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University of Tübingen
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Abstract

In digital libraries image retrieval queries can be
based on the similarity of objects, using several
feature attributes like shape, texture, color or text.
Such multi-feature queries return a ranked result
set instead of exact matches. Besides, the user
wants to see only the k top-ranked objects. We
present a new algorithm called Quick-Combine
(European patent pending, nr. EP 00102651.7)
for combining multi-feature result lists, guaran-
teeing the correct retrieval of the k top-ranked re-
sults. For score aggregation virtually any com-
bining function can be used, including weighted
queries. Compared to Fagin’s algorithm we have
developed an improved termination condition in
tuned combination with a heuristic control flow
adopting itself narrowly to the particular score dis-
tribution. Top-ranked results can be computed and
output incrementally. We show that we can dra-
matically improve performance, in particular for
non-uniform score distributions. Benchmarks on
practical data indicate efficiency gains by a factor
of 30. For very skewed data observed speed-up
factors are even larger. These performance results
scale through different database sizes and num-
bers of result sets to combine.

1 Introduction
In universal database systems the handling of multimedia
data such as images, video or audio files poses an increas-
ingly demanding problem. The query evaluation model
typically does not retrieve a set of exact matches but rather
a ranked result set, where an aggregated score is attached
to each object returned. Only a few top-ranked results are
normally of interest to the user. Imagine a traditional im-
age archive where every image is labeled with captions like
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name, registration number and related information like the
photographer’s name or the image’s size. To retrieve im-
ages this meta-information has to be known for each search.
In times of digitization, these archives are increasingly re-
placed by modern image databases, but most systems still
only focus on the related text information for retrieval in-
stead of allowing users intuitively to describe the desired
retrieval result. A natural query would for example ask for
the top 10 images from the database that are most similar
to a fixed image in terms of color, texture, etc.; a query type
which is often referred to as ’query by visual example’.

Query optimization needs to be adapted to this essen-
tially different query model for multimedia data. Some
systems have already been implemented, e.g. visual re-
trieval systems like IBM’s QBIC [FBF+94] or Virage’s
VIR [BFG+96]. Database applications and middlewares
like GARLIC [CHS+95], VisualHarness [SSPM99], HER-
MES [SAB+99] or the HERON project [KEUB+98] have
already started to use the capabilities of visual retrieval.
A major challenge in all of these systems is that similar-
ity between different objects cannot be defined precisely.
To handle queries on similarity different kinds of infor-
mation on the multimedia objects have to be stored. For
example in the case of images this could be color his-
tograms, features on textures and layout or related fulltext
information describing the object. As similarity cannot be
measured exactly, the form of the retrieval result likewise
has to be adapted to the user’s needs. Consider the fol-
lowing query returning only the top four objects from the
HERON-database [KEUB+98], ranked according to their
aggregated similarity score (cf. figure 1):

SELECT top(4, images)
FROM repository
RANK BY average_color(images)

SIMILAR TO average_color(ex1.pic)
AND texture(images)

SIMILAR TO texture(ex2.pic)

Queries on similarity do not have to focus on one single
feature. In general multimedia queries will refer to at least
some different features simultaneously. According to a po-
tentially weighted combining function for each database
object anaggregated score valueis computed. The results
are then sorted according to their scores and are returned
with a rank number– the top-ranked object has the best
score value of the entire database collection and so on. A
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Figure 1: Query on color and texture with top 4 results

query focusing on only one feature is calledatomic. Any
complex multimedia query can be seen as a combination of
atomic subqueries.

One optimization challenge is to combine the ranked re-
sults of atomic queries in order to determine thek overall
best objects from the database. A naive approach would
calculate the aggregated score for all database objects ac-
cording to a given combining function. With growing size
of the database, this obviously results in unacceptable re-
sponse times, requiring a linear scan of the entire database.
But as only thek top objects have to be returned, not all
database objects have to be accessed. In this paper we
will focus on efficient query combinations of atomic sub-
queries. We aim on solutions that guarantee a correct result
set and at the same time minimize the number of objects
to be accessed. Previous significant work in this area is
due to Fagin [Fag96, Fag98], who gives an algorithm that
guarantees a correct result set. This algorithm is asymptoti-
cally optimal in terms of database size with arbitrarily high
probability, however only for uniform score distributions –
which very rarely occur in practice.

The next section introduces the basic version of our
new algorithm, called Quick-Combine. Section 3 extends
Quick-Combine to cope with skewed data, which is ubiq-
uitous in practice. In section 4 we will prove analyti-
cal results for the worst-case behavior of Quick-Combine.
Section 5 reports the speed-up gain of Quick-Combine
for skewed data, implying that a real performance break-
through is achievable. The last section will give a summary
of our results and an outlook on parallel work for query
combination in heterogeneous environments.

2 A New Test of Termination

In [Fag96] an approach has been presented to process a
complex query consisting of several atomic subqueries that
may use any monotonous combining function, as for ex-
ample the maximum or arithmetical mean. This algorithm
correctly retrieves thek best objects in the database for any
such combination of atomic queries. We will use Fagin’s

algorithm as a yardstick throughout this paper.
In general atomic queries can be posed in two ways:

� The first type is searching the database and retriev-
ing the objects in the database ordered by descending
score for a single feature, which we refer to as enlarg-
ing anatomic output streamor sorted access.

� On the other hand a specific object’s score in each
atomic output stream could be of interest. This case
is referred to asrandom access.

2.1 The Quick-Combine Algorithm (Basic Version)

Fagin’s algorithm proceeds in two phases: The first pro-
ducing atomic output streams and the second consisting of
random accesses. Though both phases are necessary, the
number of necessary accesses can be minimized with a new
test of termination. For this new test we do not only use the
information of ranks in output streams, but also the scores
which are assigned to all objects in each output stream and
the specific form of the combining function.

The following algorithm returns the top answer(k = 1)
to any combined query consisting ofn atomic subqueries
q1; :::; qn aggregated using a monotone combining function
F . Letx be an object andsi(x) be the score ofx under sub-
queryqi. An object occuring in the result set of subquery
qi on rankj will be denotedri(j).

Algorithm Quick-Combine (basic version):

1. For each subquery compute an atomic output stream
consisting of pairs(x; si(x)) in descending order
based on score and get some first elements.

2. For each object output by a stream that has not already
been seen, get the missing scores for every subquery
by random access and compute its aggregated score
S(x) = F (s1(x); : : : ; sn(x)).

3. Check if the present top-scored objectotop is the best
object of the database:

Compare the aggregated scoreS(otop) to the value of
F for the minimum scores for each subquery that have
been returned so far. Test:

S(otop) � F (s1(r1(z1)); : : : ; sn(rn(zn))) (1)

wherezi is the lowest rank that has already been seen
in the output stream ofqi.

4. If inequality 1 holds, according to theorem 1otop can
be returned as top object of the whole database. If in-
equality 1 does not hold, more elements of the output
streams have to be evaluated. Therefore get the next
elements of the streams and proceed as in step 2 with
the newly seen objects.

2



2.2 Examples and Correctness

Consider the sample results of our query by visual example
(cf. fig. 1). The following example will show how to get
the top-scored object of the database(k = 1) using Quick-
Combine:

s1 : query on texture
rank 1 2 3 ...
score 0.96 0.88 0.85 ...
object o1 o2 o3 ...

s2 : query on avg. color
rank 1 2 3 ...
score 0.98 0.93 0.79 ...
object o4 o5 o6 ...

The atomic output streamss1 ands2 are evaluated alter-
nately. As objects in both streams are collected one after
another, their aggregated score has to be calculated using
for instance the arithmetical mean as combining function
F (s1(o); s2(o)) =

s1(o)+s2(o)
2 . Therefore random accesses

have to be made:

object o1 o4 o2 o5 ...
random output s2 s1 s2 s1 ...
accesses stream

score 0.78 0.84 0.40 0.83 ...

Now the test of termination can be performed using the
lowest scores seen in each output stream. Due to the sorting
of the streams these scores are the scores of the object that
has been seen last in each stream:

test of termination
last object seen o1 o4 o2 o5

agg. score 0.87 0.91 0.64 0.88
F (lowest scores) - 0.965 0.94 0.905

otop o1 o4 o4 o4

After accessing the fourth object the evaluation of
streams can already be stopped as inequality (1) holds:
0:91 = S(otop) � F (s1(o2)); s2(o5)) = 0:905. Now o4
- the best object seen - can be returned as top-scored ob-
ject of the entire database. Note that none of the objects
accessed has been seen by sorted access in both streams.

Quick-Combine is applicable for every monotonous
combining function, even in the case of maximum and
minimum. In this case Fagin presents two special algo-
rithms differing from his general approach. To show that
Quick-Combine’s test of termination will definitely return
the most relevant object from the database the following
theorem is stated:

Theorem 1 (Correctness of results)
If the output streams are evaluated until inequality 1 holds,
the object providing the best aggregated score for all ob-
jects in any output stream so far has the best aggregated
score of all objects in the database. (Proof omitted)

3 Efficiency Improvements for Skewed Data
Now we focus on a further gain of efficiency. We show
that evaluating the test of termination twice can save ran-
dom accesses. We also create a control flow that takes ad-
vantage of the distribution of scores in each stream, and
address weighted queries. Then we generalize the test of
termination to return the k best objects from the database
and present the complete algorithm. After proving Quick-
Combine’s correctness at the end of this section, we will
see that the top-scored objects can be successively returned,
while the algorithm is still running.

3.1 Reducing the Number of Random Accesses

Without loss of generality we also focus on the case that
only the best object of the database will be returned(k =
1). Taking a closer look at formula 1, it is obvious that the
inequality may become true:

1. If its right side is reduced, i.e. any query streamqj is
enlarged andsj(rj(zj)) is replaced bysj(rj(zj+1)).

2. If its left side is increased, i.e. a newly seen object has
a maximum aggregated score, sufficient to terminate
the algorithm.

In Quick-Combine streamqj is enlarged first, providing
the new scoresj(rj(zj + 1)). If a new object has been
seen, random accesses on(n�1) score values are needed to
calculate its aggregated score. The next theorem will show
that, if according to case 1 formula 1 already holds before
the random accesses are made, the aggregated score of the
newly seen object can never be larger than the maximum
score of the objects which have already been seen before
enlargingqj . Thus(n� 1) random accesses can be saved,
if the test of termination is performed not only after the
random accesses, but also before.

Theorem 2 (Saving random accesses)
LetL be the set of objects that have already been seen and
whose aggregated scores have been calculated. The ag-
gregated score of any objectonew occurring in streamqj
at rankzj + 1 that has been seen last by enlarging query
streamqj , will be less or equal to the maximum aggregated
score of objects in L, if formula 1 holds by substituting
sj(rj(zj)) with sj(rj(zj + 1)). (Proof omitted)

3.2 Control Flow for Evaluation of Streams

Quick-Combine considers the top-ranked element of each
output stream before proceeding to the next ranked ele-
ments. As Quick-Combine uses not only ranks but also
scores, a control flow based on the distribution of scores
relative to the ranks on which they occur will decrease the
number of objects accessed until termination. Of course
this distribution has not to be the same in every atomic out-
put stream. We present a heuristic approach to determine in
which order streams with different distributions should be
evaluated to gain a maximum effect. As a heuristic measure
of efficiency a simple rule can be stated:



Accessing less objects to make formula 1 hold
means less database accesses and thus results in
a more efficient algorithm.

Obviously, there are two ways to make formula 1 hold:

� Initializing the algorithm with some first ranks of each
stream helps toincrease the left side. An object that
has been seen later in any output stream generally has
to do better in at least one other stream to get the max-
imum aggregated score, i.e. the chance that it has
already been seen on the first few ranks in a differ-
ent output stream is getting more and more probable.
Thus, before a certain query stream should be pre-
ferred for further evaluation, it is advisable to analyze
some first objects of each stream.

� To decrease the right sidequickly consider the distri-
bution of scores relative to the ranks on which they
occur. This distribution can totally differ in each out-
put stream. Though in all output streams the scores are
falling monotonously with declining ranks, there may
be streams where the scores only slightly change with
decreasing ranks. Streams starting with high score
values but declining rapidly may exist or even output
streams with scores not changing at all. As we want
to force the decline of the right side, streams showing
a behavior of declining scores most rapidly relative to
the ranks should be preferred for evaluation.

For a more efficient combining algorithm a control
mechanism preferring the evaluation of rapidly declining
output streams is needed. An obvious measure is the
derivative of functions correlating score values to the ranks
on which they occur for each output stream. Since these
functions are discrete, their behavior can be estimated us-
ing the difference between thepth last and the last output
score value assuming that there are at leastp elements in
the stream. Of course the samep has to be used for any
stream to provide comparability. A larger value forp better
estimates an output stream’s global behavior, small values
detect more local changes in a stream.

The above considerations are not only useful for equally
weighted queries. An indicator for streams with low
weights should naturally be regarded less important than
indicators for highly weighted streams which should get
prior evaluation. As the weights can be expressed in the
combining functionF (e.g. a weighted arithmetical mean),
a simple measure for the importance of each streamqi is
the partial derivative of the combining function@F

@xi
. Thus

in the weighted case an indicator for any streamqi contain-
ing more thanp elements can be calculated as follows:

�i =

�
�
�
�
@F

@xi

�
�
�
� � (si(ri(zi � p))� si(ri(zi))) (2)

3.3 The Quick-Combine Algorithm (Full Version)

Now we generalize Quick-Combine to a result set con-
taining thek best matches for anyk 2 N and implement

our control flow. Under the assumption that there are at
leastk objects in each stream, it returns the topk answers
to any complex query consisting ofn atomic subqueries
q1; :::; qn. For each subquery a ranked result set consist-
ing of pairs(x; si(x)) in descending sorted order based on
score is computed wherex is an object andsi(x) is the
score ofx under subqueryqi.

Algorithm Quick-Combine (full version):

0. Initialization: Get the firstp results for each subquery,
wherep is a suitable natural number. Compute an in-
dicator�i for each query streamqi according to equa-
tion 2.

1. Random access for new objects:For each new ob-
ject output by any stream that has not already been
seen previously, get the missing scores for every sub-
query by random access. For each new object there
are(n � 1) random accesses necessary. Objects that
have already been seen before can be ignored.

2. Calculation of aggregated scores:For any new ob-
jectx that has been seen compute the aggregated score
S(x) = F (s1(x); : : : ; sn(x)).

3. First test of termination:Check if thek top-scored ob-
jects are already in what has been seen so far: Com-
pare the aggregated score of the presentk top-scored
objects to the value of the combining function with
the lowest scores seen for each feature. Check if there
are at leastk objects whose aggregated score is larger
or equal than the aggregated minimum scores per fea-
ture:

jfxjS(x) � F (s1(r1(z1)); ::; sn(rn(zn)))gj � k (3)

If inequality 3 holds, according to theorem 3 thek
top-scored objects can be returned as top objects of
the whole database.

4. Enlarging an atomic output stream:If inequality 3
does not hold, more elements of the atomic output
streams have to be evaluated. Therefore get the next
element of the stream having the maximum� (if the
maximum� is reached for two or more streams any
of them can be chosen randomly).

5. Second test of termination:Check if inequality 3
holds using the new object’s score. If the inequality
holds, return thek top-scored objects.

6. Indicator computation:Calculate a new� for the en-
larged stream. Proceed as in step 1 with the newly
seen object. 2

As a control mechanism the indicator� approximates
the local behaviour of the distribution of absolute score val-
ues relative to the ranks on which they appear. Again we
will have to show that no relevant database object is missed
by Quick-Combine:



Theorem 3 (Correctness of Results)
If the output streams are evaluated until inequality 3 holds,
thek objects providing the best aggregated scores that ap-
peared in any output stream so far have the best aggregated
score of all objects in the database.

Proof: It is to show that no object that has not been
seen can have a larger aggregated score than the topk ob-
jects that have been seen.

Let inequality 3 hold,x be any of the topk objects and
o be an object from the database that has not been seen yet
in any of the output streams. Then due to the sorting of the
streams the atomic scores ofo satisfy

s1(o) � s1(r1(z1)); : : : ; sn(o) � sn(rn(zn))

and therefore due to the monotony ofF and formula 3:
S(o) = F (s1(o); : : : ; sn(o))
� F (s1(r1(z1)); : : : ; sn(rn(zn)))
� F (s1(x); : : : ; sn(x)) = S(x). 2

Theorem 3 shows that the first found object satisfying
inequality 3 always is the top-scored object of the whole
collection. Thus it can be delivered to the user as soon as it
is found, which of course also applies to all following ranks
up tok, when the algorithm finally terminates. If the user is
already satisfied by the first few ranks, the query execution
for large values ofk can be stopped during processing. We
therefore state the following corollary to theorem 3:

Corollary 1 (Successive Output of Results)
Since Quick-Combine will run untilk objects that satisfy
formula 3 aresuccessivelyfound, fork > 1 the first objects
can already be returned while the algorithm is still running.

4 Complexity for Uniform Distributions

In this section we focus on the efficiency of Quick-
Combine compared to Fagin’s algorithm. In particular
we will show that Quick-Combine’s complexity is upper-
bounded by the complexity of Fagin. We give a general
geometrical interpretation of efficiency issues and present
improvement factors even in the rare case of uniform dis-
tribution of score values.

4.1 Worst Case Complexity

The following theorem will show that Quick-Combine will
never access more distinct objects than Fagin’s algorithm.
To this end the number of distinct objects that Fagin’s algo-
rithm collects in its first phase is compared to the number
of distinct objects collected by Quick-Combine.

Theorem 4 (Upper-Bounding)
Given n atomic output streams sorted in descending order.
Formula 3 holds, if all streams have been evaluated at least
as far enough that Fagin’s algorithm terminates, i.e. that
there is a setL of k objects delivered by all streams.

Proof: Let o1; : : : ; ok 2 L be k different objects that
have been output by each stream andF be any monotonous
combining function. Due to the descending order of scores
in every stream any atomic scoresi(oj) (1 � i � n; 1 �
j � k) satisfies:

s1(oj) � s1(r1(z1)); : : : ; sn(oj) � sn(rn(zn))

and thus due to the monotonocity ofF :

S(oj) = F (s1(oj); : : : ; sn(oj)) �
F (s1(r1(z1)); : : : ; sn(rn(zn)))

for each of the objectso1; : : : ; ok, i.e. equation 3 holds.2

4.2 Geometrical Interpretation

According to [PF95], a geometrical model for combining
query results could be as shown in figure 2 for the casen =
2. If each atomic subquery is mapped onto an axis divided
into score values from 0 (no match) to 1 (exact match), each
object in the database can be represented by a point inn-
dimensional space.

stream 2 

stream 1

s2(r2(z2))

1

1s1(r1(z1))0

Figure 2: Combining two atomic output streams

Evaluating results of an atomic subquery by ranks can
be represented by moving a hyperplane orthogonal to its
axis from 1 downwards to 0. The order in which objects
are collected by the hyperplane can exactly be mapped onto
the ranks on which they occur. For example consider figure
2 and assume that output streami for subqueryi has been
evaluated for all objectso that satisfysi(o) � si(ri(zi)),
i.e. all objects have been retrieved from streami, whoses
scores is larger or equal to the score of the object occurring
on rankzi in streami (i = 1; 2). The areas evaluated from
stream 1 and stream 2 have an intersection containing the
top-scored objects already seen in both streams. Fagin’s
algorithm in its first phase collectsk objects that occur in
the dark-shaded area. Of course all the objects collected
in the shaded areas need random accesses, as they all have
been seen in the first phase.

Evaluations of aggregated scores by amonotonouscom-
bining function can also be represented by moving a hyper-
surface collecting objects while moving over the area. As
thek objects collected first should have the top aggregated
scores and thus can be returned as correct retrieval result,
the hypersurface has to be orthogonal to the optimal direc-
tion starting at the optimal level.
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Figure 3: The arithmetical mean as combining function for
Fagin’s algorithm (upper) and Quick-Combine (lower)

To return a correct result the hypersurface has to col-
lect the firstk objects. Since Fagin’s algorithm insists that
there are at leastk objects in the dark-shaded area, the hy-
persurface only sweeps objects with already calculated ag-
gregated scores. Thus no relevant object can be missed.
But depending on the combining function the area and thus
the number of objects in Fagin’s algorithm, for which ag-
gregated scores are calculated, might be far too large. Con-
sider for example figure 3 (left) showing the arithmetical
mean as combining function. The hypersurface can collect
any object till the lower left corner of the dark-shaded area,
as all objects in this area have been seen and also all aggre-
gated scores for these objects have been calculated.

There are at leastk objects in the dark-shaded area, but
also all the objects in the two light-shaded triangles be-
tween the hyperplane and the dark-shaded area are col-
lected. For e.g. uniform distributions a triangle with the
same area as the dark-shaded area would also guarantee the
correctness of results, but would minimize the calculations
of aggregated scores and the random accesses needed, cf.
figure 3 (right). Unlike Fagin’s algorithm Quick-Combine
only concentrates on this minimized area. As shown in fig-
ure 3 (right) for the casen = 2, in Quick-Combine streams
1 and 2 would only be enlarged down to the dashed lines.

4.3 Improvement Analysis for Uniform Distributions

Fagin has proven the important result that his algorithm is
expected to be asymptotically optimal for independent out-
put streams under uniform score distribution. Though uni-
form distributions rarely occur in practice, it can be stated
that also in this case Quick-Combine improves Fagin’s al-
gorithm by minimizing the number of object accesses.

For the analysis our geometrical interpretation is used.
With growing dimension, i.e. the number of atomic sub-
queries to be combined, the dark-shaded area in our model
evolves to a high dimensional cuboid whose volume deter-
mines the number of objects to calculate aggregated scores
for. Depending on the combining function also in high di-
mensional cases this cuboid is contained by a geometrical
figure guaranteeing correctness for more thank objects.

Consider the n-dimensional case with the arithmetical
mean as combining function and the output streams evalu-
ated down to scores. Then the triangles of figure 3 have to
be generalized to polyhedraSn;s, the dark-shaded square
to a n-dimensional cubeWn;s and the light-shaded rect-
angles to n-dimensional cuboids. The polyhedronSn;s is
formed by the set of all points on or above the combining
function’s hypersurface1

n

Pn

i=1 xi = s. The next theorem
shows that the cube’s volume shrinks rapidly with growing
dimensions in proportion to the polyhedron’s volume.

Theorem 5 (Ratio between Cube and Polyhedron)
Let Wn be the n-dimensional cube in[0; 1]n with Wn =

f(x1; : : : ; xn) j 0 � xi � 1
n

for i = 1; : : : ; ng and
V ol(Wn) be its volume. Let furtherSn denote the poly-
hedronSn = f(x1; : : : ; xn) j 0 � 1

n

Pn

i=1 xi � 1
n
g and

V ol(Sn) be its volume.
Then the ratioV ol(Wn)

V ol(Sn)
is equal ton!

nn
. (Proof omitted)

To get a more precise impression of the efficiency gain
one has to compare the total number of objects accessed
by Fagin’s algorithm and Quick-Combine. Therefore the
volume of the dark- and light-shaded areas (cf. figure 2) of
Fagin’s algorithm has to be compared to the corresponding
areas needed by Quick-Combine using a polyhedron of the
same volume as Fagin’s cube. Increasing volumes of the
cuboids obviously causes more necessary object accesses
and the ratio between these volumes is also the improve-
ment factor for the number of objects accessed.

Theorem 6 (Improvement for Uniform Distributions)
The total number of objects accessed by Quick-Combine
using the polyhedron~Sn, which has the same volume as
the cubeWn needed by Fagin’s algorithm, is( n

n
p
n!
) times

smaller than the number of objects accessed by Fagin’s al-
gorithm for uniformly distributed scores. (Proof omitted)

With Stirling’s formula the improvement factor is

asymptotically equal to n
n
p
n!
� e

n
pp

2�n

(n!1)�! e. Quick-

Combine thus results in an efficiency gain of 2.72 with in-
creasingn. As not only visual features determine a mul-
timedia query, but also ranked results from text retrieval,
typical values forn are between five and ten. Table 1 shows
improvement factors for some practical values of n:

n 3 4 5 6 7 8 9
1.64 1.81 1.92 2.01 2.07 2.13 2.17

Table 1: Improvement factors for object accesses in the
uniformly distributed case.



HERON Middleware

Figure 4: Architecture of the HERON system

5 Speed-up Results for Skewed Data

Fagin’s optimality results – plus the improvements of
Quick-Combine – are only valid for the very unlikely
case of uniform score distributions. In practice, however,
skewed data is prevalent. Thus the name of the game is
about efficiency speed-ups for such practical, skewed data.
We will first report performance results from practical data,
followed by extensive synthetic benchmarks.

5.1 Benchmark Results for Practical Data

The HERON system [KEUB+98] has been used to process
a set of atomic queries on heraldic images. Besides compo-
nents for query composition, user specific image delivery
and efficient format conversions, it features a combining
engine that can use different visual retrieval systems and
databases (cf. fig. 4). The combining engine implements
Quick-Combine. For our experiments we used IBM DB2
V 5.2 and QBIC technology [FBF+94] for visual retrieval.

To measure the gain of efficiency the number of objects
to be retrieved was compared to the average number of ob-
jects which the combining algorithm had to access. As de-
scribed in section 4 the number of objects accessed deter-
mines the number of random accesses that are needed to
calculate aggregated scores and thus forms the main com-
putational costs. To be exact, Fagin’s algorithm will not
need random accesses for all the objects, but ask objects
have already been seen in all atomic output streams, their
aggregated values can directly be calculated. Nevertheless,
those small number of random accesses have proven to be
rather negligible even in the casen = 3.

We set up a scenario for the combination of three atomic
subqueries over a repository of 2300 heraldic images from
the HERON database. The randomly chosen subqueries
focused on the image’s average color, textures and color
histograms, i.e.n = 3; as combining function we chose the
arithmetical mean and used an indicator computation for
p = 3. Figure 5 shows the average experimental results for
30 different queries. The output streams were statistically
independent as e.g. the color of an object is not supposed
to be related to its shape or texture.The number of objects
accessed is plotted against the number of objectsk to be
returned. Since the scores arenot distributed uniformly,
Fagin’s algorithm accesses far more objects. Obviously, the
early use of the combination function’s composition and
the use of our control flow in Quick-Combine results in a
higher gain of efficiency especially for larger values ofk.
For practical values ofk (k � 50) Quick-Combine even
accesses30 times less objectsthan Fagin’s algorithm.
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Figure 5: Benchmark results on real data

5.2 Benchmark Results for Synthetic Data

From our practical tests we gained insight into distributions
that really occur in image retrieval. We argue that typical
distributions from visual retrieval systems are a low per-
centage of objects having high and medium score values
and a high percentage having very low scores. If text re-
trieval is included the percentage having high and medium
scores even decreases. We extensively tested these types
of distributions on synthetic data for two databases with
N = 10000 andN = 100000 objects generating different
score distributions. The performance of Quick-Combine
changes with variations of the numberk of objects to re-
turn, the numbern of streams to combine, the database
sizeN and the skewedness of the distribution. The re-



sults of Quick-Combine are always compared to the result
of Fagin’s algorithm. The efficiency measures to compare
are threefold: The number of distinct database objects ac-
cessed, the number of necessary sorted accesses and the
number of necessary random accesses.
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Figure 6: Average number of object accesses for skewed
distributions

Our first test scenario focused on a slightly skewed score
distribution typical for content-based image retrieval. One
percent of database objects have high or medium score val-
ues (uniformly distributed), the rest shows values smaller
than 0.1. On the smaller database (N = 10000) we com-
bined three streams (n = 3). As can be seen in the dia-
grams (Fig.6, Fig.7 and Fig.8) we measured the number of
accesses of different objects and the number of sorted and
random accesses for varying values ofk. Fagin’s algorithm
(light columns) on the average always needs to access far
more objects than Quick-Combine (dark columns). On the
right diagram the respective average improvement factors
can be seen. For all three types of accesses they range
between 10 and 20. Obviously the improvement scales
with varyingk as fork = 250 already 2.5% of the entire
database size is retrieved.

Observation: In all our experimentsthe ratio of
sorted and random accesses between Fagin’s algorithm and
Quick-Combine was nearly the same as the respective ratio
of distinct object accesses. Thus in the further analysis we
will concentrate on these accesses and omit the diagrams
for sorted and random accesses.

The next experiments focused on even more skewed
score distributions (Fig. 9). A score distribution of 0.1%
high and medium scores and 99.9% of low scores was gen-
erated. Here average improvement factors around 100 can
be observed fork � 25 as Quick-Combine adopts itself to
the specific distribution. The improvement fork � 50 in
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Figure 7: Average number of sorted accesses for skewed
distributions

this case is minimal since withN = 10000 andn = 3 there
are only 30 objects in the database having noticable scores.

The next diagram (Fig.10) shows the scalability to large
databases. A database withN = 100000 was generated
showing the same score distribution as above. Note that
for the retrieval of 0.25% of database size Quick-Combine
accesses little objects, whereas Fagin’s algorithm already
accesses a third of the entire database objects. Average im-
provement factors in this case range from 50 to 120.

The last experiment (Fig. 11) analyzes the scalabilty of
Quick-Combine, if a varying numbern of streams is com-
bined. We combined up to 10 different streams using the
same database size and score distribution as in our first ex-
periment. Here we observed average improvement factors
ranging from 10 to 20. Note that Fagin’s algorithm accesses
almost all database objects if more than 5 output streams
are combined.

5.3 Discussion of Overall Performance Results

As stated in [Fag96] Fagin’s algorithm is expected to ac-
cessk

1

nN (1� 1

n
) objects. As shown before Quick-Combine

is expected to access(
n
p
n!
n

) less objects in the uniformly
distributed case. But this case is very rare in practice. To
get an impression on practical efficiency issues the exper-
iments on real or synthetic data with more practical score
distributions had to be compared.

� In all our experiments with real and synthetic data the
number of objects Fagin’s algorithm accesses is by far
higher than the number accessed by Quick-Combine.

� The number of sorted and random accesses in Fagin’s
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Figure 8: Average number of random accesses for skewed
distributions

algorithm is also always considerably higher than in
Quick-Combine.

� Quick-Combine scales both with growing values fork
and with increasing numbern of streams to combine.

� Quick-Combine is very efficient even for large
database sizes.

� Quick-Combine is also highly efficient for very
skewed score distributions.

Fagin’s work also strongly influenced statistical ap-
proaches as [CG97], for which experimental results show
that the number of objects retrieved can be considerably
smaller than in Fagin’s algorithm. However, such ap-
proaches gain performance in exchange of a guaranteed
correctness of results. With Quick-Combine we can get
both: High performance and correct results.

6 Summary and Outlook
In this paper we proposed an algorithm – called Quick-
Combine – to combine multi-feature queries that are typ-
ical for the use in modern digital libraries and digital im-
age archives. We examined previous work in this area
and compared our approach to Fagin’s algorithm presented
in [Fag96]. Quick-Combine efficiently retrieves thek
most relevant database objects with guaranteed correct-
ness for every monotonous combining function. Measur-
ing the number of necessary database accesses, our theo-
retical analysis as well as experimental results indicate that
Quick-Combine is considerably more efficient than Fagin’s
algorithm. This speed-up of Quick-Combine compared
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Figure 9: Average number of object accesses for very
skewed distributions

to Fagin’s algorithm increases with growing skewedness
of score distributions from a factor around 2 towards one
or two orders of magnitude. A real live benchmark with
heraldic images showed speed-up factors around 30.

These remarkable benchmark results suggest that with
Quick-Combine a real performance breakthrough for
content-based image retrieval in large image databases is
achievable. Definitely so, high-speed iterators for sorted
accesses (relying on efficient multi-dimensional indexes)
and fast access methods for random accesses are essential.
Parallel execution of several sorted streams (e.g. by Java
threads) can be done in addition. Given all of that fast Inter-
net access to very large image databases, like commercial
digital photo archives, is in sight now.
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