
International Journal of Computer Science and Applications,

Technomathematics Research Foundation

1

EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS RESPECTING

DON’T-CARE ATTRIBUTES

CHRISTOPH LOFI
WOLF-TILO BALKE

 Institute for Information Systems
University of Braunschweig

38106 Braunschweig - Germany

lofi@ifis.cs.tu-bs.de
http://www.ifis.cs.tu-bs.de/staff/christoph-lofi

balke@ifis.cs.tu-bs.de

http://www.ifis.cs.tu-bs.de/staff/balke

ULRICH GÜNTZER

Institute of Computer Science
University of Tübingen

72076 Tübingen, Germany

ulrich.guentzer@informatik.uni-tuebingen.de
http://<webaddress>

Skyline Queries have received a lot of attention due to their intuitive query formulation. Following

the concept of Pareto optimality all „best‟ database items satisfying different aspects of the query are

returned to the user. However, this often results in huge result set sizes. In everyday‟s life users face

the same problem. But here, when confronted with a too large variety of choices users tend to focus

only on some aspects of the attribute space at a time and try to figure out acceptable compromises

between these attributes. Such trade-offs are not reflected by the Pareto paradigm. Incorporating

them into user preferences and adjusting skyline results accordingly thus needs special algorithms

beyond traditional skylining. In this paper we propose a novel algorithm for efficiently incorporating

such typical trade-off information into preference orders. Furthermore, we allow for “don‟t care”

semantics on certain attributes expressing ones indecisiveness given certain preconditions. Our

experiments on both real world and synthetic data sets show the impact of our techniques:

impractical skyline sizes efficiently become manageable with a minimum amount of user interaction.

Additionally, we also design a method to elicit especially interesting trade-offs promising a high

reduction of skyline sizes. At any point, the user can choose whether to provide individual trade-

offs, or accept those suggested by the system. The benefit of incorporating trade-offs into the strict

Pareto semantics is clear: result sets become manageable, while additionally getting more focused on

the users‟ information needs.

Keywords: Database Personalization; Skyline Queries; Trade-Off Incorporation.

1. Introduction

Searching through large information spaces (like product search in the Web or document

search in digital libraries) is a demanding problem. Besides response time and scalability

issues, users often get either a flood of results, or empty results produced by either under-

or over-specified queries. In any case, perfect items with respect to the user‟s query will

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

2

hardly ever exist and users will always have to relax on at least some of their constraints

by accepting compromises.

In such applications users often have to deal with decision problems involving several

attributes. Regarding each single attribute, preferences are clear. But providing

preferences on objects characterized by several attributes is difficult. Con-sider for

example a decision problem in real estate: most peo-ple would agree that a bigger

apartment is nice to have; simi-larly less expensive rental prices are considered being

better. Thus, the ordering of real estate per attribute is clear. In con-trast, specifying a

weighted function compensating between size and price is not so easy: How much money

is an addi-tional square meter exactly worth?

To avoid this problem the skyline query paradigm has been introduced. Users just need to

specify the set of interesting attributes and a basic order per attribute. They do not need to

supply complex weightings or utility functions. Nevertheless, the skyline result set

contains all possibly optimal choices. The semantics of skylines follow the notion of

Pareto-optimality as introduced in Börzsonyi et al. (2007). The skyline contains all

objects which are not dominated by others with respect to a given set of preferences. An

object dominates another if it is better or equal with respect to all attribute preferences

and strictly better in at least one attribute. If only one attribute is considered for object

comparisons and all remaining attributes remain fixed, this is often referred to as ceteris

paribus („all else being equal‟) semantics, see Hansson (2002) or McGeachie and Doyle

(2002).

User preferences as in Lacroix and Lavency (1987) individually order domain values

with respect to each attribute. Skyline queries are usually restricted to attributes with

numerical domains using their natural orders (see e.g. Börzsonyi et al. (2007), Papadias et

al. (2003), or Balke et al. (2004)). But also arbitrary partial orders on categorical domains

can be supported (see e.g. Chan et al. (2005) or Lacroix and Lavency (1987)). However,

computing skylines over such general partial order preferences has shown to be

computationally expensive. A very important practical class of preferences, that is more

efficient to handle, are weak orders, Godfrey et al. (2005). They form a total order of

equivalence classes of domain values, Öztürké et al. (2005). The user is indifferent

between all values within each equivalence class. This model assumes the indifference

relation to be transitive. Weak orders can be applied on numerical, as well as on

categorical domains. For the remainder of this paper, we will assume all user preferences

to be in the form of weak orders.

Example: Let us assume a user wants to rent an apartment in San Francisco. His/her

search will involve an individual set of important attributes, such as location, size or

rental price. For instance, regarding the rental price and size users usually prefer bigger

apartments to smaller ones and cheaper apartments to more expensive ones (given that

the remaining attributes show similar values). Each user will also show certain

preferences with respect to some categorical attributes like location (e.g. Russian Hill or

North Beach is considered better than the Mission District) or the apartment‟s amenities.

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

3

The set of „best‟ objects (the skyline set) can be computed by evaluating all preferences

on the attributes in the user‟s query following the Pareto semantics.

Using such preferences within skyline queries is easy for the user. But this ease of use

comes at a price: the respective computation times are impractical for larger databases,

see Godfrey (2004). And even worse, skyline sizes may grow very fast with the number

of query attributes and quickly reach the size of the entire database as shown by Godfrey

(2004). Hence for practical usage of the paradigm, reducing skyline set sizes is necessary.

In this work, we focus on directly incorporating user feed-back into the query process.

We enable the efficient incorporation of user-generated trade-offs extending the concept

of „amalgamated preferences‟ as introduced in Balke et al. (2007). In the course of this

paper we will show that our trade-offs form an expressive and useful tool to integrate

user feedback into the skyline evaluation and can effectively combat the adverse effect of

anti-correlation on the skyline size. The benefits of our approach are threefold:

 We provide a novel algorithm for efficiently incorporat-ing individual user

trade-offs into skyline computations. By exploiting the trade-off information,

less relevant ob-jects can be incrementally removed from the skyline and thus a

valuable means of personalization is provided. Generally users are allowed to

state arbitrary trade-offs for skyline reduction.

 Our extensive experiments on practical as well as syn-thetic data sets show that

the trade-off integrations are quick enough to allow for interactive user feedback

meeting real time constraints even for large datasets.

 To support users in specifying trade-offs, we propose a scheme for suggesting

some promising trade-offs to the user. This frees users from manually exploring

the cur-rent result set for finding suitable trade-offs and (having a greedy

reduction strategy) also reduces the number of necessary interaction steps. Still

the user can always re-ject suggestions and thus stays in control.

2. Decreasing Skyline Sizes

The problem of too large skyline sizes is not only aggra-vated by larger numbers of

attributes in the query, but also by anti-correlations in the data set. Tests in Börzsonyi et

al. (2007) show that in the case of only 6 dimensions the resulting skylines for a corre-

lated, independently distributed and anti-correlated synthetic dataset are 0.02%, 2% and

26% of the database, respectively. In this case particularly the anti-correlation leads to

obviously unmanageable result set sizes. However, in practical queries anti-correlation

with respect to the preferences over a dataset occurs quite naturally (e.g., users would

naturally prefer high-est quality items for the lowest price in product databases, but they

will hardly ever exist).

Example (cont.): For apartment searches, there will be at least some interesting attributes

that invite anti-correlations, like the rental price and the size. In similar locations a larger

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

4

apartment is bound to be more expensive than a smaller one. Moreover, for similar sizes

the location‟s quality will adversely affect the rental price. Let us focus on two typical

preferences: the number of rooms and the rental price. Most users like spacious

apartments for a low price. That means, if the user in our case is offered two 1-bedroom

apartments in the same location, only the one with the lower rental price is considered to

be part of the skyline.

This paradigm is a very natural way of structuring result sets: only looking at the two

attributes price and size a user might be ambiguous between a cheap 1-bedroom

apartment and a more expensive 2-bedroom apartment (and indeed both would be part of

the skyline), but the user would definitely not like a more expensive 1-bedroom

apartment. Since in apartment rental decisions usually more than two attributes are

involved, the user might end up with a large skyline. This is at least partly due to the anti-

correlation between price and size. Thus, the result set has to be reduced.

The traditional way to deal with the problem of large sky-line results are utility functions

(e.g. Keeney et al. (1993) and Balke and Güntzer (2004)), where for in-stance the trade-

off between size and price is captured in a utility function with personalized weightings.

This function quantifies how much a user is willing to pay for more space. However, in

practice such functions are extremely hard to state for each user. Still they may have a

strong effect on the subsequently derived result set. A different way for dealing with the

problem are trade-offs built in a qualitative way. In Balke et al. (2007) we give a basic

formalization of qualitative compensations: users may „amalgamate‟ two or more

preferences by defining preferences or equivalences across the respective attributes. We

will build on this formalization (which is revisited in definitions 1-3 of section 3),

because it almost exactly defines the notion of trade-offs that we need for our user-

centered skyline reductions here.

However, the algorithms presented in Balke et al. (2007) can only work directly on the

extended Pareto product order 𝑃 ∗. This is a rela-tion containing object comparisons

between all database objects, i.e. 𝑃 ∗ grows quickly to impractical sizes. Since in earlier

approaches, the processing of trade-offs needed to materialize this relation, the resulting

space and time consumption are prohibitive for online algorithms. In fact, our

experiments in Balke et al. (2007) report average runtimes of several minutes even in the

optimal case (in contrast to between 0.08 and 1.12 seconds for the new approach

presented here, see section 5). In a nutshell, our new approach frees the algorithm for

incorporating trade-offs from materializing the product order. It is able to work on easy

set operations which are efficiently supported in real time by current database

technology, while still guaranteeing consistency of all user trade-offs. Instead of

laboriously materializing 𝑃 ∗, our new algorithm needs only to consider and compare two

small subsets of the current skyline. The effort necessary for this is smaller by several

magnitudes.

Example (cont.): Let us consider a short and simplifying example: assume a database

containing 1–4-bedroom apartments in a price range of 300–1050 USD. A user may pose

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

5

that more rooms and a lower price are preferable. The preference will look like depicted

in Figure 2. The problem is clear: Since there will usually be no perfect 4-bedroom

apartment for 300 USD, the skyline will contain objects around the diagonal

perpendicular to the bisector of the score axes, containing e.g. 2-bedrooms for 600 USD,

3-bedrooms for 750 USD and 4-bedrooms for 1050 USD. Those choices do not dominate

each other, because offering more space comes at the price of higher rent. The top

choices with respect to the base preferences (the upper- right triangle-shaped area) will

usually be empty.

The basic knowledge (or belief) about such an anti-correlation therefore leads in practical

applications to different querying strategies. Probably everybody would prefer a 450

USD apartment over any 1050 USD apartment that is similar in all other aspects (the

intuitive ceteris paribus preference on rental prices). Nevertheless specifying a simple

„always prefer the cheapest apartment‟ preference in a real world system is not helpful,

because one cannot expect a sensible result set. In fact, most users are able to refine their

needs by investigating usual rental prices for a certain size, i.e. the consideration of

suitable trade-offs. Given the data set in Figure 2, a user might price-wise prefer a 3-

bedroom apartment over a 4-bedroom apartment. Similarly he/she might actually even

prefer a price range of 450–750 USD over cheaper offers, because the respective cheaper

apartments (usually) would be much smaller.

Figure 1. Areas of Domination Resulting from Different Trade-Offs (upper left and right: preferences,

lower left: equivalence)

4

3

2

1

900 750 600 450 3001050

Trade-Off (2, 450) ⊲ (3, 900)P1

P2

red

green

4

3

2

1

900 750 600 450 3001050

Trade-Off (3, 900) ⊲ (2, 450)P1

P2

red

green

4

3

2

1

900 750 600 450 3001050

Trade-Off (2, 450) ≡ (3, 900)P1

P2

red

green

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

6

Example (cont.): Let us assume the user has a certain opinion about his/her monetary

benefit of more space. A trade-off can be specified, e.g. a user might state an equivalence

between 450 USD 2-bedroom and 900 USD 3-bedroom apartments. The effect on the

skyline will be that the relationship between „pricey‟ 2-bedroom apartments (more than

450 USD) and relatively „inexpensive‟ 3-bedroom apartments (less than 900 USD) is re-

established. Within certain bounds, the trade-off presents us with a qualitative notion of

what a user considers „inexpensive‟ or „pricey‟ relative to the apartment‟s size. In fact,

for example a 750 USD 3-bedroom apartment would now dominate a 600 USD 2-

bedroom apartment. The user has thus stated a price-related preference for the size of the

apartment (with respect to two or three rooms).

Figure 1 shows the effect on the skyline: if there are objects in the green area,

corresponding objects (respecting ceteris paribus semantics) in the red area are

dominated.

3. Related Work

The processing of skyline queries has recently received much attention and many

efficient evaluation algorithms have been designed like Börzsonyi et al. (2007), Papadias

et al. (2003), Balke et al. (2004), Chomicki (2006), Kossmann et al. (2002), Chan et al.

(2005), and more. All these approaches have in common that the emphasis lies on the

efficient computation of the entire skyline set, though some of them already stress the

problem of large result sizes (e.g., Börzsonyi et al. (2007) and Balke et al. (2004)).

Having realized this serious challenge for the practical applicability of the skyline

paradigm, further research identified basically two ways to deal with the problem:

selections based on special characteristics of the data or to rely on user interaction in the

form of feedback. We will briefly describe the relevant approaches and then focus on the

most closely related to our work.

The idea of exploiting structural characteristics for skyline reductions (often referred to as

data-centric or user-oblivious ranking) spawned two basic approaches: in the first class of

approaches one tries to give a representative, yet manageable overview of possible

choices. The idea is to offer the user a wide range of different options. The second class

of approaches relies on focusing on some skyline items with special characteristics. The

characteristics are chosen to single out some items more relevant to the user.

Among the first approaches, Koltun and Papadimitriou (2005) tried to select a set of

approximately dominating representatives such that all skyline objects lie in a sphere

with fixed diameter around the selected items. Similarly, Lin et al. (2007) uses the

number of objects actually dominated by a skyline object as a measure for its respective

quality and therefore selects a fixed number of items from the skyline that together

dominate the highest number of database objects. However, both selection problems were

proven to be NP-hard for three or more attributes. A different approach was introduced in

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

7

Balke et al. (2005) where low-dimensional skyline sets (subspace skylines) were taken as

basis for deriving a sample of the skyline.

In contrast, Balke et al. (2007) introduced the purely structural notion of weak Pareto

optimality. Here all items are removed from the skyline, which are dominated by other

items with respect to all comparable attributes, whereas incomparable attribute values are

ignored. Hence, a larger number of objects are dominated resulting to smaller skyline

sizes. Viappiani et al. (2006) proposes a measure where the number of subspace skylines

each item occurs in is taken as a ranking criterion on the complete skyline set. Both of the

last two approaches exploit some basic characteristics that seem intuitive, but on the other

hand might not be adopted by each user. Hence, they are of heuristic character only.

Other approaches address the problem of large skyline sizes by relying on user feedback

(often referred to as personalized ranking or user-centered approaches). Among the first

was the online algorithm in Kossmann et al. (2002) that computed the entire skyline, but

could be steered by the user to focus on more interesting areas first. The algorithm in

Balke et al. (2005) involved user feedback on a skyline sample to derive some adequate

utility function(s) as an input for subsequent top-k retrieval. The framework given in

Chomicki (2006) provides methods for preference revision. If they modify the query in

an order preserving way, result sets can be evaluated incrementally.

Another way to express more or less interest in specific attributes is imposing an order on

attributes in the query. This has been heavily exploited in Lee et al. (2007): in case of a

too large skyline the user provides an order on the attributes used. Finally, the skyline of

the subspace omitting the least important attribute(s) is returned instead. Another way of

user interaction is given in Pei et al. (2005) and Pei et al. (2006) where the user is enabled

to explore the skyline with respect to different subspaces in an OLAP-like fashion. The

so-called Skycube precomputes all subspace skylines. It allows for the typical interactions

like slicing, drilling down, etc. Especially the concept of decisive subspaces in Pei et al.

(2006) is heavily related to our work. Subspace skylines are projections of the complete

skyline onto some important attributes. The decisive subspace(s) for each object contain

those attributes explaining why an object is in the skyline. Up to a certain degree this

resembles the subspaces chosen in our framework for eliciting trade-off information from

the user.

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

8

Apart from the application in skyline retrieval the notion of preference elicitation has

already attracted attention for personalizing intelligent information systems. Chen and Pu

(2004) gives a good overview of the current state of the art in elicitation methods.

Especially, the work in Viappiani et al. (2006) is relevant (but orthogonal) to our

approach. Here the user is enabled to critique example items, thus allowing for the

implicit generation of preferences best reflecting the criticism. Although no explicit

trading of characteristics is supported, we would like to explore an integration of this

approach into our framework in future work. Still, we share the idea of a navigational

approach to preference-based search.

4. Theoretical Foundations

As stated before, we consider preferences as weak orders on the domain values with

respect to a certain attribute. These are defined as follows:

Definition 1: (Base Preference, Base Equivalence)

Let 𝐷1 ,… ,𝐷𝑚 be non-empty sets of m domains (i.e. sets of attribute values) on m

attributes 𝐴1,… ,𝐴𝑚 such that 𝐷𝑖 is the domain of Ai. Furthermore, let O 𝐷1 × 𝐷2 ×

⋯ × 𝐷𝑚 be a set of database objects.

For any 𝑖 ∈ 1,… ,𝑚 base preference 𝑃𝑖 ⊆ 𝐷𝑖 × 𝐷𝑖 is a weak order on 𝐷𝑖 , and a base

equivalence 𝑄𝑖 ⊆ 𝐷𝑖 × 𝐷𝑖 is an equivalence relation of those values which are in the same

equivalence class with respect to 𝑃𝑖 .

To simplify notation, let 𝐷𝜇 ∶= ×
𝑖∈𝜇

𝐷𝑖 , for any 𝜇 ⊆ {1,… ,𝑚}.

Definition 2: (Pareto Dominance, Strict Pareto Dominance)

Let 𝜇 ⊆ 1,… ,𝑚 . The Pareto dominance relation induced by preferences {𝑃𝑖 | 𝑖 ∈ 𝜇}

and equivalences {𝑄𝑖 | 𝑖 ∈ 𝜇}, denoted by Par𝜇 , is the set of pairs 𝑢, 𝑣 ∈ 𝐷𝜇 × 𝐷𝜇

satisfying 𝑢𝑖 , 𝑣𝑖 ∈ (𝑃𝑖 ∪ 𝑄𝑖), for all 𝑖 ∈ 𝜇.

The strict Pareto dominance relation induced by {𝑃𝑖 | 𝑖 ∈ 𝜇} and {𝑄𝑖 | 𝑖 ∈ 𝜇}, denoted by

Figure 2. Example Base Preferences and Skyline

4

3

2

1

900 750 600 450 3001050

P1

P2

4

3

2

1

900

750

600

450

300

1050

P1: Rooms P2: Rent Possible Skyline

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

9

SPar𝜇 , is the set 𝑢, 𝑣 ∈ 𝐷𝜇 × 𝐷𝜇 such that 𝑢𝑖 , 𝑣𝑖 ∈ (𝑃𝑖 ∪ 𝑄𝑖), for all 𝑖 ∈ 𝜇, and

 𝑢𝑖 , 𝑣𝑖 ∈ 𝑃𝑖 , for some 𝑖 ∈ 𝜇.

Note that SPar𝜇 ⊆ Par𝜇 and that SPar𝜇 is a strict partial order on 𝐷𝜇 . Even for small

attribute domains and small 𝑚, this order contains many symmetrically non-dominated

tuples. This is an obvious weakness of the Pareto semantics for preference modeling. We

extend this model by allowing for trade-offs. The following definition introduces a

preference relation that extends SPar 1,…,𝑚 .

Definition 3: (Extended Preference and Equivalence)

Let 𝜇 ⊆ 1,… ,𝑚 . An extended preference with respect to 𝜇 is a strict partial order 𝑃𝜇 on

𝐷𝜇 satisfying SPar𝜇 ⊆ 𝑃𝜇 . An extended equivalence with respect to 𝜇 is an equivalence

relation 𝑄𝜇 on 𝐷𝜇 such that Par𝜇 − SPar𝜇 ⊆ 𝑄𝜇 .

𝑃𝜇 and 𝑄𝜇 are compatible if and only if 𝑃𝜇 ∩ 𝑄𝜇 = ∅ and 𝑃𝜇 ∘ 𝑄𝜇 ⊆ 𝑃𝜇 and 𝑄𝜇 ∘ 𝑃𝜇 ⊆

𝑃𝜇 (spanning transitivity).

In the following, instead of 𝑢, 𝑣 ∈ 𝑃𝜇 (i.e. 𝑣 dominates 𝑢 with respect to 𝑃 𝜇) we write

𝑢 ⊲𝜇 𝑣. Similary, 𝑢, 𝑣 ∈ 𝑄𝜇 is abbreviated by 𝑢 ≡𝜇 𝑣. We write 𝑢 ⊴𝜇 𝑣 if and only if

𝑢 ⊲𝜇 𝑣 or 𝑢 ≡𝜇 𝑣. Also, we abbreviate 𝑃 1,…,𝑚 and 𝑄 1,…,𝑚 by 𝑃 and 𝑄, respectively.

Analogously, ⊲ 1,…,𝑚 , ⊴ 1,…,𝑚 , and ≡ 1,…,𝑚 will be denoted by ⊲, ⊴, and ≡.

With these definitions, we can derive Pareto skylines by selecting all objects o ∈ O which

are maximal with respect to P. Pareto optimality treats all attributes in the same way and

builds the product order out of the base preferences and equivalences. With the strict

Pareto semantics also the base preferences and equivalences can be fully reconstructed

from the product order. This useful characteristic is referred to as separability as

described in Bradley et al. (2005). However, when selecting best choices from the skyline

sacrificing the separability is a sensible thing to do as the following example shows.

Example (cont.): To get an intuition about trade-offs let us assume the user‟s monetary

value of more space has not yet been specified. Consider the basic preferences: „the more

space the better‟ and „the smaller the price the better‟. With respect to these preferences a

450 USD 2-bedroom and a 460 USD 3-bedroom apartment (with equivalent values

regarding the remaining attributes) are symmetrically non-dominated and would both be

part of the skyline. However, for most people an additional room would definitely more

than compensate an only slightly higher rental price. Unfortunately this kind of

compensation cannot be expressed within the Pareto semantics.

The concept of preference and equivalence trade-offs remedies this shortcoming by

allowing to take into account two or more attributes together. Trade-offs add new

relationships to an extended preference between previously non-dominated tuples

following the ceteris paribus semantics. As soon as a trade-off has been specified,

however, the separability characteristic is lost for the extended preference order and it can

no longer be constructed from the base preferences/equivalences regarding each attribute.

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

10

Example (cont.): Assume that for instance the user stated a general equivalence between

450 USD 2-bedroom and a 900 USD 3-bedroom apartments (all else being equal, see

Figure 1) and reconsider the example objects from above. If all remaining attribute values

are equal, a 460 USD 3-bedroom is clearly better than a 900 USD 3-bedroom apartment,

which in turn, by the given trade-off is considered equivalent to a 450 USD 2-bedroom

apartment. Now the 460 USD 3-bedroom dominates the 450 USD 2-bedroom apartment,

which can thus be removed from the skyline set.

Now we will formally define trade-offs (Definition 4) and specify which relationships

have to be added to P under the ceteris paribus semantics with respect to a given trade-off

(Definition 5).

Definition 4: (Trade-Offs)

Let 𝜇 ⊆ {1,… ,𝑚} and 𝑃𝜇 , 𝑄𝜇 a compatible extended preference and equivalence as given

by Definition 3.

For any pair of tuples 𝑥𝜇 and 𝑦𝜇 that are incomparable in both 𝑃𝜇 and 𝑄𝜇 , we call the

statement (𝑥𝜇 ⊲ 𝑦𝜇) a preference trade-off. Analogously, (𝑥𝜇 ≡ 𝑦𝜇) is called an

equivalence trade-off.

With trade-offs, the user introduces new relationships between previously incomparable

tuples following the ceteris paribus semantics.

Definition 5: (Incorporating Trade-Offs)

Let 𝑃 and 𝑄 be compatible, extended preferences and equivalences on 𝐷 and let 𝜇 ⊆

 1,… ,𝑚 and 𝜇 ∶= 1,… ,𝑚 ∖ 𝜇.

a) Let (x ⊲ y) be a preference trade-off for 𝜇. We define an extended preference

𝑃∗ ⊇ 𝑃:

 by extending P to 𝑃′ by adding all relationships 𝑜1 ⊲ 𝑜2 satisfying the

following: (𝑜1
 𝜇 = 𝑥𝜇 ∧ 𝑦𝜇 = 𝑜2

 𝜇) and (𝑜1
 𝜇 = 𝑜2

 𝜇)

 and then computing 𝑃∗as transitive closure of 𝑃′.
b) Let (x ≡ y) be an equivalence trade-off for 𝜇. We define 𝑄∗ ⊇ 𝑄 and 𝑃∗ ⊇ 𝑃:

 by first extending 𝑄 to 𝑄′ by adding all relationships 𝑜1 ≡ 𝑜2 satisfying the

following: [𝑜1|𝜇 = 𝑥𝜇 ∧ 𝑦𝜇 = 𝑜2|𝜇] ∨ [𝑜1|𝜇 = 𝑦𝜇 ∧ 𝑥𝜇 = 𝑜2|𝜇] and 𝑜1|𝜇 = 𝑜2|𝜇

and computing 𝑄∗ as transitive closure of 𝑄′.
 And then by computing 𝑃∗ as transitive closure of 𝑃 ∪ 𝑄∗

Please note that the previous definitions base on established work summarized in Balke et

al. (2007). However, all those previous approaches relied on actually materializing and

extending the preference and equivalence relations 𝑃 and 𝑄 (as well as 𝑃∗ and 𝑄∗). Those

relations quickly grow large and may contain as many relationships as the square of the

number of database objects. The benefit of the following approach is to propose an

incorporation scheme mimicking the effects of the procedure described in Definition 5,

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

11

however due to a sensible restriction of the trade-offs, with a drastic reduction of the

necessary skyline computation effort.

According to Definition 4, trade-offs can involve an arbitrary number of attributes.

However, for user interactions, visualizing more than 2 dimensions is difficult. Moreover,

eliciting suitable compromises for multiple attributes is confusing for users in terms of

understanding the effect on the skyline. The same holds for chains of compromises

spanning over different values in different attributes (e.g., better performance with

respect to the first attribute is traded against worse performance with respect to the

second, which in turn is traded against some other attribute). Again, though the final

effect on the skyline result can be computed, it is rather hard to understand for the user.

For these reasons we restrict trade-offs to pairs of attributes only (i.e. trade-offs of the

form „performing worse in A can be compensated by performing better in B‟), and will

not allow interleaved chains of trade-offs spanning multiple attributes. These restrictions

also have an additional beneficial effect: they allow for decreasing the complexity for

incorporating trade-offs and checking consistency as explained in the next section.

Still, finding the new skyline incorporating given trade-offs means to find the maximum

objects of the extended preference. Since trade-offs do not add objects to the skyline, the

recomputation can be restricted to current skyline objects. In the next section we will

show that this only needs comparisons of all objects better than the preferred trade-off

values with those worse than the dominated trade-off values. For equivalence trade-offs

this has to be done in both directions (cf. Figure 1). Of course, in all these comparisons

the ceteris paribus rule has to be obeyed.

4.1. Selecting Objects and Consistency

Let us consider a user-specified trade-off (x ⊲ y) or (x y), respectively. Introducing

this trade-off means inducing more equivalence and domination relationships on

previously incomparable objects into the respective extended preference P and

equivalence Q. After integrating a new trade-off, we will call the new extended

preference and equivalence P* and Q*, respectively. Please note that since we only allow

consistent additions, all the previous relationships stay valid, i.e. P P* and Q Q*.

That means that, if M is the skyline with respect to P and Q, the new skyline M* with

respect to P* and Q* can only become monotonically smaller: M* M.

The next question is how a skyline object can lose its optimality in P* so that it has to be

removed from the skyline? The following theorem shows how to prune skylines

incrementally and proves our pruning method‟s correctness:

Theorem 1: (Incremental Skyline Calculation)

With skyline set 𝑀, the preference and equivalence relations 𝑃, 𝑄, 𝑃∗and 𝑄∗ as above

and using only trade-offs like in Definition 4, but limited to disjoint pairs of attributes

(i.e. 𝑃 = 𝑃𝜇 × 𝑃𝜇).

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

12

a) Given a preference trade-off (𝑥𝜇 ⊲ 𝑦𝜇), the new skyline 𝑀∗ incorporating

the trade-off can be computed by removing all objects 𝑜 ∈ 𝑀 with 𝑜 ⊴𝜇 𝑥𝜇

if and only if there exists an 𝑜′ ∈ 𝑀 with 𝑦𝜇 ⊴𝜇 𝑜′ and 𝑜 ⊴𝜇 𝑜′.

b) Given an equivalence trade-off (𝑥𝜇 ≡ 𝑦𝜇), 𝑀∗ can be computed by

removing all objects 𝑜 ∈ 𝑀 with:

If 𝑜 ⊲𝜇 𝑜′ :

either 𝑜 ⊴𝜇 𝑥𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑦𝜇 ⊴𝜇 𝑜′,

or 𝑜 ⊴𝜇 𝑦𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑥𝜇 ⊴𝜇 𝑜′.If 𝑜 ≡𝜇 𝑜′ :

either 𝑜 ⊴𝜇 𝑥𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑦𝜇 ⊲𝜇 𝑜′,

or 𝑜 ⊲𝜇 𝑥𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑦𝜇 ⊴𝜇 𝑜′,

or 𝑜 ⊴𝜇 𝑦𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑥𝜇 ⊲𝜇 𝑜′,

or 𝑜 ⊲𝜇 𝑦𝜇 and there exists 𝑜′ ∈ 𝑀 with 𝑥𝜇 ⊴𝜇 𝑜′.

Proof: Assume a trade-off has been specified between some attributes with indexes 𝑖 and

𝑗 and define : = {𝑖, 𝑗}. Consider some skyline object 𝑜 𝑀, but 𝑜 𝑀∗. Since 𝑜 is

dominated by some object in 𝑀∗, but was not dominated by any object in 𝑀, a set of new

domination relationships must have been introduced with respect to the new trade-off, i.e.

especially wrt. the attributes with index in µ. Since trade-offs are defined only between

disjoint attribute pairs and the attributes with value in µ have been amalgamated,

domination can be checked for µ and 𝜇 ∶= 1,… ,𝑚 \ separately and then combined

using the Pareto semantics, i.e. we have Pµ, 𝑃𝜇 , Qµ, 𝑄𝜇 , such that P is the Pareto product

order of Pµ, 𝑃𝜇 , Qµ, and 𝑄𝜇 , and Q is the product of Qµ and 𝑄𝜇 . Furthermore, P* is the

Pareto product order of Pµ*, 𝑃𝜇 , Qµ* and 𝑄𝜇 . Analogously Q* is the product of Qµ* and

𝑄𝜇 . Any object dominating o thus has to dominate it with respect to the projection on

attributes with indices in and to the projection with indices in 𝜇.

Ad a) „=>‟ Let us take a closer look at a preference trade-off (x ⊲ y) as defined above.

We know o M, but o M*. Any domination relationship wrt. o in P* can only have

been introduced by the new domination relationship between amalgamated attributes x

and y . Therefore, when projected to the set µ of attributes, o‟s values have to be worse

or equivalent to x , i.e. with Qµ, Pµ as the extended equivalence, resp. preference

regarding only attributes with index in µ: (o µ x o ⊲𝜇 x). But in that case we can

always compare o to some (artificial) object x constructed as ∀ 𝑖 ∈ 𝜇 ∶ (xi := i (x)

∀ 𝑖 ∈ 𝜇 : (xi := 𝜋𝑖(o)) with 𝜋𝑖 as the projection on the i-th component in the sense of

relational algebra. Now by construction either x dominates o, or x is equivalent to o.

Using the trade-off information we also know x to be dominated by some object y

constructed analogously as ∀ 𝑖 ∈ 𝜇 ∶ (yi := i (y) ∀ 𝑖 ∈ 𝜇 : (yi := 𝜋𝑖(o)). Since the new

trade-off information has to be used, in order to dominate o under the ceteris paribus

semantics there has to be some (actually existing) object 𝑜′ either dominating y or

equivalent to y. Hence, for 𝑜′has to hold (y µ 𝑜′ y ⊲𝜇 𝑜′) 𝑦 ⊴𝜇 𝑜′ , i.e. in

particular 𝑜 ⊴𝜇 𝑜′.

„<=‟ The other direction is clear. If there exits some o’ with the above characteristics,

then o ⊴𝜇 x ⊲𝜇 y ⊴𝜇 𝑜′ holds, but o ⊲ 𝑜′ can only hold, if also 𝑜 ⊴𝜇 𝑜′ .

Ad b) The proof for the case of new equivalence trade-offs (x ≡ y) is similar. Again

comparable items x and y have to be constructed like above, but since they have been

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

13

defined as being equivalent by the user, a domination relationship of some database

object o M\M* needs to include a domination relationship either by one of the

(artifical) trade-off objects, or the dominating object needs to dominate one of the trade-

off objects. Thus, one of the domination/equivalence relationships over/by x or y really

has to be a strict domination relationship. In summary we are facing a total of five cases

where always 𝑜 ⊴𝜇 𝑜
′ has to hold:

 (𝑜 ⊲𝜇 𝑥 ≡𝜇 𝑦 ⊴𝜇 𝑜′) (𝑜 ⊴𝜇 𝑥 ≡𝜇 𝑦 ⊲𝜇 𝑜′)

 (𝑜 ⊲𝜇 𝑦 ≡𝜇 𝑥 ⊴𝜇 𝑜′) (𝑜 ⊴𝜇 𝑦 ≡𝜇 𝑥 ⊲𝜇 𝑜′)

 (𝑜 ≡𝜇 𝑦 ≡𝜇 𝑥 ≡𝜇 𝑜′ 𝑜 ⊲𝜇 𝑜
′)

And from either case follows 𝑜 ⊲ 𝑜′ . ■

Some important observations regarding Theorem 1 are as follows:

 Since we restrict trade-offs to pairwise disjoint attribute pairs, Theorem 1 can be

iteratively applied for incorporating multiple trade-offs successively. This is

because the separability characteristic is sustained between the amalgamated

pairs.

 For incorporating a trade-off (x ⊲ y), all objects 𝑜 have to be found with

𝑜 ⊴𝜇 𝑥𝜇 and compared to objects 𝑜′ with 𝑦𝜇 ⊴𝜇 𝑜′ (or using ⊲𝜇 in either case,

respectively). Taking advantage of the restriction of pairwise disjoint trade-off

sets and weakly ordered domains, selecting comparison candidates can be

performed with a simple SQL query on the attribute score in 𝜇. In case of

previous trade-offs on the same 𝜇, their respective candidates have also to be

considered to accommodate also transitive relationships.

 After candidates for 𝑜 and 𝑜′ have been selected, it has to be checked

whether 𝑜 ⊴𝜇 𝑜′. To perform that test, it is sufficient to compare the attributes

in 𝜇 . If any trade-offs with indices in 𝜇 have been specified before, they also

have to be checked in this test. However, respecting these trade-offs is simple as

their transitive effects are limited to just two attributes and no complex multi-

attribute effects are possible due to our previous restrictions.

5. Algorithm

Since trade-offs are generally data-driven and therefore should not be elicited a-priori,

our algorithm has to incorporate trade-off information interactively and thus personalizes

the skyline in a cooperative fashion. The initial skyline is always derived as the

maximum objects of the Pareto order with respect to the base preferences P1, …, Pm and

base equivalences Q1, …, Qm.

5.1. Basic Trade-Off System Procedure

The basic procedure for refining skylines with trade-off information is described in

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

14

Algorithm 1. During the first steps, two appropriate attributes for performing trade-offs

are chosen by the user. If he/she cannot decide on appropriate candidates, the system can

propose trade-off pairs based on the initial skyline and preferences as covered in detail in

section 5.3. Based on the user‟s feedback the algorithm incorporates the trade-offs into

the current skyline and removes all newly dominated objects. The incorporation has to

pay special attention to intertwining trade-offs which may form trade-off chains. Section

5.2 will describe a basic algorithm for performing this task.

In the following, the condition of an object being “equal to or better/worse than another

object with respect to some attribute” is frequently used. To check such a condition

efficiently we deploy scoring functions: for each attribute a scoring function is derived of

the respective base preference/equivalence. Since we rely on weak orders,

numerifications of domain values are possible such that the conditions o1 ⊲𝑖 o2 scorei

(o1) < scorei (o2), and o1 ≡𝑖 o2 scorei (o1) = scorei (o2) hold, see Fishburn (1999). The

use of scores allows for an efficient computation of dominance on attribute values as they

can directly be stated in SQL and executed by a database engine.

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

15

Algorithm 1. Basic Skyline Refinement

Method: interactiveTradeOffs(M, P1, …, Pm, Q1, …, Qm)

Parameters:

 A set of skyline objects M on database objects O

 The base preferences P1, …, Pm used for computing M

 The base equivalences Q1, …, Qm used for computing M

Output:

 The reduced skyline set 𝑀∗ 𝑀

 The set M removed ≔ 𝑀 ∖𝑀∗

Global Variables:

 For each pair of attributes involved in trade-offs a list trade-offi,j , i < j{1, …,

m} containing all trade-offs interactively specified by the user for this

respective pair.

 Scoring functions scorei for each 𝐴𝑖 , i {1, …, m}

Procedure:

Initialization:

0. Create scoring functions for all 𝐴𝑖 , i{1, …, m}

Elicit and incorporate suitable trade-offs:

1. {𝑡1,… 𝑡𝑣} := elicitTradeOffs(M) in Algorithm 4

2. 𝑀∗,𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑
∗ := incorporateTradeOffs(M, {𝑡1,…𝑡𝑣}) in Algorithm 2

Visualize result: Provide an overview of the effects of the trade-off incorporation to the

user by visualizing 𝑀∗ and 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑
∗

3. If the user does not like the result of the trade-off and wants to undo it, start over

with step 1.

4. 𝑀 ∶= 𝑀∗ , 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ≔ 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑
∗

5. If the user is already satisfied

5.1. Return 𝑀∗, 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑
∗ and terminate algorithm

6. Else Start over with step 1.

5.2. Incorporating Trade-Offs

This section covers incorporating given trade-offs into the skyline. During this process,

newly dominated objects have to be removed respecting Theorem 1. At first, preference

trade-offs of the form “yµ is preferred over xµ” (xµ⊲ yµ) are considered. Given these

preference trade-offs, we can identify two sets of skyline objects (see Figure 1): green

containing all objects which are equal or better than yµ with respect to attributes in µ;

and red containing all objects which are equal or worse analogously.

A preference trade-off has to remove all objects from the skyline which are in the red set

and are equivalent to or dominated by at least one object in the green set wrt. the

attributes in 𝜇 . Initially, the set red consists of all objects being dominated by 𝑥µ wrt.

attributes with index in 𝜇 while the set green contains those values being equal or better

with respect to indices in 𝜇 than 𝑦𝜇 . Please note that during the course of user interaction

a newly stated trade-off may intertwine with some previously given ones regarding the

same 𝜇 and may form trade-off chains. For instance, consider two trade-offs (𝑎µ ⊲ 𝑏µ)

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

16

and (𝑏µ ⊲ 𝑐µ): As the domination relationship is transitive, also (𝑎µ ⊲ 𝑐µ) holds and

has to be incorporated. This task has to be independent of the order in which the trade-

offs were given. To cater for this requirement, the red and green candidate sets have to be

transitively expanded considering previous trade-off regarding the current𝜇. In particular

this means, if there are preference or equivalence trade-offs pointing to some object of

the current green set, the set has to be expanded by the previous trade-offs‟ green sets. In

the same way, the red set has to be expanded by the respective red sets of trade-offs

originating from an object in the current red set.

After establishing the candidate sets, all objects in green are compared to those in red

using function compare in

Algorithm 3 to determine whether the current green object dominates or is equivalent to

the current red one with respect to 𝜇 . If this is the case, the current red object has to be

removed from the skyline.

Algorithm 2. Incorporate Trade-Offs

Method: incorporateTradeOffs(M, {𝑡1,…𝑡𝑣})

Parameters:

 The set of current result objects M originally based on the skyline on database

objects O

 A list of 𝑣 trade-offs {𝑡1,… 𝑡𝑣}

Output:

 The set M* with objects affected by the trade-off removed

 The set M removed containing the removed objects

Procedure:

Incorporate the trade-off: This algorithm uses the set of skyline objects (green set) which

may dominate other skyline objects (red set) due to the new trade-off information. For

pruning the red set, each green candidate is compared to each red candidate and

checked for domination.

0. 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ∶= ∅

Consider all trade-offs:

1. For each trade-off 𝑡 in {𝑡1,…𝑡𝑣}

1.1. Select the appropriate 𝜇, 𝑥𝜇 and 𝑦𝜇 . Also, let 𝑡𝑦𝑝𝑒 be either ′𝑝𝑟𝑒𝑓′ or ′𝑒𝑞𝑢𝑖𝑣′

according to 𝑡.

Identify green and red sets:

1.2. Define the set

𝑔𝑟𝑒𝑒𝑛 ∶= {𝑜 ∈ 𝑀 | ∀ 𝑖 ∈ 𝜇: 𝑠𝑐𝑜𝑟𝑒𝑖(𝑜) ≥ 𝑠𝑐𝑜𝑟𝑒𝑖(𝑦𝜇)}.

1.3. Define set

𝑟𝑒𝑑 ∶= 𝑜 ∈ 𝑀 ∀ 𝑖 ∈ 𝜇: 𝑠𝑐𝑜𝑟𝑒𝑖(𝑜) ≤ 𝑠𝑐𝑜𝑟𝑒𝑖(𝑥𝜇) }.

Respect trade-off chains by expanding the sets:

1.4. If there was already a trade-off defined stating a domination/equivalence

relationship between some 𝑥𝜇
′ and some 𝑔 ∈ 𝑔𝑟𝑒𝑒𝑛 with respect to 𝜇 :

(𝑔 ⊴𝜇 𝑥𝜇
′)

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

17

1.4.1. Expand current set 𝑔𝑟𝑒𝑒𝑛 with set 𝑔𝑟𝑒𝑒𝑛′ computed for preference trade-

off between 𝑥𝜇
′ and g

1.5. If there was already a trade-off defined stating a domination/equivalence

relationship (between some 𝑟 ∈ 𝑟𝑒𝑑 and any 𝑦𝜇
′ with respect to 𝜇 ∶ (𝑦𝜇

′ ⊴𝜇 𝑟)

1.5.1. Expand current set 𝑟𝑒𝑑 with set 𝑟𝑒𝑑′ computed for the preference trade-

off between 𝑟 and 𝑦𝜇
′

Compare candidates:

1.6. 𝜇 ∶= {1,… ,𝑚} \ 𝜇

1.7. For 𝑟 𝑟𝑒𝑑 , 𝑔 𝑔𝑟𝑒𝑒𝑛 with 𝑖 ∶ 𝑔𝑖 ≢ 𝑟𝑖
1.7.1. If (𝑡𝑦𝑝𝑒 = ′𝑝𝑟𝑒𝑓′)

1.7.1.1. If 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 𝑟, 𝑔, 𝜇 ≠ ′𝑖𝑛𝑐𝑜𝑚𝑝′
1.7.1.1.1. Add 𝑟 to 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑

1.7.2. If (𝑡𝑦𝑝𝑒 = ′𝑒𝑞𝑢𝑖𝑣′)
1.7.2.1. If 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑟, 𝑔, 𝜇) = ′𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑′ or ((𝑦𝜇 ⊲𝜇 𝑔 or 𝑟 ⊲𝜇 𝑥𝜇)

and 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑟, 𝑔, 𝜇) = ′𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡′)
1.7.2.1.1. Add 𝑟 to 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Remove dominated objects:

2. 𝑀∗ ∶= 𝑀 \ 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑
3. Return 𝑀∗ and 𝑀𝑟𝑒𝑚𝑜𝑣𝑒𝑑

Algorithm 3. Comparing candidates

Method: compare (candidate r, candidate g, index set 𝜇)

Parameters:

 A candidate object r red

 A candidate object g green

 The index set 𝜇

Output:

 ′𝑖𝑛𝑐𝑜𝑚𝑝′, ′𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑′ or ′𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡′

Procedure:

1. 𝑒 ≔ 𝑡𝑟𝑢𝑒
2. For 𝑖 ∈ 𝜇

2.1. If 𝑠𝑐𝑜𝑟𝑒𝑖(𝑟) > 𝑠𝑐𝑜𝑟𝑒𝑖(𝑔)

2.1.1. If there is no trade-off involving the i-th attribute and any attribute with

index j 𝜇

2.1.1.1. Return ′𝑖𝑛𝑐𝑜𝑚𝑝′
2.1.2. If g does not dominate r with respect to the order induced on attributes i

and j by Pi, Pj and all the trade-off information between i and j

2.1.2.1. Return ′𝑖𝑛𝑐𝑜𝑚𝑝′
2.1.3. If 𝑠𝑐𝑜𝑟𝑒𝑖 𝑟 ≠ 𝑠𝑐𝑜𝑟𝑒𝑖(𝑔) then 𝑒: = 𝑓𝑎𝑙𝑠𝑒

3. If 𝑒 = 𝑡𝑟𝑢𝑒

3.1. Return ′𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡′
3.2. Else return ′𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑′

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

18

5.3. Suggesting Suitable Trade-Offs

This section introduces an algorithm to support the selection of trade-offs. The user may

either specify them manually under certain restrictions or may ask the system to propose

candidates.

But what characterizes a good trade-off? Introducing trade-offs between two positively

correlated attributes shows a low effectiveness. This is because skyline objects with

correlated attributes for indexes in 𝜇 are incomparable with respect to at least some

attributes in 𝜇 and generally only few objects can be removed by a trade-off. On the other

hand, anti-correlated attributes can be expected to cause a large number of incomparable

objects in the skyline. Thus, resolving incomparability between anti-correlated attributes

will significantly reduce the skyline size.

Our greedy heuristics is thus based on the current database instance and the degree of

anti-correlation between attributes: a trade-off is considered more effective the more

objects it will remove from the skyline set, thus enforcing a stronger focus. Thus, a good

trade-off should aim for increasing the number of objects in the red and green sets. To

suggest trade-off sets we employ hierarchical clustering as shown in Jung et al. (2004)

(denoted as clusterk in Algorithm 4) on the data set. The number of clusters is also

derived within that cluster algorithm by minimizing the average error between cluster

values denoted as intraErrork for a given clusterk.

Furthermore, research in the area of operations research shows that when considering

goals in some attribute, users tend to favor a certain point in the feature space and show

diminishing preference for more distant values (see e.g. ideal point model, see Green et

al. (2001)). Given that for suggesting a trade-off our algorithm always focuses on two

rather anti-correlated attributes, the trade-off choices can more or less be discriminated

along a single principal axis. Hence, the ideal point model is indeed applicable (like also

used in conjoint analysis) and some typical types of trade-off chains will often occur and

should be offered as default options. Namely these are monotonically increasing or

decreasing trade-off chains (practically discriminating one of the attributes) and so-called

„single-peaked preferences‟ (that means preferring a certain value and increasingly

disliking choices to both sides of that value).

Once the user has selected a pair of attributes and given an opinion on the respective

trade-offs (either individually or by accepting one of the default options), the trade-off

information is ready for incorporation. But since the median objects are usually in the

middle of a cluster, we do not use those median trade-offs directly, but instead

incorporate trade-offs between the objects given by the first and third quartile. Thus, the

mass of objects is included, whereas the outliers of the respective clusters are ignored.

In a nutshell, the idea for the following elicitation algorithm can be summarized as

follows: 1) Find attribute pairs that have not yet been considered and show the highest

degrees of anti-correlation. Offer them for selection. 2) Cluster the values with respect to

the attribute showing less variation and offer the respective cluster medians as choices to

the user. By default suggest monotonically in-/decreasing trade-off chains and single-

peaked preferences. 3) Once the user has decided for adequate preference/equivalence

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

19

relationships extend the trade-offs to the first/third quartile to include the mass of the

cluster and return them for incorporation.

Algorithm 4. Elicit suitable Trade-Offs

Method: elicitTradeOffs (object set M)

Parameters:

 Set of current result objects M

Output:

 Set of trade-offs 𝑇𝜇= {𝑡1,… 𝑡𝑞}, each consisting of the index pair 𝜇, tuples xµ and yµ

and a 𝑡𝑦𝑝𝑒 ∈ {′𝑝𝑟𝑒𝑓 ′ , ′𝑒𝑞𝑢𝑖𝑣′}

Procedure:

Elicit Trade-Offs: In this algorithm, a set of trade-offs is elicited from the user. Of

course, the user may state the trade-offs directly. Alternatively, based on statistical

characteristics of the skyline the system can suggest promising trade-offs.

1. If user wishes to state trade-offs directly

1.1. Let the user provide trade-offs 𝑡1,… 𝑡𝑞

1.2. Return the set of trade-offs and exit method

Find trade-off attributes by computing the correlation coefficients of all attributes which

have not been used in a trade-off before.

2. Define a candidate index set 𝐼 ≔ 𝑖 1 ≤ 𝑖 ≤ 𝑛 and ∄ 1 ≤ 𝑗 ≤ 𝑛 such that trade-offi,j

or trade-offj,i exists}

3. Compute all correlation coefficients 𝑐𝑐𝑘 ,𝑙 , 𝑘 < 𝑙 ∈ 𝐼 between 𝑠𝑐𝑜𝑟𝑒𝑘(𝑥) and

𝑠𝑐𝑜𝑟𝑒𝑙(𝑥) with 𝑥 ∈ 𝑀

4. Create a list 𝜇1,… , 𝜇𝑟 by selecting pairwise disjunctive pairs {𝑘, 𝑙} ordered

ascending by their respective 𝑐𝑐𝑘 ,𝑙 . Only anti-correlated pairs with 𝑐𝑐𝑘 ,𝑙 < 0 should

be considered.

5. Present 𝜇1,… , 𝜇𝑟 to the user (e.g. as attribute pairs like weight vs. displaySize, price

vs. cpuSpeed, …) and let the user select any 𝜇 for trade-off elicitation.

Compute clusters and determine primary attribute of 𝜇

6. For 𝑘 ∈ 𝜇
6.1. Compute clusters wrt. scorek(M) as Clusterk = {clusterk,1, ... ,clusterk,nk}

6.2. Compute the average intra-cluster error intraErrork for the set of clusters

clusterk

7. Select primary ∈ 𝜇 as the index with minimal intraErrork, Select secondary ∈ 𝜇 as the

remaining index.

Compute cluster statistics:

In this step, for each cluster of the primary attribute, the median values with respect to

both attributes, as well as the respective first and third quartile are computed.

8. For each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑝𝑟𝑖𝑚𝑎𝑟𝑦

8.1. Select the set 𝑀𝑐 of all objects 𝑚 ∈ 𝑀 with

𝑠𝑐𝑜𝑟𝑒𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑚 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

8.2. Compute 𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 , 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1𝑖 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ,

𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1𝑖 ,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 , 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3𝑖 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3𝑖 ,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 of the

respective scores of 𝑀𝑐

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

20

9. Generate a list of trade-off object representatives

𝑅 ≔ {𝑟1 , 𝑟2 ,… , 𝑟𝑛_𝑝𝑟𝑖𝑚𝑎𝑟𝑦 } such that

𝑟𝑖 : = [𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ,𝑚𝑒𝑑𝑖𝑎𝑛𝑖 ,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦] (e.g. weight-displaySize: (7”,1kg), (10”,

1.5kg), (12”, 1.8 kg), …)

10. Let the user provide preferences and/or equivalences on the representative objects in

𝑅 (specification may be incomplete).

11. Defaults are monotonic or single-peaked orders on 𝑟𝑝𝑟𝑖𝑚𝑎𝑟𝑦 . Also arbitrary orders on

𝑟𝑝𝑟𝑖𝑚𝑎𝑟𝑦 can be provided.

12. 𝑇𝜇 ≔ ∅

13. For each relationship 𝑟𝑖 ⊲𝜇 𝑟𝑗 provided in step 10

13.1. Create trade-off

𝑡 ≔ {𝜇, {𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3 𝑖 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3 𝑖 ,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 }, {𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1 𝑗 ,𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ,

 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1𝐽,𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦},′𝑝𝑟𝑒𝑓′}; 𝑇𝜇=𝑇𝜇∪𝑡
14. For each relationship 𝑟𝑖 ≡𝜇 𝑟𝑗 provided in step 10

14.1. Create trade-off 𝑡1 ≔ {𝜇, 𝑟𝑖 , 𝑟𝑗 ,′ 𝑒𝑞𝑢𝑖𝑣′}; 𝑡2 ≔ {𝜇, 𝑟𝑗 , 𝑟𝑖 ,
′ 𝑒𝑞𝑢𝑖𝑣′}; 𝑇𝜇 = 𝑇𝜇 ∪ 𝑡1 ∪

𝑡2
15. Return 𝑇𝜇

6. Trade-offs utilizing ‘don’t care attributes’

In this section, we will introduce an extension of the previously presented trade-off

semantics with so called „don‟t care attributes‟. To motivate this extension, consider the

following scenario:

Example: The user of the previous examples looking for a new apartment provides a new

base preference on the floor number. The intuition is that he/she aims at avoiding

climbing stairs as much as possible, thus apartments on a lower floor should be preferred

over those on higher floors. However, as soon as the apartment building sports an

elevator, the floor number is not important anymore as the elevator completely removes

the need of climbing any stairs. Thus, his/her preferences are as follows:

if there is no elevator: the lower the floor, the better

if there is an elevator: user does not care about the floor number

Obviously, having a flat on the ground floor and having on any floor with an elevator

should be considered equivalently desirable as in both cases no stairs have to be climbed.

When considering this example, the naïve approach of implementing those preferences

the user has in mind is to state a base preference on the floor number and then provide a

set of equivalence trade-offs for the case that there is an elevator. Unfortunately, this

approach will in result in generating an inconsistent preference order (i.e. tuples which

had been dominated because of their inferior floor number conflict with the trade-off

which implies that the floor number should now be equal). Thus, this approach is not

suitable for the desired scenario.

A remedy to the problem is using don‟t care attributes when specifying trade-offs. Such

attributes are indicated by using the special don‟t care symbol ⨂, e.g. a trade-off on the

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

21

attributes „floor number‟ and „elevator available‟ stating that all floor numbers should be

considered equal if there is an elevator is written as (⨂, 𝑡𝑟𝑢𝑒 ≡ ⨂, 𝑡𝑟𝑢𝑒).

After providing such a trade-off using don‟t care attributes an additional query rewriter

incorporates the trade-off into the current set of trade-offs and base preferences. During

this process, the rewriter may replace existing preferences and trade-offs with multiple

new trade-offs such that the result is consistent and carries the intended semantics. The

resulting trade-off and preference set can then simply be evaluated by using the

algorithms introduced in the previous sections.

To visualize this approach consider the following scenario: the attribute hasElevator is of

a Boolean data type and no explicit preference is provided by the user, the attribute

floorNum has the possible values {0, 1, 2, 3} and a base preference 0 > 1 > 2 > 3 is

provided. Now, the user states a trade-off using a don‟t care attribute on floorNum and

hasElevator: (⨂, 𝑡𝑟𝑢𝑒 ≡ ⨂, 𝑡𝑟𝑢𝑒).

The query rewriter now can detect that this trade-off will collide with the previously

provided base preference on floorNum which is thus removed. Now, the following

semantics have to be added in order to respect the new trade-off and also the previously

removed base preference on floorNum:

Each value combination ⨂, 𝑡𝑟𝑢𝑒 on floorNum and hasElevator with hasValue=true

should be considered equivalent, and for each value combination on floorNum and

hasElevator which does not match the provided pattern, the previous base preference on

floorNum should hold. This can be archived as follows:

a) Let 𝐷𝑓𝑛 be the domain of floorNum. Now, the following trade-offs have to be

added in order to express the indifference within the don‟t care attribute:

∀ 𝑖 < 𝐷𝑓𝑛 − 1 ∶ 𝐷𝑓𝑛 𝑖 , 𝑡𝑟𝑢𝑒 ≡ 𝐷𝑓𝑛 𝑖 + 1 , 𝑡𝑟𝑢𝑒

e.g.: 𝐷𝑓𝑛 = 0, 1, 2, 3 , ⨂, 𝑡𝑟𝑢𝑒 ≡ ⨂, 𝑡𝑟𝑢𝑒

⇒ 0, 𝑡𝑟𝑢𝑒 ≡ 1, 𝑡𝑟𝑢𝑒 , 1, 𝑡𝑟𝑢𝑒 ≡ 2, 𝑡𝑟𝑢𝑒 , 2, 𝑡𝑟𝑢𝑒 ≡ 3, 𝑡𝑟𝑢𝑒

b) For each value of hasElevator which does not match the pattern of the don‟t care

trade-off (i.e. those with hasElevator=false), new trade-offs reflecting the

removed base preference on the don‟t care attribute have to be added.

e.g.:

𝐷𝑓𝑛 = 0, 1, 2, 3 , 𝑃𝑓𝑛 ≡ 0 > 1 > 2 > 3, 𝐷𝑒 = 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 , ⨂, 𝑡𝑟𝑢𝑒 ≡

⨂, 𝑡𝑟𝑢𝑒

⇒ 0, 𝑓𝑎𝑙𝑠𝑒 ⊳ 1,𝑓𝑎𝑙𝑠𝑒 , 1, 𝑓𝑎𝑙𝑠𝑒 ⊳ 2, 𝑓𝑎𝑙𝑠𝑒 , 2, 𝑓𝑎𝑙𝑠𝑒 ⊳ 3, 𝑓𝑎𝑙𝑠𝑒

c) Finally, the two sets of trade-offs from a) and b) need to be connected. This can

be facilitated by providing equivalence trade-offs from all the minimal value

combination matching the pattern of the original don‟t care trade-off to all

maximal value combinations not matching the original don‟t care trade-off. If

the don‟t care trade-off was an equivalence trade-off, only one of the minimal

combination has to be considered (as the others are equivalent to that one).

e.g.: ⇒ 3, 𝑡𝑟𝑢𝑒 ≡ 0, 𝑓𝑎𝑙𝑠𝑒

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

22

This procedure will finally result in a trade-off structure as depicted in Figure 4. Please

note that potentially a large number of trade-offs is induced. However, thanks to the

superior performance of our evaluation algorithm this poses no problem as shown in the

next chapter.

7. Evaluations

7.1. Evaluation Setup

We will showcase a sample user interaction on a real world dataset and we will also

evaluate effects and performance on real as well as on synthetic datasets. In recent

research, practical datasets used for evaluation usually consist of rather correlated

attributes like e.g. statistics of basketball players (games played, points, assists, etc.) in

the NBA dataset in Pei et al. (2005) or Lee et al. (2007). This ensures lean skyline sizes,

but seems hardly a practical application scenario. In contrast, our two practical datasets

comprises real world product data that was extracted from 166 different online shops.

They contain 20,537 sale offers for notebook computers and 18,114 digital cameras,

respectively. For the notebook dataset each offer is described by a total of 30 attributes.

To get a first impression of practical searches we created typical domain preference for 7

selected attributes (1. price: the cheaper the better, 2. CPU type: an expert opinion weak

order on 17 processor types; 3. weight: the lighter the better, 4. display size: the bigger

the better, 5. RAM: the more the better, 6. hard drive size: the bigger the better; 7.

graphics card memory: the bigger the better). Posing a skyline query with these simple

preferences over 7 attributes resulted already in a Pareto skyline of 182 offers. This

skyline contains a wide variety of different systems ranging from light sub-notebooks,

cheap mainstream products up to powerful multimedia desktop-replacements – but still,

manually browsing through more than 150 offers is a tedious task.

We ran our experiments on an Intel Pentium M 2.0 GHz CPU with 1.5 GB RAM using

MySQL 5 CE running on a separate server. We used Sun Java 6 in standard settings.

Figure 3. Resulting trade-offs of the don‟t care trade-off (⨂, 𝑡𝑟𝑢𝑒 ≡ (⨂, 𝑡𝑟𝑢𝑒)) on the attributes floorNum

with preference on lower floors and hasElevator

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

23

7.2. A Showcase Scenario

In our scenario, a user starts interacting with the system to find a new notebook. Assume

the user intends to watch DVD movies on the system. Therefore, the display size should

be larger while still being light enough for traveling.

First the initial skyline using all known user preferences is computed eliminating all

suboptimal offers. If the skyline is too large, the method elicitTradeOffs is called and the

user can decide to rely on the suggestion system. After computing the pairwise

correlation of all attributes, for our notebook dataset µ := {3, 4} (3:weight vs. 4:display

size) is suggested as pair for the first proposed trade-off, because it shows the highest

degree of anti-correlation (Pearson correlation -0.89). Assume the user decides to focus

on this pair of attributes. The domain values of both attributes are then clustered resulting

in 10 clusters with normalized intra-cluster error of 0.09 for weight and 9 clusters with

intra-cluster error of 0.02 for display size. Thus, display size is selected as primary

attribute. The visualization of the resulting clusters on µ and their respective sizes

(computed in Algorithm 4 step 6) are shown in Figure 4. Now, trade-off candidates are

proposed to the user based on the cluster medians. The user can

 decide for a simple monotonic trade-off sequence like „the bigger screen the

better‟ or „the lighter weight the better‟ (in fact discriminating one attribute)

 or decide for some single-peaked preference like „the ratio between size and

price is best for (17‟‟, 4.4 kg)‟

 or might assess the trade-offs between pairs of clusters individually.

Figure 4. Clusters and sizes on attributes weight vs. display size

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

24

As an example, focus on the decision between just two clusters C7 and C8 given by (17”,

4.4 kg) and (15”, 3.0 kg). As the user intends to watch DVDs he/she states a preference

for the 17” screen machines weighing 4.4 kg. For the actual incorporation of the trade-off

the method incooperateTradeOff(xµ, yµ) is called. It relaxes the selected trade-off to use

the first quartile for 𝑦𝜇 , and the third quartile for 𝑥𝜇 instead of the medians ((17”, 4.4 kg)

⊳ (15.2”, 2.7 kg)) to include the intended mass of the database objects. This determines

to the sets red (size 25) and green (size 42), both illustrated by red/green rectangles in

Figure 5. During the pairwise comparison of objects in the red and green sets, 24 red

objects are marked for removal by the method compare, resulting in the new skyline 𝑀∗

containing only 158 objects (86.8% of the size of 𝑀). This effect can be explained by the

fact that all removed notebooks were part of the skyline just because they weighed less

than their counterparts with bigger screens while being inferior/equal wrt. all other

attributes (e.g., more expensive, less memory, etc.).

In fact, if instead for a single trade-off the user had decided for a single-peaked

preference favoring 17‟‟ screen notebooks (and thus implicitly decided for relationships

between all 9 clusters), the skyline is already reduced to 84 results in a single step (45%

of the original skyline). Then, considering for instance a trade-off between the price and

RAM (with a smaller Pearson coefficient of –0.25) and choosing more RAM as the better

option further decreases the skyline to 59 (32%) objects. The smaller degree of anti-

correlation only allows for smaller reductions. Hence, we see that preferably eliciting

information about highly anti-correlated attributes results in a greedy reduction scheme.

Of course, the user stays in control during the entire personalization process and at any

Figure 5. Red and green sets for (15, 2.7) ⊲ (17, 4.4)

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

25

point can provide arbitrary trade-offs. After every trade-off sample objects of the new

skyline and the removed objects are displayed. Thus, the user can roughly gauge the

effects. If the user wishes, the algorithm elicits the next trade-offs.

Incorporating trade-offs into skylines does not only cope with the problem of large result

set sizes, but also offers a considerable amount of personalization by focusing the results.

Figure 7 illustrates the cluster sizes of the notebook dataset before and after

incorporating the previously mentioned single-peaked preference favoring 17” screen

notebooks. The new skyline is strongly focused on the 17” cluster while many notebooks

which are in clusters containing smaller or larger machines lost their optimality and thus

have been removed from the skyline. However, another valuable characteristic of the

Pareto paradigm can be observed nevertheless as the other clusters still contain some (but

fewer) notebooks. The remaining notebooks exhibit outstanding attribute combinations

(like remarkable performance or eminently good price) and hence might still be

interesting to the user. This behavior is clearly superior to just employing filters on

skylines using hard constraints.

7.3. Real World Data Experiments

We performed experiments on the scenario described in the last section. Based on the

notebook and digital camera dataset, all possible sequences of trade-offs between each

two adjacent clusters are incrementally incorporated into the skyline, starting with the

largest clusters first. For each cluster pair with representatives 𝑥𝜇 and 𝑦𝜇 , three choices

are possible: (𝑥µ ⊲ 𝑦µ), (𝑦µ ⊲ 𝑥µ) and (𝑥µ 𝑦µ).

In Figure 8, the average sizes of all these sequences and the respective best/worst

sequence is plotted. After incorporating a sequence of 7 trade-offs, the result set was

reduced to 66% of its original size on average. The most effective sequence in the sample

reduced the result to 44%. Also for the digital camera dataset, significant size reductions

could be observed: The average size was reduced to 78% and best reduction resulted in

25%. Please note that eliciting those 7 trade-offs, in the case of single-peaked or

monotonic preferences, basically comes down to a single user interaction.

7.4. Synthetic Data Experiments

We also evaluated our algorithm on larger, synthetic datasets showcasing the effects of

different data distributions. Each of the datasets contains 100,000 randomly generated

records with 8 attributes each. The attribute‟s domains contain 15 values which show

either Zipfian (Skew -0.5), normal (mean=7, variance=7), or uniform distribution. Note

that the respective skyline sizes indeed strongly differ for different distributions. Whereas

Zipfian distribution shows an almost manageable skyline size of about 300 objects,

normal and uniform distributions result in unmanageable sizes of around 2,500 objects.

Again, we simulated all possible trade-off sequences analogously to the previous

section.The resulting result set size reductions are plotted in Figure 6. The measured

average size for Zipf-distributed data resulted in 42% of the original size, for uniformly

and normal distributed data in 62% and 61% respectively.

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

26

7.5. Computation Time Evaluation

Skyline computation and incremental skyline refinement algorithms often suffer from

poor runtime performance not allowing for interactive applications. However, in this

section we show that our algorithm does not only reduce the resulting skylines to

manageable sizes, but is also capable to interact in a cooperative real-time fashion with

the user.

During the experiments of the last sections, the average runtime per trade-off was

measured (see Table 1). For the real world data sets, a single trade-off could be suggested

and incorporated in less than 1/10 of second on average and thus is clearly fast enough

for real-time user interactions. Also for our larger synthetic datasets, trade-off

incorporation usually could be performed in around one second. One reason for achieving

Figure 6. Result Size on Synthetic Data, Upper-Left: Zipf, Upper-Right: Normal, Lower-Left: Uniformly

distributed (x-axis: current interaction user step, y-axis: result set size)

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Best

Average

Worst

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Best

Average

Worst

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Best

Average

Worst

Figure 7. Cluster sizes before and after incorporating a single-peaked trade-off preferring 17” notebooks

0

5

10

15

20

25

30

35

40

45

4,5" 7" 8,9" 11,1" 12,1" 14,1" 15" 17" 20,1"

original Skyline

after Trade-Offs

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

27

these significant performance improvements is the reduction of pairwise object

comparisons (down to 1%) as compared to the baseline algorithm comparing all previous

skyline objects pairwise. The necessary comparisons relative to the baseline is also in

Table 1.

8. Summary and Outlook

We proposed a necessary extension to the traditional concepts of Pareto skylines by

offering users the option to augment and personalize their result sets through trade-off

information. The concept of trade-offs is a natural part of people‟s daily life. Often

decision processes are complex and involve several attributes that cannot all be satisfied.

A natural heuristic is to focus on only few characteristic attributes at a time, evaluate the

possible choices and make up one‟s mind about potential compromises. This intuitive

concept, however, cannot be integrated easily into skyline queries that rely on strict

Pareto semantics. In today‟s systems, those Pareto semantics often lead to unmanageable

skyline sizes as practical use-cases show. This is aggravated by the fact that many user

preferences invite a high degree of anti-correlation (e.g. high quality vs. low price).

In the course of this paper we have addressed the problem of effective incorporation of

users‟ trade-off decisions into current skyline query processing. Focusing on trade-offs

on disjoint pairs of attributes, our algorithm identifies clusters of similar objects with

respect to anti-correlated attribute pairs and suggests promising trade-off candidates. The

candidates are provided according to a greedy heuristic aiming at large skyline size

reductions and thus also minimize the amount of necessary user interaction. Especially

offering monotonic and single-peaked preference chains reduces the required effort.

Furthermore, our algorithm not only allows reducing skylines to manageable and focused

Table 1. Measured Average Runtime per Trade-Off and Average Percentage of Comparisons

Experiment Runtime per Trade-Off % of Baseline Comparisons

Real “Notebook” Data 0.08 sec 1.1 %

Real “DigiCam” Data 0.03 sec 0.9 %

Zipf Synthetic Data 0.10 sec 6.6 %

Normal Synthetic Data 0.81 sec 7.0 %

Uniform Synthetic Data 1.12 sec 6.3 %

Figure 8. Result Size on „Notebook‟ Data (left) and „Digital Camera‟ Data (right) with number of trade-offs (x-

axis)

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

Best Average Worst

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

Best Average Worst

Christoph Lofi, Wolf-Tilo Balke, Ulrich Güntzer

28

result sets, but also shows an excellent runtime performance. This facilitates real-time

interaction cycles cooperatively supporting users in the decision making process.

We performed experiments on two real world datasets: one containing more than 20,000

notebook computer offers and their respective configurations, the other containing around

18,000 digital camera offers. Throughout our experiments the algorithm showed

remarkable performance usually more than halving skyline sizes requiring just one

single-peaked preference. Moreover, this reduction usually could be computed in less

than a second. To further investigate the algorithm‟s characteristics, we also performed

experiments on synthetic datasets containing 100,000 records with different data

distributions. Choosing Zipfian, normal and uniform distributions, the claim that skyline

sets can easily become unmanageable were confirmed. Nevertheless, in all three cases

our algorithm could successfully decrease the sizes down to more manageable levels in

acceptable time.

In our future work, we intend to further investigate the process of trade-off suggestion for

even more effective skyline reductions. Focusing more closely on the users previous

decisions, we plan to adapt clusters and dimensions involved in suggested trade-offs

dynamically and thus allow for pruning larger uninteresting parts of the decision space in

early interaction steps. For example, considering our notebooks dataset, eliciting if a user

would trade more powerful components for smaller device size and weight, we could

focus the skyline on the respective device group like sub-notebooks or desktop

replacements. Furthermore, we plan to design a sophisticated feedback mechanism giving

the user a clear intuition on effects each trade-off decision has on the other attributes.

Also, employing dimension reduction strategies may yield further significant

improvements in terms of performance and usability.

References

Balke, W.-T. and Güntzer, U., (2004). Multi-objective Query Processing for Database Systems. In

Proc. of Int. Conf. on Very Large Data Bases (VLDB). Toronto, Canada, 2004.

Balke, W.-T., Güntzer, U. and Lofi, C., (2007). Incremental Trade-Off Management for Preference

Based Queries. Int. Journal of Computer Science & Applications, 4(2).

Balke, W.-T., Güntzer, U. and Siberski, W., (2007). Restricting Skyline Sizes using Weak Pareto

Dominance. Informatik - Forschung und Entwicklung (IFE), 21(3).

Balke, W.-T., Güntzer, U. and Zheng, J., (2004). Efficient Distributed Skylining for Web

Information Systems. In Proc. of Conf. on Extending Database Technology (EDBT). Heraklion,

Crete, Greece, 2004.

Balke, W.-T., Zheng, J. and Güntzer, U., (2005). Approaching the Efficient Frontier: Cooperative

Database Retrieval Using High-Dimensional Skylines. In Proc. of Conf. on Database Systems

for Advanced Applications (DASFAA). Beijing, China, 2005.

Börzsonyi, S., Kossmann, D. and Stocker, K., (2007). The Skyline Operator. In Proc. of Int. Conf.

on Data Engineering (ICDE). Heidelberg, Germany, 2007.

Bradley, W.J., Hodge, J.K. and Kilgou, D.M., (2005). Separable discrete preferences.

Mathematical Social Sciences, 49(3), pp.335-53.

Chan, C.Y., Eng, P.-K. and Tan, K.-L., (2005). Stratified Computation of Skylines with Partially

Ordered Domains. In Proc. of Int. Conf. on Management of Data (SIGMOD). Baltimore, MD,

USA, 2005.

 EFFICIENT SKYLINE REFINEMENT USING TRADE-OFFS

29

Chen, L. and Pu, P., (2004). Survey of Preference Elicitation Methods. Technical Report

IC/2004/67. Lausanne, Switzerland: Ecole Politechnique Federale de Lausanne (EPFL).

Chomicki, J., (2006). Iterative Modification and Incremental Evaluation of Preference Queries. In

Proc. of Symp. on Found. of Inf. and Knowledge Systems (FoIKS). Budapest, Hungary, 2006.

Fishburn, P.C., (1999). Preference structures and their numerical representations. Theoretical

Computer Science, 217(2).

Godfrey, P., (2004). Skyline cardinality for relational processing. How many vectors are maximal?

In Proc. of Symp. on Foundations of Information and Knowledge Systems (FoIKS). Vienna,

Austria, 2004.

Godfrey, P., Shipley, R. and Gryz, J., (2005). Preference Structures and Their Numerical

Representations. In Proc. of Conf. on Very Large Databases (VLDB). Trondheim, Norway,

2005.

Green, P.E., Krieger, A.M. and Wind, Y.J., (2001). Thirty Years of Conjoint Analysis: Reflections

and Prospects. Interfaces, 31(3).

Hansson, S.O., (2002). Preference Logic. Handbook of Philosophical Logic , Volume 4 (2),

pp.319-93.

Jung, Y., Park, H., Du, D.-Z. and Drake, B.L., (2004). A Decision Criterion for the Optimal

Number of Clusters in Hierarchical Clustering. Journal of Global Optimization, 25(1), pp.91-

111.

Keeney, R.L., Raiffa, H. and Rajala, D.W., (1993). Decisions with Multiple Objectives:

Preferences and Value Tradeoffs. Cambridge University Press.

Koltun, V. and Papadimitriou, C.H., (2005). Approximately Dominating Representatives. In Proc.

of Conf. on Database Theory (ICDT). Edinburgh, UK, 2005.

Kossmann, D., Ramsak, F. and Rost, S., (2002). Shooting Stars in the Sky: An Online Algorithm for

Skyline Queries. In Proc. of Conf. on Very Large Data Bases (VLDB). Hong Kong, China,

2002.

Lacroix, M. and Lavency, P., (1987). Preferences: Putting more Knowledge into Queries. In Proc.

of Conf. Very Large Databases (VLDB). Brighton, UK, 1987.

Lee, J., You, G.-w. and Hwang, S.-w., (2007). Telescope: Zooming to Interesting Skylines. In Proc.

of Conf. on Database Systems for Advanced Applications (DASFAA). Bangkok, Thailand,

2007.

Lin, X., Yuan, Y., Zhang, Q. and Zhang, Y., (2007). Selecting Stars: The k Most Representative

Skyline Operator. In Proc. of IEEE Conf. on Data Engineering (ICDE). Istanbul, Turkey, 2007.

McGeachie, M. and Doyle, J., (2002). Efficient Utility Functions for Ceteris Paribus Preferences.

In Proc. of Con. on Artificial Intelligence (AAAI/IAAI). Edmonton, Canada, 2002.

Öztürké, M., Tsoukiàs, A. and Vincke, P., (2005). Preference Modelling. Multiple Criteria

Decision Analysis: State of the Art Surveys, 78, pp.27-59.

Papadias, D., Tao, Y., Fu, G. and Seeger, B., (2003). An Optimal and Progressive Algorithm for

Skyline Queries. In Proc. of Int. Conf. on Management of Data (SIGMOD). San Diego, USA,

2003.

Pei, J., Jin, W., Ester, M. and Tao, Y., (2005). Catching the best views of skyline: a semantic

approach based on decisive subspaces. In Proc. of Int. Conf. on Very Large Databases

(VLDB). Trondheim, Norway , 2005.

Pei, Y. et al., (2006). Towards Multidimensional Subspace Skyline Analysis. ACM Trans. on

Database Systems, 31(4), p.2006.

Viappiani, P., Faltings, B. and Pu, P., (2006). Preference-based Search using Example-Critiquing

with Suggestions. Journal on Artificial Intelligence Research (JAIR), 27.

