logic



ÅProbability theory deals with expressing the 

belief or knowledge that a certain event will 

or has occurred

ÅIn general, there are two major factions among 

probability theorists

ïFrequentistic view :

ÅProbability of an event is its relative frequency of 

occurrence during a long running random experiment

ÅMajor supporters: Neyman, Pearson, Wald, é
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8.2 Probability



ïBayesian view :

ÅProbabilities can be assigned to any event or statement 

whether it is part of a random process or not

ÅProbabilities thus express the degree of belief that a given 

event will happen

ÅMajor supporters: Bayes, Laplace, de Finetti, é

ÅDuring the following slides, we will 

encounter both views

ïébut still, formal notation and theory

is similar in both
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8.2 Probability



ÅThe probability of an event or statement A is 

given by P(A)

ï0 !  ᶰ πȟρ

ïP(¬A):=1 -P(A)

ïDepending on your world view, probability of 

P(A)=0.8 may mean

ÅDuring an longer random experiment, A was the outcome 

of 80%of all tries

ÅYou have a strong belief (quantified by 0.8 of a maximum 

of 1) that A can / will happen

Knowledge-Based Systems and Deductive Databases ςWolf-Tilo Balk ςIfIS ςTU Braunschweig 31

8.2 Probability



ÅGiven two events A and B and assuming that they 

are statistically independent of each other, 

probabilities may be combined

ï0 ! Ẓ "  0 !  ɕ 0 "

Åalso written P(A, B)

ïe.g. 

ÅP(isYellow(Tweety))=0.8 and P(canFly(Tweety))=0.2
 P(isYellow(Tweety), canFly(Tweety)) = 0.16
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8.2 Probability



ÅHowever, events are often not independent, thus 
we need conditional probabilities

ïThis is written as P(A | B) 

ÅP(A | B) is the conditional probability of A given B

Å0 ! ȿ "  ȡ  0 ! Ẓ "  Ⱦ 0 "

Åe.g.  P(canBark(X) | dog(X)) = 0.9
ïGiven that X is a dog, X can bark with a probability of 0.9 

ÅBased on conditional probabilities, we can derive 
simple deductive system

ïProbabilistic rules : 

ÅB  N P(B|A) A or B :- P(B|A) A
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8.2 Probabilistic Reasoning



ÅOf course, we can also form deductive chains

ÅExample :

ïÄÏÇ 8  ᴺ0.6 domestic_animal(X). 
canBark 8  ᴺ0.9 dog(X). 
Ṳ canBark 8  ᴺ?? domestic_animal(X).

ïSo, assuming statistical independence between 

barking and domestic animals, we may conclude that 

the probabilities may be just multiplied, i.e. 

canBark 8  ᴺ0.54 domestic_animal(X).
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8.2 Probabilistic Reasoning



ÅUnfortunately, this naïve approach breaks quickly

ÅExample :

ïÄÏÇ 8  ᴺ0.6 domestic_animal(X). 
canBark 8  ᴺ0.9 dog(X). 
ṲcanBark 8  ᴺ0.54 domestic_animal(X).

ïdomestic_animal 8  ᴺ1.0 cat(X).
ṲcanBark 8  ᴺ0.54 cat(X).

ÅCats can bark with 0.54 probability? Something is wrongé

ïProblem: 

ÅÄÏÇ 8  ᴺ0.6 domestic_animal 8  ᴺ1.0 cat(X).  ??
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8.2 Probabilistic Reasoning



ÅWhy canõt we have any confidence about barking 

cats?

ïNot enough information!

ïWe donõt know about

P(cat(x)|dog(x)) , or P(bark(X)|cat(X)), é
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8.2 Probabilistic Reasoning

ÄÏÇ 8  ᴺ0.7 domestic_animal(X).  
canBark 8  ᴺ0.9 dog(X). 
domestic_animal 8  ᴺ1.0 cat(X) 
canBark 8  ᴺ??domestic_animal(X).
canBark 8  ᴺ??cat(X).

domestic animals

cats

barksdogs

domestic animals

cats

barks

dogs

All cats barkNo cat barks



ÅGiven two events with their respective 
probabilities, P(A)=ɻand P(B)=ɼ, how could 
they be related, i.e. what is 0 ! Ẓ "?

a) A and B could be independent , and thus 
0 ! Ẓ "  :=P(A) * P(B)
Å e.g. P(isMonday(today)), P(cat(Garfield))

b) A and B could be mutually exclusive , thus 
0 ! Ẓ ":= 0
Å e.g. P(isMonday(today)), P(isTuesday(today) )

c) A implies B, thus 0 ! Ẓ "   0 !
Å e.g. P(isCat(X)), P(isAnimal(X))
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8.2 Probabilistic Reasoning



d) There could also be no quantifiable 
relationship between P(A) and P(B)
Å However, according to Boole, we can at least provide an 

interval which contains 0 ! Ẓ "  

Å max(0, P(A)+P(B)-ρ    0 ! Ẓ "   ÍÉÎ 0 ! ȟ 0 "
ï Those two boundaries are called T-Norms

ï Minimum T-Norm:  min(a, b) (also known as Gödel T-Norm)

ï ğukasiewiczT-Norm:  max(0, a+b-1)

Å Example:  P(A)= 0.33, P(B) = 0.23
π  0 ! Ẓ "   πȢςσ
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8.2 Probabilistic Reasoning

P(A) P(B)

0 ! Ẓ "   π  ÍÁØ πȟ Á Â-1) 

P(A)

P(B)

0 ! Ẓ "   πȢπυσ

P(A)

P(B)

0 ! Ẓ "   πȢςσ  ÍÉÎ Áȟ Â



ïObviously, there may also be many additional cases 

(like negative correlation, A implies B when C, etc...)

ïHowever, if there is no further information available, 

upper/lower bound estimation is the only 

possible case

ÅWe should try to incorporate these results into our to-be-

developed chaining rule

ïThus, we can conclude

ÅIf there are no further properties known for A and B but 

their probabilities, their combined probability can only be 

described by an interval
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8.2 Probabilistic Reasoning



ÅConfidence intervals also help to model 

probabilistic rules

ï" ᴺ(x1, x2) A  iff π  Øρ  0 "ȿ!   Øς  ρ   

Åi.e. given A, the probability for B is between x1 and x2

ÅIf x1=x2 , this can still be abbreviated with " ᴺx1 A 

Åe.g. canBark 8  ᴺ(0.8, 1.0) dog(X)
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8.2 Probabilistic Reasoning



ÅAlso, rules combined with their converse can be 

stated that way

ï! ᴺ(x1, x2) B  and its converse " ᴺ(y1, y2) A, denoted as

A (y1, y2)
(Px1, x2) B 

ïe.g. domesticAnimal(X) (0.3, 0.3) P
(1.0, 1.0) cat(X)
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8.2 Probabilistic Reasoning



ÅThe dominant reason for these flawed deductions 
is mixing causal rules with diagnostic rules

ïCausal Rules: Relate a known cause to its effect

ÅA is the cause for B; A is given and B happened because of A

Åe.g. groundIsWetŶ1.0 sprinklerWasOn

ïDiagnostic Rules : Try to relate an observable effect 
to its cause

Åi.e. BŶ0.2 A

ÅB is the cause for A, but just with a 
weaker probability / belief

Åe.g. sprinklerWasOnŶ0.3 groundIsWet
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8.2 Probabilistic Reasoning


