11.1 Video Similarity

- **Similarity** is important:
 - Ranking of the retrieval results
 - Finding duplicates (different resolution, coding, etc.)
 - Detecting copyright infringements
- Various measures for the similarity
 - Simple idea: percentage of frames with high visual similarity
 - Analogous to Tanimoto similarity measure for texts: percentage of identical words in two texts (relative to the total number of words)

- Fundamental step is the identification of (audio) **visual features** from the frames (time series of features)
 - Color distribution, motion, etc.
- For **efficiency reasons**, the similarity should not be determined between frames, but between shots

11.1 Video Similarity

- We usually have to consider…
 - The higher the **number of features**, the more properties can be used in the similarity measure (i.e. similarity measures get more accurate), but the more **inefficient** is the retrieval process
 - In general, for videos the **accuracy** of the scoring is not the critical factor, but **efficiency** is very important

- 65,000 videos uploaded each day on YouTube
 - Prone to duplicates
 - Redundancy is severely hampering video search
 - Eliminate duplicates
 - What are duplicates?
11.1 Video Similarity

- For identical copies it's easy! But... we have to deal with "near duplicates"
 - See e.g., (Wu, Ngu and Hauptmann, 2006)
- Near-duplicate web videos are "essentially the same", differing in:
 - File formats
 - Encoding parameters
 - Photometric variations (color, lighting changes)
 - Editing operations (caption, logo and border insertion)
 - Different lengths

11.1 Video Similarity

- "The lion sleeps tonight"

11.1 Similarity Measures

- Assumptions
 - Each frame is represented through a (high dimensional) feature vector in a metric space \(F \) with distance measure (metric) \(d \)
 - The similarity measure (for videos) is invariant with respect to the shot sequence
- Thus,...
 - Representation of videos by finite (unordered) sets of feature vectors

11.1 Similarity Measures

- \(d(x, y) \) is the distance (dissimilarity) between two feature vectors \(x \) and \(y \)
- Vectors (represented by frames) \(x \) and \(y \) are visually similar, if \(d(x, y) \leq \varepsilon \) for \(\varepsilon > 0 \) (independent of the actual values of \(x \) and \(y \))
 - Approach after Cheung and Zakhor, 2003
11.1 Video Similarity

- Basic idea: compute the percentage of similar frames in the videos
 - Naive video similarity: the total number of frames of a video, which are similar to at least one frame in the other video, divided by the total number of frames

11.1 Video Similarity

\[nvs(X, Y; \varepsilon) = \frac{\sum_{x \in X} 1_{\exists y \in Y: d(x, y) \leq \varepsilon}}{|X|} + \frac{\sum_{y \in Y} 1_{\exists x \in X: d(x, y) \leq \varepsilon}}{|Y|} \]

- Indicator function \(1_A \) for a set \(A \): value of 1 if \(A \) is not empty, value 0 otherwise
- If each frame in \(X \) can be mapped in a similar frame in \(Y \) (and vice versa), \(nvs = 1 \)
- \(nvs = 0 \), if there are no similar frames in the two videos

11.1 Video Similarity

- Naive video similarity is often not intuitive
 - Shots may contain many visually similar frames
 - The specific number within one shots, depend on the exact encoding, and should therefore not influence the measure
 - E.g., generate \(Y \) through multiplication of a single frame from \(X \). For \(|Y| >> |X| \) \(nvs(X, Y; \varepsilon) \approx 1 \)

11.1 Video Similarity

- E.g., frames of video \(X \) are marked with ", frames of video \(Y \) with ".
- Then the "intuitive" distance is about 0.5, the calculated one is however, 0.9

11.1 Video Similarity

- Solution: consider quantities of similar frames as fundamental units
 - Without regarding the temporal structure (representation as a set of feature vectors) we combine all visually similar frames to clusters
 - Two frames \(x, y \in X \) belong to the same cluster if \(d(x, y) \leq \varepsilon \)
 - Problem: consistent cutting is not always possible
 - If \(d(x, y) \leq \varepsilon \) and \(d(y, z) \leq \varepsilon \), then what is with \(d(x, z) \)?

- In single link clustering, \(d(x, y) \leq \varepsilon \) implies that \(x \) and \(y \) are in the same cluster, not vice versa
 - The clusters \([X]_\varepsilon \) of a video \(X \) are the connected components in "distance < \varepsilon"-graph
 - A cluster is called \(\varepsilon \)-compact if all the frames of the cluster have at most a distance of \(\varepsilon \) to one another
 - Considering \([X \cup Y]_\varepsilon \), the reunion of the clusters of two videos, is a cluster from this set contains the frames of both videos, then they are visually similar
11.1 Video Similarity

- The **Ideal Video Similarity** is the percentage of clusters in \([X \cup Y]_3\), which contain frames from both videos (relative to the total number of clusters)

\[
ivs(X, Y; \epsilon) = \frac{\sum_{x \in X} 1_{\epsilon x} \cdot 1_{\epsilon y}}{|X \cup Y|_3}
\]

11.1 IVS Calculation

- Naive calculation requires distance calculations between \(|X| \cdot |Y|\) frame pairs
- More efficient methods estimate the ivs by sampling
 - Represent each video through \(m\) randomly selected video frames
 - Estimate the ivs by the number of similar pairs \(W_{mn}\) in the samples

11.2 Voronoi Diagrams

- Voronoi diagrams (also known as Voronoi tilings) are decomposition of a metric space into disjoint parts
 - **Given:**
 - A metric space \((F, d)\)
 - A set of discrete points \(X \subseteq F\)
 - **Goal:**
 - A division of \(F\) in exactly \(|X|\) disjoint (but related with each other) parts
 - In each of these parts there is just one point from \(X\)

- **Voronoi solution:**
 - Given: a point \(z \in F\). To which part of space does \(z\) belong to?
 - Determine the point \(x \in X\), which is the closest to \(z\)
 - Then \(z\) maps the space part, where \(x\) is found
11.2 Voronoi Diagrams

- In Euclidean spaces: the set of equidistant points for each pair of points, is a **hyperplane**
 - Between each two points from X there is a hyperplane
 - Points on the left side of the hyperplane are closer to the left point while points on the right side of the hyperplane are closer to the right point

- In Euclidean spaces: the set of equidistant points of X from X there is a hyperplane

- **Voronoi Video Similarity**
 - **Voronoi diagrams** are specific geometrical layouts of spaces
 - For videos we divide the feature space according to the cluster
 - Given a video frame with \(n \) frames
 \[X = \{ x_t : t = 1, \ldots, n \} \]
 - The Voronoi diagram \(V(X) \) of \(X \) is a division of the feature space \(F \) in \(n \) Voronoi cells \(V_X(x_t) \)

- **Voronoi Video Similarity**
 - The Voronoi cell \(V_X(x_t) \) contains all vectors in \(F \), which lie closer to the frame \(x_t \) as to all other frames of \(X \)
 \[V_X(x_t) = \{ s \in F : g_X(s) = x_t \text{ and } x_t \in X \} \]
 with \(g_X(s) \) as the next frame from \(X \) to \(s \)
 - In the case of equal intervals of several frames one takes for \(g_X(s) \) usually the frame that is next to a predetermined point (e.g., the origin)

- Voronoi cells are combined for frames of identical clusters, therefore for \(C \in [X] \)
 \[V_X(C) = \bigcup_{x \in C} V_X(x) \]
 is valid
11.2 Voronoi Video Similarity

- We can define similar Voronoi regions for two videos X and Y and their two Voronoi diagrams through

\[R(X, Y; \varepsilon) = \bigcup_{d(x,y) \leq \varepsilon} V_X(x) \cap V_Y(y) \]

- If x and y are close to one another, then also their Voronoi cells will intersect. The more similar pairs there are, the greater the surface area of the \(R(X, Y; \varepsilon) \).

Example: two videos, each with two frames and their corresponding Voronoi cells. The gray area is the common area \(R(X, Y; \varepsilon) \).

The volume of \(R(X, Y; \varepsilon) \) is a measure of video similarity.

- Technical problems:
 - The Voronoi cells must be measurable (volume as a Lebesgue integral).
 - The feature space is considered compact (therefore, restricted and closed) so volumes are finite.
 - For normalization: \(\text{Vol}(F) = 1 \).

Since each cluster and Voronoi cells do not overlap, is the Voronoi video similarity:

\[\text{vvs}(X, Y; \varepsilon) = \text{Vol}(R(X, Y; \varepsilon)) = \text{Vol}(\bigcup_{d(x,y) \leq \varepsilon} V_X(x) \cap V_Y(y)) = \sum_{d(x,y) \leq \varepsilon} \text{Vol}(V_X(x) \cap V_Y(y)) \]

Example:

- \(\text{vvs} \) in the example is 0.33, which is also consistent with the \(\text{ivs} \) in this example.
- The reason for the very good correlation is a the similar volume of each Voronoi cell.
- This correlation, is not however, generally provided.

An estimate of \(\text{vvs}(X, Y; \varepsilon) \) is possible through random sampling:

- Generate \(m \) vectors \(s_1, \ldots, s_m \) (seed vectors) independent and uniformly distributed over the space F.
- Check for each seed \(s_i \) if it is located inside \(R(X, Y; \varepsilon) \), i.e., in any Voronoi cell \(V_X(x) \) and \(V_Y(y) \) with \(d(x,y) \leq \varepsilon \).
- Let \(g_i(s_i) \) be the frame from \(X \) with the smallest distance to \(s_i \).
- Then:
 \[s_i \in R(X, Y; \varepsilon) \iff d(g_i(s_i), g_i(s_i)) \leq \varepsilon \]
11.2 Estimation of VVS

- It is possible to describe each video \(X \), through the \(m \) tuple \(X := (g_X(s_1), ..., g_X(s_m)) \)
- \(X \) is called video signature with respect to \(S \)
- As a similarity measure for videos \(X \) and \(Y \) we can now use the degree of overlap between \(X \) and \(Y \):

\[
\text{vss}(X; Y; S, m) = \frac{\sum_{i=1}^{m} \mathbb{1}_{\{R(s_i, X, S, Y, m)\cap R(s_i, Y, S, X, m)\neq \emptyset\}}}{m}
\]

• \(\text{vss} \) is basic video signature similarity
- Since the seed vectors are uniformly distributed, the probability of event \(\text{"s} \in R(X, Y, \varepsilon)\text{"} \) represents the volume of \(R(X, Y, \varepsilon) \), thus \(\text{vvs}(X, Y, \varepsilon) \)
- \(\text{vss} \) is an unbiased estimator for \(\text{vvs} \)
- For video collections identical seeds must be used for all signature calculations

11.2 Estimation of VVS

- The number \(m \) of seeds is the signature length
 - The larger \(m \), the more accurate the estimate
 - The smaller \(m \), the easier the signature calculation
- Important issue for the election of \(m \): how high is the error probability?
 - Video database \(\Lambda \) with \(n \) and \(m \) videos seeds
 - Constant \(\gamma > 0 \) (maximum deviation)
 - \(P_{err}(m) = P(\text{the database contains at least a couple of videos, for which the difference between vvs and vss is greater than } \gamma) \)

11.2 Estimation of VVS

- Define \(\hat{\rho}(X, Y) = \text{vss}(X, Y; \varepsilon) \)
- Using Hoeffding’s inequality we can determine the maximum probability, that a sum of independent random and limited variables deviates with more than a given constant from its expected value:

\[
\text{Prob}(|\hat{\rho}(X, Y) - \rho(X, Y)| > \gamma) \leq 2 \exp\left(\frac{-2\gamma^2 m}{n}\right)
\]

- Therefore:

\[
P_{err}(m) = \text{Prob}\left(\bigcup_{X,Y \in \Lambda} |\rho(X,Y) - \hat{\rho}(X,Y)| > \gamma \right)
\]

\[
\leq \sum_{X,Y \in \Lambda} \text{Prob}(|\rho(X,Y) - \hat{\rho}(X,Y)| > \gamma)
\]

\[
\leq \frac{n}{2} \cdot 2 \exp\left(\frac{-2\gamma^2 m}{n}\right)
\]

- Sufficient conditions for \(P_{err}(m) \leq \delta \):

\[
\frac{n}{2} \cdot 2 \exp\left(\frac{-2\gamma^2 m}{n}\right) < \delta
\]

\[
m \geq \frac{2 \ln n - \ln \delta}{2\gamma^2}
\]
11.2 Estimation of VVS

\[m \geq \frac{2 \ln n - \ln \delta}{2 \gamma^2} \]

- The bound for \(m \) is logarithmic of the size \(n \) of the video database
- The smaller the error \(\gamma \) is, the greater the values chosen for \(m \) should be

11.2 Seed Vector Generation

- The vvs is not always the same as ideal video similarity (ivs)
- ivs and vvs are the same, if the clusters are evenly distributed over the entire feature space

11.2 Seed Vector Generation

- Consider cases with ivs = 1 / 3, but too small or too high Voronoi video similarity:

11.2 Seed Vector Generation

- Goal: estimation of the ivs through basic video signatures (vss) even if ivs and vvs differ
 - Since the seeds are spread evenly throughout the feature space, the estimation is influenced by various sizes of Voronoi cells
 - Solution: distribute the seeds evenly over the Voronoi cells, regardless of their volumes

11.2 Seed Vector Generation

- To generate the seeds (rather than using the uniform distribution over \(F \)) use a distribution with density function as follows:
 - Given: two videos \(X, Y \)
 - Distribution density at \(u \in F \):
 \[f(u; X \cup Y) = \frac{1}{\|X \cup Y\|_k} \cdot \frac{1}{\text{Vol}(V_{X \cup Y}(C))} \]
 - \(C \) denotes the cluster in \([X \cup Y]_k \) with \(u \in V_{X \cup Y}(C) \)

11.2 Seed Vector Generation

- \(f(u; XUY) \) is inversely proportional to the volume of each cell
 - Uniform distribution on the set of clusters
- \(f(u; XUY) \) is constant within the Voronoi cell of each cluster
 - Equal distribution within each cluster
- Possible generation method for seeds:
 - Randomly choose a cluster (uniformly distributed)
 - Choose a random point within this cluster (uniformly distributed)
11.2 Seed Vector Generation

- If we do not uniformly produce seeds, but with density $f(u; X \cup Y)$, we obtain the following estimator for ivs:
 $$\sum_{d(x,y) \leq \varepsilon} \int_{X \cup Y} f(u; X \cup Y) \, du$$
- For $f(u; X \cup Y) = 1$ (uniform distribution on F) it is exactly the definition of $v_{vss}(X, Y; \varepsilon)$

11.2 VSS_b and IVS

- v_{s_b} approximates ivs if the clusters are either identical or very good separated
- **Theorem**: Let X and Y be videos, so that for all pairs of clusters $c_X \in [X]_\varepsilon$ and $c_Y \in [Y]_\varepsilon$:
 - Either $c_X = c_Y$
 - Or all the frames in c_X further away with more than ε from all frames in c_Y
- Then:
 $$ivs(X, Y; \varepsilon) = \sum_{d(x,y) \leq \varepsilon} \int_{X \cup Y} f(u; X \cup Y) \, du$$

11.2 VSS_b and IVS

- Proof:
 - For each term in the sum if $d(x, y) \leq \varepsilon$, then x and y belong to the same cluster C in $[X]_\varepsilon$ and $[Y]_\varepsilon$.
 Thus, one can rewrite the sum as follows:
 $$\sum_{d(x,y) \leq \varepsilon} \int_{X \cup Y} f(u; X \cup Y) \, du = \sum_{C \in [X]_\varepsilon \cap [Y]_\varepsilon} \sum_{u \in C} \int_{X \cup Y} f(u; X \cup Y) \, du$$
- Due to the definition of Voronoi cells, for all $z \in C$
 - with $C \in [X]_\varepsilon \cap [Y]_\varepsilon$:
 $$V_X(z) \cap V_Y(z) = V_{X \cup Y}(z)$$
 - It results in:
 $$\sum_{d(x,y) \leq \varepsilon} \int_{V_X(z) \cap V_Y(z)} f(u; X \cup Y) \, du = \sum_{C \in [X]_\varepsilon \cap [Y]_\varepsilon} \int_{V_{X \cup Y}(C)} f(u; X \cup Y) \, du$$

11.2 VSS_b and IVS

- It is not possible to use the density function f for the estimation of ivs for the calculation of video signatures
 - The density function is specific for each pair of videos, but for comparison within collections, same seeds must be used
 - For this reason we use a (representative!) training set T for the definition of the density function
11.2 Application

- **Algorithm** for generating a single seed:
 (m independent repetitions of the algorithm provide m seeds)
 - Given:
 - A value ϵ_{SV}
 - A training set of T frames, which reflects the collection as well as possible
 - Identify all clusters $[T]_{\epsilon_{SV}}$ of set T
 - Choose any cluster $C \in [T]_{\epsilon_{SV}}$

- **Experiment:**
 - 15 videos from the “MPEG-7 content set”
 - Average length: 30 minutes
 - By means of random deletion of frames, 4 new videos were produced from each video, each having $ivs = 0.8, 0.6, 0.4$ and 0.2 when compared to the full video
 - Then the ivs was estimated through the vss_b
 - Two methods for generating the seeds ($m = 100$):
 (1) uniformly distributed on F and
 (2) based on a test collection of 4,000 photographs from the Corel photo collection

11.2 Voronoi Gap

- vvs and ivs are the same, if clusters are either identical or clearly separated
 - The feature vectors are only an approximation of the visual perception, therefore, they may contain small discrepancies within visually similar clusters

- **Consider a feature space with $ivs = 1$:**
 - The Voronoi regions differ slightly, and therefore do not fill the entire feature space
11.2 Voronoi Gap

- Consider seed s between the Voronoi cells
- Observation:
 - The next signature frames $g_X(s)$ and $g_Y(s)$ for two videos X and Y are far apart from one another: $d(g_X(s), g_Y(s)) > \varepsilon$
 - Both signature frames are similar to frames of the other videos, therefore there is an $x \in X$ with $d(x, g_Y(s)) \leq \varepsilon$ and there is an $y \in Y$ with $d(y, g_X(s)) \leq \varepsilon$

11.2 Seed Generation

- One can analytically show that for simple feature spaces the volume of the Voronoi gap can’t be neglected:
 - There are usually seeds that fall into the Voronoi gap and distort the estimate of the ivs
 - The smaller the ε, the smaller the Voronoi gap
 - Goal: avoid the use of seeds which (probably) lie in the Voronoi gap

- The pure definition of the Voronoi gap does not help in the verification
 - Requires distance calculations between each signature vector, and all frames of the other videos
 - Thus the efficient description of the video would be invalidated by his signature
 - It’s enough to assign probabilities for the fact that a seed is in the Voronoi gap

- Observations:
 - Both video sequences have a roughly equidistant pair of frames with respect to s: $(x, g_X(s))$ and $(y, g_Y(s))$
 - It is clear that the pairs themselves are dissimilar: $(x, g_X(s)) \geq \varepsilon$ and $(y, g_Y(s)) \geq \varepsilon$
 - Since the seeds in the Voronoi gap are near the borders of different Voronoi cells, one can easily find such equidistant pairs
11.2 Criteria

- Given: two videos X, Y with \mathcal{E}-compact clusters $[X \cup Y]_\mathcal{E}$
- For every seed s in the Voronoi gap, there is a vector $x \in X (y \in Y)$ with
 - x is dissimilar to $g_X(s)$, therefore $d(x, g_X(s)) > \mathcal{E}$
 - x and $g_X(s)$ are equidistant from s, particularly $d(x, s) - d(g_X(s), s) \leq 2\mathcal{E}$

11.2 Criteria

- Proof:
 - Since s is in the Voronoi gap, we have $d(g_X(s), g_Y(s)) > \mathcal{E}$
 - Since clusters are by assumption \mathcal{E}-compact, $g_X(s)$ can’t be in the same cluster as x and $g_Y(s)$, therefore $d(g_Y(s), x) > \mathcal{E}$

 - Further: $d(x, s) - d(g_X(s), s) \leq d(x, g_Y(s)) + d(g_Y(s), s) - d(g_X(s), s) \leq \mathcal{E} + d(g_Y(s), s) - d(g_X(s), s) + 2\mathcal{E}$

11.2 Application

- Define a ranking function Q for the signature vector:
 $$Q(g_X(s)) - \min_{x \in X, d(x, g_X(s)) > \mathcal{E}} d(x, s) - d(g_X(s), s)$$
- The further away are seeds from the borders of Voronoi cells, the higher the value of $Q(g_X(s))$

- Test whether a seed s is in the Voronoi gap between a video X and any other random sequence:
 - If there is no vector $x \in X$ with
 - x is dissimilar to $g_X(s)$ and
 - $d(x, s) - d(g_X(s), s) \leq 2\mathcal{E}$,
 then s is never in the Voronoi gap between X and another video
11.2 Application

- "Safe" seeds have Q-values $> 2\epsilon$
- This is not required but sufficient, and often difficult to find
 - In general, many seeds with Q-value $\leq 2\epsilon$ are not in the Voronoi gap
- Generate various seeds and choose only the ones with the best Q-values

- The symmetrical vss_s between two videos is defined by the seeds with the highest ranking in X_s and Y_s
 \[\text{vss}_s(X_s, Y_s; m) = \frac{1}{|m|} \sum_{i=1}^{m} \frac{1}{|m|} \sum_{j=1}^{m} 1 - \text{dist}(x_i, y_j) \]
 - With $j[1], \ldots, j[m']$ and $k[1], \ldots, k[m']$ as the rankings of the signature frame in the X_s and Y_s
 (e.g., $Q(x_{s,j[1]}) \geq \ldots \geq Q(x_{s,j[m']})$)

- The asymmetric form leads to some distortion in the estimate
 - If a video is a partial sequence of another video, the asymmetric vss_s is significantly higher when calculated with the shorter video, rather than with the longer one
 - Allows more efficient implementations

- Database of short video clips from the Web
- Compared with manual evaluation

11.2 Application

- Let $m' > m$ the number of frames in the video signature
 - Generate X_s with a set of m' seed vectors
 - Then compute $Q(g(x)(s))$ for all $g(x)(s)$ from X_s and arrange the $g(x)(s)$ according to decreasing Q-value
- Analogous to vss_s, we can now define ranked video similarity vss_r

- vss_r uses 50% of the frames with the highest ranking in X_s for comparison with the corresponding frames in Y_s and 50% of the frames with the highest ranking in Y_s for comparison with the corresponding frames in the X_s
 - Overall, again only m comparisons
 - Alternatively we can also use an asymmetric vss_r with m seeds with the highest ranking with respect to just one video

11.2 Retrieval Effectivity: VSS_B vs. VSS_R

- Database of short video clips from the Web
- Compared with manual evaluation
Next lecture

- Video Abstraction
 - Video Skimming
 - Video Highlighting
 - Skimming vs. Highlighting