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ABSTRACT
Researchers often struggle to solve a common problem: how does
one know whether a research hypothesis is worth investigating?
Given the increasing number of research publications, it is com-
plicated to guide such decisions. Previous work has shown how
predicting generally emerging research topics can provide some
help. Yet, in specialized scientific domains, only little is known about
how to provide a service that allows users to ease the identification
of scientific claims worth investigating. Scientific claims here means
a natural language sentence that expresses a relationship between
two entities. In particular, how one of them affects, manipulates,
or causes the other entity. In this paper, we propose a data-driven
approach aiming at filling this gap and empowering users at query
level: given the results of a query, we deliver a characterization
of clusters of the query results to discover the contextualization
of scientific claims and the identification of those claims that may
be worth more research efforts. To do so, we cluster documents
with scientific claims that share the same context by leveraging
co-clustering. After that, we characterize the clusters to annotate
them. Our annotation focuses on two core aspects: controversy and
diversity of claims in a given cluster. Controversy arises when two
or more claims semantically contradict each other; diversity means
the presence of different semantics of the claims that do not con-
tradict each other but provide different insights expressed by some
paper. To evaluate the benefits of our approach, we performed an
extensive retrospective analysis on PubMed.

CCS CONCEPTS
• Information systems→Digital libraries and archives; Clus-
tering; Content analysis and feature selection.
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1 INTRODUCTION
Due to the increasing number of available publications [22] with an
estimate of one paper published every 30 seconds ‘It is practically
impossible for researchers to keep up’ [6]. Thus, satisfying complex
information needs is becoming more difficult. Consider for example
the task of understanding the landscape of current research trends
to design new hypothesis and experiments. In general, this task
has implications for research funding, peer-review assessment, and
new grad students. Consider for instance Anna, a new grad student
in the medical school of some university. She would really like
to understand better whether ‘smoking causes lung cancer’ and

to discover novel aspects of such a claim that may need further
investigation. Thus, Anna will need at least three steps:

(1) Find relevant documents, i.e. research papers, where any
association between ‘smoking’ and ‘lung cancer’ has been
studied within particular problem settings (the document
space),

(2) Find out what the individual context of each document is,
e.g., what other entities are involved (the contextual space),

(3) Given all these documents, organize them to decide which
areas of research may represent opportunities to design new
hypotheses and experiments (a grouping method to ease new
hypothesis generation).

In general, this is a time-consuming task and modern discov-
ery systems in high-quality Digital Libraries may support Anna.
Thus, she might consider submitting a query to a curated Digital
Library with high-quality sources of information such as PubMed.
Anna’s query in PubMed will deliver more than 13 thousand re-
sults. In Figure 1 we show a frequency plot regarding the number
of publications retrieved per year. The topic indeed seems still en-
gaging; at least we can conclude that from the increasing number
of publications. However, figuring out what specific aspects need
further research is still cumbersome. Thus, to ease Anna’s task, we
focus on how to re-organize the result set of Anna’s query. In our
quest, we use clustering as one of the core steps but with a focus
on how to characterize and annotate the clusters to ease Anna’s
task. Our characterization focusses on revealing indicators within
a cluster such as the presence of ‘controversy’, ‘diversity’ and how
‘homogenous’ the cluster is. Why do we focus on these aspects?
Finding controversy manually has helped researchers to put into
context the challenges behind the study of certain diseases such as
in [38]. Thus, to alleviate the burden of manual work, we provide an
automatic method to annotate such cases. Diversity can help Anna
to get a consensus of what is known about the different associations
that exist between entities [9]. Clustering plays a critical role in
our proposed approach to ease the semantic interpretation of the
result set of a query. In particular, clusters should be homogenous,
e.g., semantically coherent (cf. [41]).

To achieve our goal, we build on the following observations:
Firstly, we concentrate on a specific aspect of each scientific paper
that allows for a meaningful organization of the results: claims.
Claims are sentences that express some association between en-
tities, see [8, 24]. This crucial step is part of our ‘Filtering and
representation’ (see Figure 2); secondly, ‘controversy’ regarding the
semantics of claims within clusters could also unveil what drives
research efforts. The controversy arises when in a given cluster
two or more claims contradict each other. For instance, when we
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Figure 1: Numbers of PubMed results for the query “smok-
ing causes lung cancer” per year.

have two documents with the following situation: document 1 con-
tains the following claim: ‘drug X helps to prevent disease Y’, while
document 2 states the following claim: ‘drug X induces disease Y’.
Thirdly, we consider the degree of ‘diversity’, e.g., the existence
of claims that connect the same entities but with different associ-
ations that not necessarily contradict each other. Finally, we also
consider how ‘homogenous’ a given group of papers is regarding
some domain entities. With these factors, we propose to 1) repre-
sent documents by mapping them to a semantic space 2) construct
a semantic matrix representation of them and cluster the semantic
matrix and 3) characterize clustering with our proposed indicators.
A natural way to re-organize our semantic matrix is to perform
clustering. In particular, we propose to re-organize the matrix in
such a way that allows the grouping of a subset of documents with
claims that are more related with each other because they share the
same context, e.g., share the same set of words and entities. Thus,
we build on the idea of ‘co-clustering’: simultaneously clustering
of rows and columns to re-organize the matrix, to facilitate Anna’s
task [5, 7, 21]. In Figure 2 we show our proposed methodology.

2 RELATEDWORK
Our work strongly builds on a recent body of knowledge in the field
of argumentation mining. Argumentation mining has a focus on
modeling and extracting argument structures. Particularly relevant
to our current efforts [8, 10, 11] is the work of [24] where the idea
of context-dependent claims was introduced, which we in turn
extended by our work. Instead of a claim being a general statement
that supports or contests a given topic, a claim in our work is a
sentence in a scientific document that relates two entities given in a
query. For a broader perspective on the impact of the argumentation
mining field see e.g., [26].

Recent efforts towards extracting and organizing the informa-
tion of documents relevant to a query such as [39] are also related
to our work. In [39] a case study using text mining techniques of
scientific literature to build a network around the tumor suppressor
p53 to predict new protein interactions with p53. In our work, we
focus on a more general setting using scientific claims as our basic
unit of representations towards a characterization of clusters that
can be used to boost prototypes such as the one introduced by the

article mentioned above. The work in [29] presents a generaliza-
tion framework of [39] using network analysis to predict protein
interactions using scientific literature. The system that the authors
developed, called Knowledge Integration Toolkit, includes a reason-
ing component to predict new interactions between proteins that
users can rely on to formulate new hypothesis [29].

In a similar line of thought, the work of [37] offers a new ap-
proach to detect the emergence of new research topics. What makes
the work of [37] stand from other previous approaches focusing on
topic detection is the fact that they can detect research topics at
an earlier stage instead of topics that are already associated with a
certain number of publications [37].

The work of [33] shows a model that focuses on document meta-
data such as ‘objectives’ or ‘conclusions’ contained in research
papers to predict the rise and fall of popularity of scientific top-
ics represented with keywords. Our approach can complement the
previously mentioned body of work that aims at detecting the emer-
gence of new topics, or new associations between scientific entities,
by introducing a semantic characterization of clusters of documents
based on scientific claims.

In our experiments, we prove the benefits of our characterization
by looking at a retrospective analysis task that shows the potential
of our characterization. Studying the dynamics of topics in Digital
Libraries [31] is another example of the need for approaches that can
ease user’s understanding over a set of documents. In our work, we
focus on providing a characterization of clusters based on scientific
claims that can push further some of these previous efforts.

Our work is also related to the text mining efforts in biomedical
literature to help researchers in the difficult task of finding where
new researcher efforts are needed. In particular, our work adds value
to the ongoing effort referred to as extra-propositional meaning
that focuses on the detection of uncertainty, negations, hedging,
opinions, and beliefs see [17] for a more in-depth overview. For
instance, consider the work of Light et al. [25] that emphasized
the relevance of detecting speculations instead of well-established
facts. Light et al. found that the existence of speculative language in
MEDLINE is not rare; it accounts for an estimate of 11% of sentences
in MEDLINE abstracts. Moreover, even if definitive statements are
of primary interest, knowing that a statement is not definite, i.e.,
speculative, is relevant [25]. In a nutshell, Light et al. observations
can help a user to find where more research efforts are needed. As
we will show, our work can add value to these efforts by introducing
a claim-based characterization of semantically coherent clusters
where controversy might exist.

3 PROBLEM DEFINITION AND APPROACH
We now introduce the idea of claims as a basic unit to filter the
result set of some given query. The query that we study in our
work follows the pattern: (ei , ej ), where ei and ej are arbitrary
entities such as ‘cigarettes’ and ‘cancer’. Moreover, a scientific claim
(or merely claim) is a natural language sentence in a scientific
paper that expresses a certain relationship between two entities.
In particular, how one of them affects, manipulates, or causes the
other entity.

An example of a claim is the following “Smoking cigarettes has
the potential to increase the risk of lung cancer.” In this example,
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Figure 2: Approach Overview.

‘cigarettes’ and ‘lung cancer’ are the entities, and the relationship
between them is ‘increase the risk’. The relationships and entities
of interest are domain dependent, and our approach can be applied
once they are explicitly defined and identified.

We can now formally define the problem as follows:

Problem Definition. Given the results d = {d1, ...,dn } of some
query (ei , ej ), discover a characterization of the grouping of the results
based on their individual relationships, such that claims can be de-
tected, which are worth investigating (i.e. which with high probability
will lead to the publication of more papers in future).

To instantiate this characterization, we first annotate the seman-
tic orientation of claims in the documents automatically. Afterward,
we assess and annotate three cluster properties: ‘controversy’, ‘di-
versity’ and ‘homogenous’. They together have the potential to help
users to formulate, discover or put into context scientific claims that
may need more research efforts. For instance, in the case of con-
troversy, we mean that a cluster contains scientific claims, whose
semantic orientation contradict each other. For instance, if we have
in some given clusterCl1 a document d1 with a claim such as ‘drug
X treats disease Y’ and a document d2 with a claim such as ‘drug X
causes disease Y’. Here ‘treats’ and ‘causes’ clearly contradict each
other.

To solve our problem, we propose three steps: 1) Filtering and
Representation; 2) Organization; 3) Characterization, see Fig. 2.

Firstly, Filtering and Representation, we focus on two main tasks:
firstly, we filter each document that does not contain a claim con-
necting the entities of the query. Secondly, once we have documents
with claims that connect the entities of the query, we proceed to la-
bel the semantic orientation of each claim. By semantic orientation
we mean what specific association exists between the entities in
a given claim, e.g., ‘causal’, ‘affects’. In the organization step, we
focus on assessing the value of our proposed clustering approach by
comparing its semantic quality with K-Means. Moreover, thirdly, we
proceed to characterize the clusters with our proposed claim-based
indicators.

To evaluate the value of our proposed characterization of the
clusters, we perform a study of the proposed properties to predict

clusters of scientific claims that will lead to an increase in the
number of papers beyond what is expected using retrospective
analysis.

3.1 Filtering and representation
Our first step assumes that a query has been submitted to a retrieval
system that relies on high-quality content such as a Digital Library
and that results have been retrieved. One specific example relevant
to our domain would be the submission of a query to PubMed.
Thus, the results of such a query are the input to our first step. In
our first step, we perform two tasks: firstly, we filter some results
of the query beyond what a retrieval system will typically do. In
particular, we focus on assessing for each document whether a
claim linking the two entities of the query exist. Whenever there
is an identification of some claim in a document, we consider that
document as part of our next steps. In other words, we focus on
assessing that a document is relevant if it contains a scientific claim
related to the query.

To distinguish sentences that correspond to our definition of
a claim we rely on domain knowledge from the medical domain
because our corpus of study comes from PubMed. Therefore, we
restrict our current efforts to a subset of the relations from the
Unified Medical Language System (UMLS)1 . We used in our work
SemmedDB [18] a database that contains semantic predications in
the form of subject-predicate-object triples extracted from PubMed
research papers. As discussed previously in [35], the tool used to ex-
tract the predicates of SemmedDB detects all predicates concerning
pharmacogenomics (e.g., ‘affects’, ‘augments’, ‘disrupts’), substance
interactions (e.g., ‘interacts-with’, ‘inhibits’, ‘stimulates’), genetic
etiology of disease (e.g., ‘associated-with’, ‘causes’, ‘predisposes’)
and clinical medicine (e.g. ‘treats’, ‘diagnoses’, ‘process-of’).

Wemanually inspected the predicates covered in the SemmedDB,
and we found that some of them such as ‘is-a’ or ‘location-of’ do
not fit our definition of claims. After carefully analyzing the data-
base, we decided to use the following: “affects”, “associated-with”,
“causes”, “inhibits”, “prevents”, “process-of”, and “treats” Moreover,

1For more information about UMLS see https://www.nlm.nih.gov/research/umls/

 https://www.nlm.nih.gov/research/umls/
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for each relation we included its negation. In other words, for
“causes” there is a relation named “neg-causes”.

We used the content of the database to develop an automatic tool
that given a claim in natural language form, delivers the relation
that exists in the claim. We called this the ‘semantic orientation’ of
claims. We can formalize the Semantic Orientation of Claims as a
classification problem as follows:

Semantic Orientation of Claims Problem. Formally, we want
to learn a function f : Rn → {1, ...k}. When y = f (x), the model
assigns an input described by vector x to a category identified by a
numeric code y. The vector x in our case is a vector representation of
some claim.

Different alternatives exist to learn such a function in a data-
driven fashion, and we will explore some of them in this work. In
the following section, we introduce each model used in this task and
provide details of their performance in the experimental section of
the paper (Section 4.1).

Models. We trained different machine learning models in our
quest to have an automatic tool that given a claim in natural lan-
guage text can output the semantic orientation of the corresponding
entities. We decided to use only Deep Learning approaches for our
classification task. Moreover, as a baseline, we used FastText [16]
an approach used for text classification tasks that have shown good
performance on different datasets see [16]. Next, we briefly describe
the deep learning models used.

LSTM Stack. The Long-Shot Term Memory Network (LSTM) is
one of the most widely used recurrent neural networks, and it was
introduced by Hochreiter and Schmidhuber [15]. It has been ap-
plied to solve different problems mostly for several time-series or
sequence data. Recently, researchers have used LSTMs to build sen-
tence embeddings for information retrieval [30], or the translation
of sentences into different languages [1]. Training and optimizing
such networks is a complex task and requires much computational
power. Fortunately, a recent extensive empirical study [13] has shed
the light of different variations of LSTM’s performance and tuning
of its parameters.

The architecture that we used in this work consists of two con-
secutive LSTM layers followed by a stack of fully connected layers
for prediction. We applied a single dropout of 0.50 to force the
model into learning more general abstractions from the data. The
LSTM layers consume most of the computational power as they
account for over 90% of the total weights of the model.

Additionally, since the LSTMs are recurrent layers, they take
much longer to train than a simple fully connected layer with the
same amount of weights. The reason is that any recurrent network
needs a particular variant of the optimization algorithm called
Backpropagation through Time. This algorithm needs to compute
the gradient not only once, but multiple times to allow the model
to learn abstractions through the time domain. For a more in-depth
introduction to this fascinating topic, please see [12].

Convolutional Neural Networks. Convolutional Neural Networks
(CNNs) have excelled in computer vision in different tasks [4, 20, 40]
and are responsible for the renaissance of interest in neural net-
works [23]. Recently, they have also shown to achieve state of the

art results on sentence classification. For instance, the work of Kim
[19] proposed not only to look at one specific amount of word vec-
tors but also to use multiple context sizes in parallel. The idea here
is as Zhang, and Wallace [42] demonstrated: to capitalize on the
distributed representation of word embeddings. Zhang and Wallace
provided practical guidelines of what can be achieved using a CNN
for text classification tasks. Goodfellow et al. [12] have emphasized
that three essential ideas motivate the use of CNNs in different
machine learning tasks, including text classification: sparse inter-
actions, parameter sharing, and equivariant representations. For
text classifications task, sparse interactions allow for automatically
learning linguistic n-grams patterns, i.e. without manual feature
engineering; parameter sharing influences computation storage
requirements, and equivariant representation allows for robustness
in the patterns learned regarding of the position in the sentence.

To better understand the CNN model, in this section we provide
the necessary background. A CNN is a specialized kind of neural
network for processing data that has a grid-like topology. Examples
include time-series data, which can be thought of as a 1-D grid
taking samples at regular time intervals, and image data, which can
be thought of as a 2-D grid of pixels [12]. Recently, they have also
been applied to text data. Here we follow the discussion from [42] to
explain how sentences can have amatrix-like representation so they
can be of any use for CNN’s. We begin with a tokenized sentence,
which we then convert to a sentence matrix. In this matrix, each row
is a word vector representation of each token. These word vector
representations can be obtained frommodels such as word2vec [28]
or Glove [32]. We denote the dimensionality of the word vectors by
d . If the length of a given sentence is s , then the dimensionality of
the sentence matrix is s × d . Suppose that there is a filter matrixw
with region size h;w will contain h × d parameters to be estimated.
We denote the sentence matrix by A ∈ Rs×d , and use A[i : j] to
represent the sub-matrix of A from row i to row j. The output
sequence o ∈ Rs−h+1 of the convolution operator is obtained by
repeatedly applying the filter on sub-matrices of A:

oi = w · A[i : i + h − 1]
where · is the dot product between the sub-matrix and the filter

(a sum over element-wise multiplications). We add a bias termb ∈ R
and an activation function f to each oi to induce the feature map
c ∈ Rs−h+1 for this filter:

ci = f (oi + b)
Next, a pooling function is applied to each feature map to get a
fixed-length vector. Researchers use Max-pooling [2], which ex-
tracts the maximum value for each feature map. Then the outputs
generated from each filter map can be concatenated into a fixed-
length feature vector, which is then fed through a softmax function
to generate the final classifications. Usually, dropout [14] is applied
as regularization. Optimization is performed using Stochastic Gra-
dient Descend and back-propagation [36]. We present the details
of these experiments in Section 4.1.

3.2 Organization
The primary goal of our second step is to cluster the result set of
the query. To accomplish our first task, we build on the idea of
modeling the co-occurrence of claims and entities. For this task,
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we represent each document as a bag of words [27]. Our vector
space model consists of each document represented as a vector of
weighted frequencies of its tokens. Tokens in our setting are not
only words but also entities relevant to our domain such as drugs
and diseases.

In particular, we model this interaction as a bipartite Graph
model and apply Co-clustering of documents and tokens. For self-
containment in what follows we use and adapt the notation from
the original work on Co-clustering [5]. Thus, formally, we have
Docs = {doci , i = 1, ...,m}: a set of m documents and Tokens =
{tokenj , j = 1, ...,n}: a set of n tokens

Let us start with the following definitions:

Definition 1. A graph G = (V ,E) is a set of vertices V =
{1, .., |V |} and a set of edges {i, j} each with edge weight Ei j . The
adjacency matrixM of a graph is defined by

Mi j =

{
Ei j , if there is an edge {i,j}
0, otherwise

}
Definition 2. Cut of a graph. Given a partition of the vertex set

V into multiple subsets V1, ...,Vk , the cut of the graph is:

cut(V1, ...Vk ) =
∑
i<j

cut(Vi ,Vj )

where

cut(V1,V2) =
∑

i ∈V1, j ∈V2

Mi j

We now consider the bipartite graph model for representing our
claims collection.

Definition 3. Bipartite Graph. An undirected bipartite graph is
a triple G = {Docs,Tokens,E} where Docs and Tokens are two sets
of vertices and E is the set of edges each with weight ai j . The weights
indicate an association between claims and entities. One possibility is
to use simple entity frequencies.

Why a bipartite graph model? The intuition: we would like to
organize the result set of a query such that documents with claims
of the same group are more related to one subset of tokens compare
to the other subsets of tokens. We built on work [5] and based our
proposed solution considering the following observation:

The duality of tokens anddocuments clustering. Token clus-
tering induces document clustering while document clustering in-
duces token clustering.

Given disjoint document clusters Dl1, ...,Dlk , the corresponding
token clusters Tn1, ...,Tnk may be determined as follows: a given
token t belongs to the token cluster Tnm if its association with the
document cluster Dlm is greater than its association with any other
claim cluster. Using the proposed graph model, a natural measure
of the association of a token with a document cluster is the sum of
the edge-weights to all documents in the cluster. Thus, each of the
token clusters is determined by the document clustering. Similarly,
given token clustersTn1, ...Tnk , we can find the induced document
clustering in a similar fashion. Thus, we can observe the recursive
nature of this characterization: document clusters determine token
clusters, which in turn determine document clusters.

Thus, the “best” token and document clustering would corre-
spond to a partitioning of the graph such that crossing edges be-
tween partitions have a minimum weight. Using Definition 2, we
can further formulate the dual clustering of document and tokens
as a solution of the minimization of graph cut:

cut(Tn1 ∪ Dl1, ...Tnk ∪ Dlk ) =min cut(V1, ...Vk )

where V1, ...Vk is a k−partioning of the bipartite graph.

Spectral Co-clustering. The idea of modeling documents with
claims and tokens with a bipartite graphmotivates us to use spectral
graph theory to induce the co-clusters [5]. Spectral graph clustering
uses the eigenvalues of the adjacency matrix to map the original
relationships of co-occurrence onto a new space to project each
claim and entity. After the projection, the documents and tokens
are simultaneously partitioned into disjoint clusters with minimum
cut optimization. The solution to the partitioning of the bipartite
graph studied in [5], uses the k left and right singular vectors to
find the new partition space.

3.3 Characterization
In our last step, we use the organization of the clusters from Co-
clustering and proceed to characterize each cluster. The main char-
acterization involves finding and annotating whether ‘controversy’
or ‘diversity’ exist in a given cluster. For instance, if we have in the
cluster Cl1 a document d1 with a claim such as ‘drug X alleviates
disease Y’ and a document d2 with a claim such as ‘drug X induces
disease Y’, then we annotate the cluster as having ‘controversy’. To
accomplish our goal of identifying ‘controversy’, we focus on the
identification of direct negative semantic orientation of claims. For
instance, ‘affects’ versus ‘neg_affects’. Thus, we annotate a cluster
as exhibiting ‘controversy’ if we can find at least two claims with
the same pairs of entities that have opposite semantic orientation.

Diversity, on the other hand, involves another core aspect. It
has to do with the existence of different semantics of claims that
are pointing at the same entities. The idea here is to capture the
presence of scientific claims that may deserve further investigation
because they have different semantics although they share almost
the same context. We hypothesize that these two claim-based as-
pects can provide a ‘semantic’ indicator of the significant growth
of future papers.

4 EXPERIMENTAL SETUP
In this section, we provide details of the experimental setting of
our proposed approach to evaluate its scope and limitations.

4.1 Semantic Orientation of claims
We now look at our first step towards the characterization of the
clusters. In other words, we deal with the problem of automatically
detecting the semantic orientation of a claim. By semantic orienta-
tion, wemean the type of association that exists between the entities
in a given claim. For instance, the claim: “Diabetes was induced by
alloxan injection”2 corresponds to some claim, where a causal asso-
ciation exists between Diabetes and alloxan injection. According to
our definition of claims we focus on the following associations that

2Contained in paper with pmid 21629542
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are part of the semantic relations in the Unified Medical Language
System (UMLS): “affects”, “associated-with”, “causes”, “inhibits”,
“prevents”, “process-of”, “treats” as well as its corresponding nega-
tive counterparts, e.g., “neg-affects”, “neg-associated-with”. Thus,
we limit our work to fourteen different semantic types that fit in
our definition of claims.

Data description. We randomly sampled from SemmedDB data-
base 10K sentences per each of the semantic relations that we
previously described. However, for each of the negative classes, e.g.,
“neg-affects”, we could only sample 2000 per class because there
were not too many of them in the database. Out of these samples,
we split our data into two sets as follows: training (80%) and testing
(20%). We used weighted average F1-score as a metric to measure
the performance of each model.

We considered the weighted average because it considers the
differences in the class frequencies between the positive semantic
relations and their opposites. As a result, we can more objectively
assess the overall performance of the models.

Preprocessing. We tokenized each sentence and used in our work
word embeddings to represent each sentence as a sequence of its
embedding words. Using word embeddings allowed the models
to account for multiple synonyms and expressions with the same
meaning. In our work, we used the word vector representations
learned with the Word2Vec algorithm by Mikolov et al. [28]. In a
nutshell, word embeddings pack more information into far fewer
dimensions. Researchers have shown [42] two approaches to take
advantage of word embeddings for classification tasks: 1) learnword
embeddings jointly with the problem at hand and 2) use embedding
vectors from a pre-computed embedding space that might exhibit
useful properties (captures general aspects of language structure).
We will show in our tailored models the effect of both approaches.

Parameter details. One of the challenges of the deep learning
models that we used in our work is to find the right combination
of parameters that can solve the problem optimally. In our case,
we mainly iterate: we began with a simple small model, gradually
increased its capacity and we kept doing that until the validation
score no longer improved after three consecutive epochs. In addi-
tion to that, we also used dropout [14] of 50 as regularization to
avoid overfitting. Furthermore, 80% of the data was used for model
training and 20% for testing.

Discussion of the results. In Table 1 we show the results of our ex-
periments. ‘FastText’ refers to the model learned using the FastText
algorithm [16]. ‘CNN-Static’ refers to the model using Convolu-
tional Neural Networks using word embeddings pre-trained on
PubMed as described in [34]. ‘CNN-Dynamic’ is the model that
learns the embeddings as part of the classification task. ‘LSTM-
Stack-Static’ refers to the model trained using a two LSTM stack
using the pre-trained word embeddings mentioned before. Finally,
the ‘LSTM-Stack-Dynamic’ refers to the model that learns the word
embedding as part of the classification task.

We can observe that all models that had to learn the representa-
tion of the word vectors as part of the classification task performed
only slightly better than the models that used the pre-trained word
embeddings. This means that for our problem setting the computa-
tionally expensive process is not worth it. Our finding supports the

Table 1: Results Semantic Orientation Task

Model Weighted F1

FastText 0.67
CNN-Static 0.70
CNN-Dynamic 0.72
LSTM-Stack-Static 0.69
LSTM-Stack-Dynamic 0.71

Table 2: Results of the CNN-Dynamic Model

Class Precision Recall F1 samples

AFFECTS 0.62 0.65 0.63 2000
ASSOC_WITH 0.62 0.68 0.65 2000
CAUSES 0.76 0.83 0.79 2000
INHIBITS 0.81 0.77 0.79 2000
NEG_AFFECTS 0.69 0.74 0.71 400
NEG_ASSOC_W 0.65 0.75 0.70 400
NEG_CAUSES 0.89 0.85 0.87 400
NEG_INHIBITS 0.85 0.81 0.82 400
NEG_PREVENTS 0.84 0.89 0.86 400
NEG_PROC_OF 0.69 0.82 0.75 400
NEG_TREATS 0.74 0.70 0.72 400
PREVENTS 0.84 0.87 0.85 2000
PROCESS_OF 0.61 0.64 0.62 2000
TREATS 0.76 0.51 0.61 2000
Weighted AVG 0.73 0.72 0.72 16800

idea that using transfer learning for this task results in models that
can provide comparable results regarding more time-consuming
models that do not use pre-trained word embeddings.

To our surprise, the CNN based-models outperform the LSTM
Stack models regardless of the existence of transfer learning. Given
that LSTMs are very often used in sequence data and usually provide
more accurate results, we were surprised that in our case they did
not outperform their CNN counterparts. It seems that for our task
CNNs can find patterns in the data that have a higher impact that
the sequence modeling approach of LSTMs.

In Table 2 we show the performance of the best model per class.
We can see that some classes were challenging to recognize by
the model. For instance class ‘TREATS’ has the lowest F1 score
due to its low recall value. An analysis of the data revealed that
‘TREATS’ requires domain knowledge, e.g., other medical entities
to assess the presence of this type of association more accurately.
This could probability boost our best model, and it will be part of
our future work. The performance on the negative classes such
as ‘NEG-CAUSES’ with 0.87 of F1 score reflects the impact of our
decision of keeping all types of negation and hedges such as may,
might, instead of treating them as stop words.

4.2 Semantic cluster coherence
In this section, we examine the qualitative properties of the co-
clustering approach compared to the results provided by K-Means
clustering. First, we explain what we mean by cluster coherence,
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and we define our hypothesis. Afterward, we will empirically prove
our hypothesis and, in this context, we describe our ground-truth
evaluation corpus, followed by experimental set-up as well as our
implementation decisions.

4.2.1 Cluster coherence. As we have already mentioned, the algo-
rithm co-clustering is based on the grouping of rows and columns.
The columns represent our pharmaceutical entities that are either
a drug or a disease. In this context, our coherence-hypothesis is: If
pharmaceutical entities that often co-occur together in documents
are grouped with co-clustering, then we should have more meaning-
ful clusters than those obtained by a more conventional approach
such as K-Means. Here, meaningful means that the entities of a
cluster are semantically similar to each other. This is particularly
important since increasing coherence makes it easier to identify an
intrinsic semantic relationship within a cluster. How can semantic
similarity be determined for pharmaceutical entities?

In order to compare the semantic similarity of pharmaceutical
entities and to evaluate the semantic quality of an entity cluster,
each entity (active substance/disease) needs a unique class label.
The most common pharmaceutical classification systems, such as
the Anatomical Therapeutic Chemical (ATC) Classification Sys-
tem3, Medical Subject Headings (MeSH) Trees4 or the American
Hospital Formulary Service (AHFS) Pharmacologic-Therapeutic
classification5, are suitable sources for these labels. In the following
investigations, we use these classification systems to determine
entity labels.

4.2.2 Experimental setup.

Corpus. We crawled documents from PubMed. PubMed6 cur-
rently with more than 28 million document citations is the largest
andmost comprehensive digital library in the biomedical field. Since
full-text access is not available for the most publications, we used
only abstracts for our evaluation corpus. More abstracts per entity
(active ingredient) allow us to perform a retrospective analysis that
spans a more extended period (20 years). Thus, we decided to use a
minimum of the 1000 most relevant abstracts for each entity (active
substance).

Moreover, we relied on the relevance weighting of PubMed’s
search engine. Diseases, as well as drugs, often consist of several
words (e.g., diabetes mellitus). To account for such cases, we 1)
recognize the entities in documents and 2) place a unique identifier
at the entity’s position in the text. For the recognition of the entities,
we used PubTator7, a tool which can recognize pharmaceutical
entities and returns a MeSH-Id for each of them.

Query entities. As query entities for the evaluation, we randomly
selected 350 drugs from the DrugBank8 collection, which is a 10%
sample of all approved drugs. Thus, our final document set for
evaluation contains ∼ 2.5 million abstracts for 350 drugs and a
period between 1900-01-01 and 2018-01-01.

3https://www.whocc.no/atc_ddd_index/
4https://www.nlm.nih.gov/mesh/intro_trees.html
5http://www.ahfsdruginformation.com/ahfs-pharmacologic-therapeutic-classification/
6https://www.ncbi.nlm.nih.gov/pubmed/
7https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
8https://www.drugbank.ca/

Entity labels. Drugs can be grouped according to different prop-
erties and thus semantics. For example, drugs can be grouped ac-
cording to anatomical and therapeutic properties (e.g., as with ATC)
and in other cases according to pharmacological properties (e.g., as
with AHFS). Therefore, we use the different classification systems
ATC, AHFS, and MESH to determine labels for drugs in the best
possible way. These classification systems have a hierarchical struc-
ture, and so for example, the drug aspirin (Table 3) contains the
ATC label “N02BA01”. Where, in ATC, “N” stands for the nervous
system and “N02” for analgesics. Since the labels can become too
fine-granular, we select only the highest level as a possible class
label. Besides, a drug can have several classes and in different classi-
fication systems. Since we have to determine a unique label for each
active ingredient, we use the majority label approach described in
[41] to determine a unique label for each drug. For diseases, we
use the same approach, but here we rely on MeSH-Trees only to
determine the labels.

Table 3: Example classes in different classification systems
for the drug ‘Aspirin’

Classification System Assigned Classes

ATC N02BA01, B01AC06, C10BX05
AHFS 28:08:04:24
MeSH Trees D02.455.426.559.389.657.410.595.176

4.2.3 Experiment implementation and parameter settings. In the
following, we describe the steps we perform for our evaluation:

(1) Historical Corpus Generation: One of our core steps in this
paper is to create semantically coherent-entity clusters us-
ing co-clustering, and to annotate them using our proposed
claim-based characterization. To investigate whether such a
forecast makes sense at all, we use a retrospective analysis
(Section 4.3). For this purpose, we generate a historical cor-
pus from our corpus (period 1900-01-01 to 2018-01-01) for
the period 1900-01-01 to 1998-01-01. This corpus is the basis
for the following retrospective investigations.

(2) Query Candidate Generation: For each drug-disease query,
we determine in the historical corpus the number of docu-
ments (abstracts) in which the pair occurs together. If the
number of documents is too small, clustering makes less
sense. Therefore, we determine all pairs which occur in at
least 200 publications together. We use this procedure to
determine a total of 214 query candidates.

(3) Clustering:We cluster the query candidates documents deter-
mined in the last step using the co-clustering approach. For
comparison, we also cluster the documents with K-Means.
We determine the optimal number of clusters per query can-
didate using the cluster silhouette, which is calculated by a
distance-based coherence.

(4) Entity Pair Generation: Next, we extract all active ingredients
and diseases from each cluster and generate all possible
combinations between an active ingredient and a disease.

https://www.whocc.no/atc_ddd_index/
https://www.nlm.nih.gov/mesh/intro_trees.html
http://www.ahfsdruginformation.com/ahfs-pharmacologic-therapeutic-classification/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
https://www.drugbank.ca/
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Table 4: Comparison between Co-clustering and K-Means

Clustering Approach Precisin Recal F1-Score

Co-Clustering 0.37 0.62 0.46
K-Means 0.54 0.14 0.23

(5) Entity Label Identification: Finally, we determine a unique
label for each active ingredient and disease. To determine a
meaningful label, we use the approach described in [41].

To continue with our experimental evaluation, we first have
to determine what quality criteria an entity-centric clustering ap-
proach should meet for dynamically creating coherent semantic
clusters. Thus, the following criterion should be fulfilled:

Semantic Cluster Coherence. Elements of a cluster such as drugs
and diseases that belong respectively to the same class should
also be grouped in the same cluster. From a user perspective, this
facilitates the thematic interpretation of the individual clusters as
well as the semantic differentiation from other clusters. Moreover,
this semantic differentiation is simplified if there is a moderate
and thus manageable number of clusters. The semantic cluster
coherence can be evaluated using the F1 score.

4.2.4 Experimental Evaluation. In our evaluation, we compare the
results of a co-clustering with the results achieved with K-Means.
For comparison, we calculate the clusters Precision, Recall and F1-
Score with the approach described in [27]. Here, we calculated the
F1 score based on the AVG precision and the AVG recall. The results
are presented in Table 4.

We can observe that co-clustering leads to generally better re-
sults regarding F1 score. Therefore, co-clustering leads to more
semantically coherent clusters compared to K-Means.

K-Means has a low recall, suggesting that entities with the same
class are more likely to be distributed across many clusters. This
means that the semantic differences between clusters will be more
difficult to distinguish. On the other hand, K-Means has a higher
AVG precision. This may be due to that K-Means leads to many
clusters with smaller sizes. Therefore, the next step was to analyze
the number of clusters. Figure 3 shows the comparison between
the numbers of clusters for the two clustering approaches. On
average, co-clustering leads to 3.5 clusters, while K-Means leads to
10 clusters.

Are the two sets of cluster sizes significantly different? We tested
this with a Welch two sample t-test at a confidence interval of 99%.
With a p-value < 2.2e-16 we are below the threshold of 0.05 and
therefore the two sets are significantly different.

In conclusion, we can say that co-clustering not only leads to a
semantically more coherent grouping of pharmaceutical entities
but also that the average number of clusters is moderate. There-
fore, from a user perspective, a co-clustering is more accessible to
interpretation in comparison to K-Means.

4.3 Retrospective Analysis
In this section, we evaluate the merits of our proposed characteri-
zation of the clusters. In particular, the clusters computed using the
Co-clustering algorithm because of the findings that we reported

Figure 3: Cluster size comparison between Co-Clustering
and K-Means where the rhombus represents the mean

in the previous section. Thus, for each cluster of each query, we
annotate the semantic orientation of each claim using our deep
learning tailored model that we have already discussed in Section
4.1. Afterward, we compute the following attributes per each clus-
ter: 1) contradiction: the number of contradictions that we can find.
We count as a contradiction the presence of a semantic orienta-
tion of claims such as ‘treats’ and ‘neg-treats’ in the same cluster;
2) diversity: here we compute the different number of semantic
orientations of the claims that we can find per cluster.

Because our proposed characterization aims at providing an
overview that helps users to formulate, discover or put into context
scientific claims that may need more research efforts, we decided
to evaluate our characterization using retrospective analysis.

The idea behind is to apply our overall approach and character-
ize the clusters as we described before using information of 1998
and then, predict the number of papers in 2008 and 2018. To do so,
we query PubMed using the entity pairs of each claim found per
cluster and count the number of papers in 2008 and 2018. Thus, we
introduce here a classification task aiming at predicting if a given
cluster in 1998 with its corresponding contradiction and diversity
attributes will lead to some papers beyond what might be expected,
e.g., higher than the overall mean. In Table 5 we show the statistics
of the data we use to evaluate our proposed characterization. In the
table, ‘Significant’ means the number of clusters whose characteri-
zation corresponds to some papers greater than the mean for the
corresponding year. ‘Nonsignificant’ are those clusters less than or
equal to the mean. ‘Data_2008’ refers to the dataset that considers
up to 2008 as the ground truth of the number of papers. Similarly,
‘Data_2018’ corresponds to the counting of papers up to 2018.

Given the statistics of the dataset, we will report weighted F1 to
measure the performance of the prediction task. We used a Support
Vector Machine (SVM) [3] to evaluate the merits of our proposed
characterization of clusters.

Preprocessing. As a preprocessing step, we standardized our three
attributes by removing the mean and scaling to unit variance. This
preprocessing step is particularly crucial for SVMs because if an
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Table 5: Summary of the Datasets Used to Evaluate the Char-
acterization of the Clusters

Dataset Significant Nonsignificant

Data_2008 135 416
Data_2018 132 419

Table 6: Summary ofmodels performance usingweighted F1
score to evaluate the Characterization of the Clusters

Model Data_2008 Data_2018

SVM+Contradictions 0.83 0.81
SVM+DiffSemantics 0.81 0.79

attribute has a variance several orders of magnitude larger than
others, the algorithm will not learn from the other attributes cor-
rectly because the attribute with larger variance will dominate the
objective function.

Models. We trained four SVM models using the Sckit-Learn ma-
chine learning library in Python. We refer to the models as follows:
‘SVM+DiffSemantics’ is a model using an SVM that used the differ-
ent semantic orientations of the claims. The other model named
‘SVM+Contradictions’ is an SVM trained considering the number
of contradictions found by our algorithm. Notice also that both
models used as a control variable the ‘size’ of the clusters in 1998.

All the models were trained using a random stratified sample of
the data (60%), leaving the rest for evaluation. We show in Table 6
the results of each model for the two datasets.

Discussion of the results. To put our findings into the right con-
text, please notice that a model that in addition to ‘size’ of a cluster
in 1998 uses our proposed characterization gets a 5% gain improve-
ment in weighted F1 score in 2008 and a 3% gain in 2018. We can
observe that there are small differences in performance between
the models in both datasets. Considering that we only used doc-
uments in 1998 to automatically generate our ‘controversy’ and
‘diversity’ features, the results indeed already look very promising.
In particular, this is because our claim-based characterization can
provide the semantics behind the significant increase of papers
for some claims. We can also see for instance that the best model
only uses the ‘controversy’ attribute. It seems to fit the idea that
the more controversy exhibited in the clusters, the more likely it
is that more papers will further investigate these issues. Our find-
ing complements the idea introduced [25]: researchers argued that
the existence of speculative claims could form the basis of new
hypotheses. We can push this idea further and say that in addition
to speculation, controversy is a factor that can help to characterize
clusters and ease hypothesis generation to the interested user. Fi-
nally, as expected, we can also observe that both models obtained
slightly less F1 score in 2018. This means that the more we look
into the future, the less prediction power we can obtain.

5 CONCLUSIONS AND FUTUREWORK
We introduced a novel characterization of the results sets of a query
using a key aspect of scientific papers: claims. Claims are natural
language sentences in a scientific paper that expresses a relation-
ship between two entities. In particular, how one of them affects,
manipulates, or causes the other entity. When mining clusters with
respect to the relationships expressed in the respective claims, our
approach leveraged co-clustering technology to characterize the
clusters by two fundamental properties: contradiction and diversity
of scientific claims.

We tested our claim-based characterization in an extensive ret-
rospective analysis using more than 200 queries on a corpus build
from biomedical literature in PubMed. To quantitatively evaluate
the benefits of our approach, we validated it in the challenging, yet
meaningful task of predicting cases where a significant increase of
publications will appear in two different moments: 10 and 20 years
after our characterization. Our findings support the potential of our
approach to providing an innovative service that can help users in
the difficult task of finding claims in need of further investigation.
We achieved 80% of F1 score with our proposed attributes showing
the potential of our claim-based characterization of the clusters.

As possible directions of future work, we intend to improve
our modeling of ‘controversy’; we only scratched the surface of
‘controversy’ using direct negations of the semantic orientation.
However, certain contextual conditions could also imply contro-
versy, for instance ‘causes’ and ‘alleviates’ when linking drug and
diseases could also be considered controversial in specific contexts,
and our experts can help us to make such assertions.

Finally, our work provides an example for information providers
in need of new intelligent services aiming at empowering users to
take advantage of the richness of knowledge within our collections.
Indeed, as our collections grow, one can argue that there is more
gold than ever as well as precious gems within the manuscripts,
but we owed to our users to provide them with intelligent services
to solve complex information needs such as hypothesis generation.
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