Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke
Christoph Lofi
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
3. Models

3.1 Logical Models
3.2 Deductive Systems
3.3 Horn Clauses
3.0 Summary of Last Lecture

- Short summary from last lecture
 - **Language** $\mathcal{L} = (\Gamma, \Omega, \Pi, \chi)$
 - Γ constant symbols
 - Ω function symbols
 - Π predicate symbols
 - χ variable symbols
 - Languages are **only syntax** and have absolutely no meaning.
 - Further building blocks of languages are **terms**
 - Will be interpreted as an entity of the universe of discourse
 - Predicates may be combined with terms into **formulas**
 - Formulas may be **quantified** or **concatenated** with connectives
Interpretation $I = (U, I_C, I_F, I_P)$

- U: universe of discourse
- I_C: constant symbol mapping
- I_F: functional symbol mapping
- I_P: predicate symbol mapping

Interpretations are needed to evaluate and interpret the individual components of a language.

Furthermore, we need variable assignment ρ

- Variable assignments may change very frequently within a single application session.
3.0 Summary of Last Lecture

• Again: What’s the trick with interpretations?
 – Consider $W \equiv \forall x \ (p(x, b, a) \rightarrow q(a, x))$
 • True or false? The interpretation determines!
 – Interpretation 1:
 • $I_C : \Gamma \rightarrow U, \ \{a \mapsto \text{Argo the Cat}, \ b \mapsto \text{Food}\}$
 • $I_P (p) := \{(m, n, o) \in U^3 \mid \text{“m gives n to o”} \} \subseteq U \times U \times U$
 • $I_P (q) := \{(m, n) \in U^2 \mid \text{“m loves n”} \} \subseteq U \times U$
 • “Argo the Cat loves everybody who gives him food” is true
 – Interpretation 2:
 • $I_C : \Gamma \rightarrow U, \ \{a \mapsto 10, \ b \mapsto 5\}$
 • $I_P (p) := \{(m, n, o) \in U^3 \mid m+n>o \} \subseteq U \times U \times U$
 • $I_P (q) := \{(m, n) \in U^2 \mid m<n \} \subseteq U \times U$
 • “$\forall x ((x+5> 10) \rightarrow (10< x))$” is obviously not true
Exercise 2.1

• Design a first order **language** for simple arithmetic’s on natural numbers. One should be able to **add** numbers, **subtract** numbers, **multiply** number, decide if a number is **equal** another number, and if a number is **greater** than another number.

 • $\Gamma := \{0, 1, 2, 3, \ldots\}$
 • $\Omega := \{+,-,\ast\}$
 • $\Pi := \{<,=\}$
 • $X := \{x,y,z\}$
Exercise 2.2

• Provide an interpretation

- \(\mathcal{L} = (\Gamma, \Omega, \Pi, X) \)
 - \(\Gamma := \{0, 1, 2, 3, \ldots\} \), \(\Omega := \{+, -, *\} \),
 - \(\Pi := \{<, =\} \), \(X := \{x, y, z\} \)

- \(I = (U, I_C, I_F, I_P) \)
 - \(U := \mathbb{N} \)
 - \(I_C : \Gamma \rightarrow U, \{0\mapsto0, 1\mapsto1, 2\mapsto2, 3\mapsto3, \ldots\} \)
 - \(I_F (+) : U \times U \rightarrow U, (n, m) \mapsto n + m \)
 - \(I_F (*) : U \times U \rightarrow U, (n, m) \mapsto n \times m \)
 - \(I_F (-) : U \times U \rightarrow U, (n, m) \mapsto n - m \)
 - \(I_P (<) := \{(n, m) \in U^2 \mid n < m\} \subseteq U \times U \)
 - \(I_P (=) := \{(n, m) \in U^2 \mid n = m\} \subseteq U \times U \)
Exercise 2.3

• We use infix notation in the following:
 – 5 is greater than 2: 5 > 2 (prefix: > (5, 2))
 – If x is greater than 0, then also x*y is greater than 0: x > 0 → x*y > 0
 – x is either greater than y, or x is equal to y, or x is smaller than y:
 x > y ∨ x = y ∨ y > x
 – The sum of any two numbers is always smaller than the product of the same two numbers
 ∀ x, y (x*y > x + y)
• Which statements are true? Provide an example substitution.

– \(5 > 2 \): true
– \(x > 0 \rightarrow x \cdot y > 0 \): Possibly true; \(\rho(y) = 1 \ \rho(x) = 1 \)
– \(x > y \lor x = y \lor y > x \): true
– \(\forall x, y \ (x \cdot y > x + y) \): not true; \(\rho(y) = 1 \ \rho(x) = 1 \)
Which are formulas?

- \(\Gamma := \{a, b\} \), \(\Omega := \{f(x), g(x, y)\} \), \(\Pi := \{P, Q(x, y), R(x)\} \), \(X := \{x, y\} \)
- \(f(g(x, y)) \): no formula (it’s a term)
- \(P \): formula
- \(Q(x, y) \lor Q(a, b) \): formula
- \(Q(g(f(a), x), f(y)) \): formula
- \(\forall a (R(a)) \): no formula (\(a \) is constant)
- \(\exists x (f(x)) \): no formula (\(f(x) \) is no formula)
- \(R(x) \rightarrow \neg R(x) \): formula
- \(\neg R(\neg R(f(x))) \): no formula (predicate in predicate does not work)
3.1 Roadmap

• **Roadmap** for the immediate future…
 – Why do we need to bother with languages, interpretations, and formulae?

• Logic forms the **basic building blocks** of a knowledge base, because…
 – A knowledge base should be **storage efficient**
 – A knowledge base should be **easily extensible**

• **Deductive databases** implement these ideas
3.1 Example

• Consider an example: store a family tree
 – Important for finding genetic predispositions
 – E.g., Disease X is a risk, if two certain gene variants Q_1 and Q_2 are inherited from your parents
 – **Needed:** children names, all parent’s names, and the known possession of the specific gene variants
 • These are basic facts that cannot be derived from anything else
3.1 Example

– Store it in a relational database
 • Store the parents and their known genetic risk factors for all persons in a database
 • Is John at risk? Can we write some SQL query?

<table>
<thead>
<tr>
<th>Disease X</th>
<th>Name</th>
<th>Parent</th>
<th>Q₁</th>
<th>Q₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John</td>
<td>Mary</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Thomas</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>Mary</td>
<td>Peter</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>Mary</td>
<td>Karen</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Thomas</td>
<td>George</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Thomas</td>
<td>Sonja</td>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>
Query for parents with predisposition

- (SELECT name FROM DiseaseX WHERE Q_1='Yes') INTERSECT (SELECT name FROM DiseaseX WHERE Q_2='Yes')

- But what if John could inherit from all ancestors?
Obviously this needs an extension of our model…

– Well, storing \((\text{Name}, \text{Ancestor}, Q_1, Q_2)\) would do the trick

• But this is not merely an extension, but would need a change of the database schema…

• And the actual extension needs to change the database content (who are ancestors?)

• And needs a lot more storage space…

• And opens the door for possible inconsistencies…
3.1 Relational vs. Deductive

• Relational databases may **not** be the prime choice for our problem set

 – Two kinds of knowledge
 • Static knowledge as given by tables
 • Derived knowledge as given by view mechanism

 – Queries in a **declarative** query language

 – Formal semantics is **relational algebra**

 – Class of completeness: **relational complete**
 • Especially: there is a problem with **recursive** views
We know rules to derive further knowledge from the basic knowledge about parentage

- **Deduction rules**
 - **Persons** have a name, a parent, and genetic predispositions
 - All parents of **Persons** are **Ancestors**.
 - All parents of **Ancestors** are **Ancestors**.
 - For all **Persons** there is a **Risk**, if some **Ancestor** has Q_1 and some **Ancestor** has Q_2

- These are **formulae** over the **predicates** Person, Ancestor and Risk
- Formulae represent **relationships** between real world objects
3.1 Relational vs. Deductive

• Predicates + formulae are the **database schema**

• Deductive databases consist of two major parts

 – **The extensional** database (EDB)
 • Fact collection as a (non-redundant) set of basic knowledge (facts, axioms)
 • The instance of data determines what further facts can be derived

 – **The intensional** database (IDB)
 • Rule collection as a (non-redundant) set of ways to derive new knowledge
 • The instance of rules determines how further facts can be derived
3.1 Models

• A valid question is which **interpretation** and **variable substitution** make a formula true?
 – Well, there are **unlimited** possible interpretations and variable substitutions
 • Should we try them all?
 • Does the computation ever end?
 – To make it easier: if the formula is **closed**, we can abstract from the specific variable substitution, only the interpretation matters
3.1 Models

• An interpretation \(I \) is called a model of a closed formula \(W \), if it evaluates to true with respect to \(I \)
 – Analogously, an interpretation \(I \) is called a model of a set of closed formulas \(\mathcal{W} \), if \(I \) is a model of all \(W \in \mathcal{W} \)

• Example
 – \(W \equiv \forall x \exists y \ (P(x, y)) \)
 • Let \(I \) be an interpretation which maps \(P \) to \(<\) on \(\mathbb{N} \)
 Then \(I \) is a model of \(W \): \(W \) is also called a fact with respect to \(I \)
 – \(W \equiv \exists x \forall y \ (P(x, y)) \)
 • Let \(I \) be then same interpretation mapping \(P \) to \(<\) on \(\mathbb{N} \)
 Then \(I \) is not a model of \(W \)
3.1 Models

• Now an interesting question arises for the evaluation of a set of closed formulas \mathcal{W}

 – Given a set of formulas, does it have a model?
 • \mathcal{W} is called **satisfiable** (or consistent, contradiction-free), iff \mathcal{W} has a model
 • \mathcal{W} is called **unsatisfiable** (or inconsistent, contradictive), iff \mathcal{W} does not have any model

 – We can immediately **stop the evaluation** of any unsatisfiable set
3.1 Models

• What is the connection between satisfiability of a set of formulae and inference?
 – Remember Aristotle’s principle of the indirect proof (reductio ad absurdum)
 • We want to prove (infer) a statement W using a set of propositions $𝓦$
 • If we assume that $(¬W)$ holds and show a contradiction to some statement in $𝓦$, the proof is complete
 • That means $𝓦 \cup \{¬W\}$ is unsatisfiable
3.1 Semantic Equivalence

- Remember: we want to define concepts over basic fact data
- Natural question: do two concepts describe the same idea?
 - Two closed formulas W_1 and W_2 are semantically equivalent, iff $I(W_1) = I(W_2)$ for all I
 - It does not matter what interpretation we use, the evaluation of the two formulas is always the same
3.1 Semantic Conclusions

- Another natural question: can a certain fact be deduced from some given fact set?
 - A formula W is a semantic conclusion of a set of formulas \mathcal{W}, iff every model of \mathcal{W} is also a model of W
 - \mathcal{W} may contain additional or broader concepts, but every interpretation that makes \mathcal{W} true, also makes the ‘smaller’ concept of W true
 - This is denoted by $\mathcal{W} \models W$ (W follows from \mathcal{W})
Both questions are important for retrieval efficiency

- We aim at creating a deductive system which starts with a small set of facts to avoid inconsistencies
 - All derived knowledge will be generated at query time
- But we also want to describe all necessary concepts with a small set of rules to speed up response time
 - All rules need to be evaluated, redundant rules waste time
3.1 Test for Unsatisfiability

• Lemma:
 – If it can be deduced from \mathcal{W} that the opposite of W follows ($\mathcal{W} \models \neg W$), then $\mathcal{W} \cup \{W\}$ is unsatisfiable (and vice-versa)

• Thus, **unsatisfiability** of a set of closed formulas \mathcal{W} can be proven by finding a single formula W from the set such that it’s opposite follows from the remaining formulas
 – Test them all?! Seems a rather theoretical result…
3.1 Tautologies

• Finally there even are formulas for which every interpretation is a model
 – \mathcal{W} is called universal, iff every interpretation is a model of \mathcal{W} (denoted by $\models \mathcal{W}$)
 – \mathcal{W} then is a referred to as tautology
Now, what are tautologies?

- Tautologies are **always true**, whatever interpretation is used
 - Thus, they are true independently of their actual **content**
- The **set of all tautologies** is thus very interesting, as it contains all universal statements
 - Those are also true for any specific, given interpretation and may thus form a great tool for reasoning

Example for tautologies

- \(W \lor \neg W \)
- \(W_1 \land W_2 \rightarrow W_1 \)
- \((W_1 \rightarrow W_2) \land (W_2 \rightarrow W_3) \rightarrow (W_1 \rightarrow W_3) \)
- “To be or not to be”
3.1 Tautologies

- Tautologies can be used to derive semantic equivalences which can be used as transformation rules
 - Proof by truth diagram...
 - $A \equiv \neg \neg A$
 - $A \land B \equiv B \land A$
 - $A \lor B \equiv B \lor A$
 - $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
3.1 Tautologies

\(- \neg(A \land B) \equiv (\neg A) \lor (\neg B)\)

• \(-\neg(A \lor B) \equiv (\neg A) \land (\neg B)\)

\(- A \rightarrow B \equiv (\neg A) \lor B\)

• \(A \land B \equiv \neg (A \rightarrow (\neg B))\)

• \(A \lor B \equiv (\neg A) \rightarrow B\)

\(- A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)\)

\(- \forall x (P(x)) \equiv \neg \exists x (\neg P(x))\)

• \(\exists x (P(x)) \equiv \neg \forall x (\neg P(x))\)
• Is there a way to find the set of all tautologies?
 – Thus, finding all universal truth?
 – Also, this can be used to prove if a statement is universally true.

• There are two (equivalent) approaches
 – Model-theoretical: Is a formula true in all possible worlds, i.e. is any interpretation a model?
 • We did that before and will continue after the detour
 – Proof-theoretical: Can the truthfulness of a formula be proven by some rules and axioms?
3.2 Deduction Systems

• In this detour, we will focus on the second approach in form of **proof systems** and **deductive systems**

 – Made popular by **David Hilbert** during his efforts to formalize all math

 – Is a “mechanical” system for proving and generating of universally true statements from axioms and rules
3.2 Deduction Systems

• Who is David Hilbert?
 – Probably one of the most influential mathematicians of the early 20th century
 – Significant pioneer work in proof theory, logics, meta-mathematics
 • Main interest: Stronger focus on formalization, understandability and provability
 – Born 1862 in Königsberg, in 1895 became chair of the Math Department in Göttingen
 – Around 1910, Hilbert moved to theoretical physics
 • ... and brought them the joy of logics and formalism
• **Göttingen** was the most renowned University for Mathematics at that time

 – Brought to fame by Carl Friedrich **Gauss** and Bernhard **Riemann**

 – Most fundamental work in modern math was performed there

 – Just some people around in Hilbert’s later years: Emmy Noether, Alonzo Church, John von Neumann, Wilhelm Ackermann, …

 – Unfortunately, in 1933 most of the department fell victim to a Nazi swipe
The Hilbert Program

- Started by Hilbert around 1920
- Idea:
 - Formalize all existing theories to finite, complete set of axioms
 - Proof that these axioms are consistent
- Goals
 - Preciseness: Use precisely defined formalisms and mechanisms
 - Completeness: Show that all math can be proved by the system
 - Consistency: No contradictions will show up in the system
 - Decidability: For every statement, an algorithm can decide if it is true or not
- But we remember: The Gödel incompleteness theorem made the Hilbert program impossible in this form in 1933
 - Slight changes to the mission statement lead it to success.
 - Tools still remain
3.2 Deduction Systems

- So, now we also want to create a **deductive system in Hilbert style**
- First, we need some theorems:
- **Deduction theorem**
 - $\mathcal{W} \cup \{W_1\} \vdash W_2$ holds if and only if $\mathcal{W} \vdash W_1 \rightarrow W_2$
 - W_2 follows from W_1 and \mathcal{W} iff $W_1 \rightarrow W_2$ follows from \mathcal{W}
 - The deduction theorem is considered a "**fundamental**" meta-rule which is true in each deductive theorem, but is not a theorem within the system itself
3.2 Deduction Systems

• Modus Ponens
 – Already introduced by Aristotle
 – “mode that affirms by affirming”
 – \(\{W_1, W_1 \rightarrow W_2 \} \vdash W_2 \)
 – If \(W_2 \) follows from \(W_1 \) and \(W_1 \) is true, also \(W_2 \) is true
 – Example:
 • Rule: “If it is Tuesday, then there is a KBS lecture.”
 • Fact: “Today is Tuesday.”
 • Derived fact: “Thus, today is a KBS lecture.”
One can prove that Modus Ponens is universally sound – i.e. it never generates incorrect knowledge.

In contrast consider the popular abduction inference rule

\[\{W_1 \rightarrow W_2, W_2\} \vdash W_1 \]

Abduction often useful, but not sound

Example

- Rule: “If it has rained, the street is wet.”
- Fact: “The street is wet.”
- Derived fact: “Thus, it has rained”

Example

- Fact: “A patient has red dots in the face and high fever…”
3.2 Deduction Systems

• An Hilbert-Style deductive system for a language \mathcal{L} consist of

 – A set of formulas of \mathcal{L} called **logical axioms**
 • All other statements can be followed from the axioms
 • It cannot be proved within the system if they are true or not, they are just “given”
 • If you want to prove or deduce only tautologies, also your axioms need to be tautologies
 • Hilbert system use extreme numbers of axioms, thus they are also called **axiomatic systems**

 – A set of **inference rules**
 • Rules transform one statement into a new one
• **Example: deductive system**
 – **Axioms:** axioms are all well-formed formulae of \mathcal{L} which are instances of one of the following *schemas*
 • A1: $A \rightarrow (B \rightarrow A)$
 • A2: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 • A3: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$
 • Thus, all axioms are *tautologies*
 – This system can be extended with additional axioms types to also cater for predicates and quantifiers
 – Thus, there are an *unlimited* number of axioms
 • Frog(Hector)→(Lake(Hector)→Frog(Hector)) (Type A1)
 • $\neg A \rightarrow (\neg \neg A \rightarrow \neg A)$ (also Type A1)
3.2 Deduction Systems

– As the only rule, we use modus ponens
 • \(\{A, A \rightarrow B\} \models B\)

– Modus ponens is usually enough for all axiomatic deductive systems
 • It can be shown that additional rules do not provide additional expressiveness
 • …but may be used for convenience
3.2 Deduction Systems

- The axioms and rules contain only formulas using \rightarrow and \neg
 - But by using the equivalence rules, all other formulas with \land, \lor, or \leftrightarrow can be \textit{transformed} to only use \rightarrow
 - $A \land B \equiv \neg (A \rightarrow (\neg B))$
 - $A \lor B \equiv (\neg A) \rightarrow B$
 - $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$
• Are those axioms really **tautologies**?

– **A1**: \(A \rightarrow (B \rightarrow A) \)

\[
\begin{array}{cccc}
A & B & B \rightarrow A & A \rightarrow (B \rightarrow A) \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

– **A3**: \((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \)

\[
\begin{array}{ccccc}
A & B & \neg A \rightarrow \neg B & B \rightarrow A & A3 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
Deductive systems now generate **proofs**

- If you want to prove that a statement \(A \) is satisfiable or a tautology, you construct a prove which ends with statement \(A \)

A proof from a set \(\mathcal{W} \) to \(A \) in a deductive system is a finite sequence \(W_1, \ldots, W_n \) of formulas of \(\mathcal{L} \) such that \(W_i \) is either an **axiom**, is in \(\mathcal{W} \), or follows from one of the previous \(B_j \) by the **inference rules**

- \(\mathcal{W} \) is the set of **hypothesis** from which \(A \) follows
3.2 Deduction Systems

• Example Proof:

 – Is \(\neg B \rightarrow (B \rightarrow A) \) a tautology?
 • i.e. \(\vdash \neg B \rightarrow (B \rightarrow A) \) ?

 – By using the deduction theorem, we get
 • \(\neg B \vdash (B \rightarrow A) \)

 – \(W_1 \equiv \neg B \) (Hypothesis)
 – \(W_2 \equiv \neg B \rightarrow (\neg A \rightarrow \neg B) \) (Axiom 1)
 – \(W_3 \equiv \neg A \rightarrow \neg B \) (MP of \(W_1 \) and \(W_2 \))
 – \(W_4 \equiv (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \) (Axiom 3)
 – \(W_5 \equiv B \rightarrow A \) (MP of \(W_3 \) and \(W_4 \))
3.2 Deduction Systems

• Fun Proof:

- \(-\neg\neg A \models A\) ?
- \(W_1 \equiv \neg\neg A\) (Hypothesis)
- \(W_2 \equiv \neg\neg A \rightarrow (\neg\neg\neg A \rightarrow \neg\neg A)\) (Axiom I)
- \(W_3 \equiv \neg\neg A \rightarrow \neg\neg A\) (MP \(W_1 \& W_2\))
- \(W_4 \equiv (\neg\neg\neg A \rightarrow \neg\neg A) \rightarrow (\neg A \rightarrow \neg\neg\neg A)\) (Axiom 3)
- \(W_5 \equiv \neg A \rightarrow \neg\neg\neg A\) (MP \(W_3 \& W_4\))
- \(W_6 \equiv (\neg A \rightarrow \neg\neg\neg A) \rightarrow (\neg\neg A \rightarrow A)\) (Axiom 3)
- \(W_7 \equiv \neg\neg A \rightarrow A\) (MP \(W_5 \& W_6\))
- \(W_8 \equiv A\) (MP \(W_1 \& W_7\))
• Hilbert-style deduction has several drawbacks

 – Few rules, but many axioms
 • This is quite the opposite of what we want in a deductive database (e.g. the system of this detour has a unlimited, enumerable number of axioms…)

 – Finding a proof is very tricky
 • It’s hard to see when which axioms are needed to complete the proof
 • Thus, often we just end up doing trial & error
 – This is not what we want to a database

 – Feels unnatural
 • Many people felt that this kind of deduction is very unnatural and does not resemble the way how a mathematician would perform a proof
Better Idea: **Natural Deduction**

– **Use more rules, but a limited set of axioms**

– Most famous natural deduction calculus introduced by the Göttinger mathematician **Gerhard Gentzen**

 * **Gentzen Sequence Calculus**, developed in 1938
 * "Ich wollte zunächst einmal einen Formalismus aufstellen, der dem wirklichen Schließen möglichst nahe kommt. So ergab sich ein 'Kalkül des natürlichen Schließens'"

– These calculi have, in modified from, later been adapted by deductive databases
3.2 Deduction Systems

• Wonderful example for Gentzen Calculus goes here

• If you can see this slide, please re-download in a couple of days and hope that the content has been provided.
3.3 Test for Unsatisfiability

• Back to our topic…
 – A user starts extending concepts for his intensional database \mathcal{W} formula by formula (i.e. closed formulae!)
 – For each new formula W we need to test whether $(\mathcal{W} \cup \{W\})$ is unsatisfiable
 • Using our lemma, this can be done by showing that the formula $\neg W$ already follows from the set of formulas \mathcal{W}
 • Which means that every model of \mathcal{W} is also a model of $\neg W$
 • Which means that all possible interpretations have to be tested..?!
 • We are back into the model-theoretical world
3.3 Test for Unsatisfiability

• Obviously there is an \textit{unlimited number} of possible interpretations…

• Idea: use interpretations that are \textit{representative} for the \textit{entire class} of all interpretations!
 – Are there such interpretations?
 – For what type of closed formulae?
 – For \textit{clauses} (certain type of closed formulae) the \textit{Herbrand interpretations} are representative
3.3 Clauses

• Basically **clauses** consist of **literals**

 – The set of **literals** L_L consists of all atomic formulae $A \in A_L$ and the respective negated atomic formulae $\neg A$

 • The atomic formulae are called **positive literals**

 • The negated atomic formulae are called **negative literals**

 • If some atomic formula does not contain variables, it is called a **ground literal**

 – e.g.:

 • $A, \neg A, \text{Frog}(\text{Hector}), \neg \text{Frog}(\text{Hector}), \text{isGreen}(x), \neg \text{isGreen}(x), \ldots$
3.3 Clauses

• A **clause** is the universal closure of a **disjunction** of literals

 \[\forall (L_1 \lor L_2 \lor \ldots \lor L_n), \quad L_i \in L_L \]

• A **Horn clause** is a clause that only contains at most a **single positive literal**

 \[\text{e.g. } \forall (\neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_{n-1} \lor A_n), \quad A_i \in A_L \]

 – Horn clauses without a positive literal are called **goal clauses**

 – Horn clauses with exactly one positive literal are called **definite clauses**

 – Horn clauses with one positive but no negative literals are called **fact clauses**
• So, what is special about horn clauses?
 – Remember the transformation rule for semantic equivalence: $(\neg A) \lor B \equiv A \rightarrow B$
 • Thus, definite Horn clauses actually represent an implication
 • $\neg A_1 \lor \neg A_2 \lor \ldots \lor \neg A_{n-1} \lor A_n \equiv (A_1 \land A_2 \land \ldots \land A_{n-1}) \rightarrow A_n$
• Back to the topic: Define a **representative interpretation** which can replace any other
 – So called **Herbrand Interpretation**

• The **Herbrand interpretation** of an language \mathcal{L} is based on
 – **Herbrand Universe** $\mathcal{U}_\mathcal{L}$, consisting of all ground terms
 – **Herbrand Base** $\mathcal{B}_\mathcal{L}$, consisting of all ground atoms
3.3 The Herbrand Universe

• How to construct the **Herbrand base** \(B_\mathcal{L} \)?
 – Take all the terms of the Herbrand universe and apply the predicates of the language \(\mathcal{L} \) to them
 – For each predicate symbol there is a (usually infinite) number of terms that can be used as argument
 • For every \(P \in \Pi \) as a \(n \)-ary predicate symbol all combinations of \(n \) terms \(t_i \) from the universe \(U_\mathcal{L} \) are used
 • \(P(t_1, ..., t_n) \subseteq B_\mathcal{L} \) with \(t_i \in U_\mathcal{L} \)
Example

- Given is the language \mathcal{L}
 - $\Gamma := \{a, b\}$, $\Omega := \{f, g\}$, $\Pi := \{P\}$, $\mathcal{X} := \{\}$
- The **Herbrand universe** thus is
 - $U_{\mathcal{L}} = \{a, f(a), g(a), f(f(a)), f(g(a)), \ldots\} \cup \{b, f(b), g(b), f(f(b)), f(g(b)), \ldots\}$
 - All **terms** which can be generated by using the function and constant symbols
- The **Herbrand base** is
 - $B_{\mathcal{L}} = \{P(a), P(f(a)), P(g(a)), P(f(f(a))), P(f(g(a))), \ldots\} \cup \{P(b), P(f(b)), P(g(b)), P(f(f(b))), P(f(g(b))), \ldots\}$
 - All **ground atoms** which can be generated using the universe
 - i.e. no variables allowed here
3.3 The Herbrand Universe

- Given a language \mathcal{L} which allows following statements and $\Gamma := \{\text{Hector, green}\}$, $\Omega := \{\text{hasColor}\}$, $\Pi := \{\text{Frog, equals}\}$

 - $W \equiv \forall x \ (\text{Frog}(x) \rightarrow \text{equals(hasColor}(x), \text{green}))$

 - $U_\mathcal{L} = \{\text{Hector, hasColor(Hector)}, \text{hasColor(hasColor(Hector))}, \ldots\} \cup \{\text{green, hasColor(green), hasColor(hasColor(green))}, \ldots\}$

 - $B_\mathcal{L} = \{\text{Frog(Hector), Frog(hasColor(Hector))}, \ldots\} \cup \{\text{Frog(green), Frog(hasColor(green))}, \ldots\} \cup \{\text{equals(Hector, green), equals(hasColor(Hector), green)}, \ldots\}$
Finally, an **Herbrand interpretation** $I=(U, I_C, I_F, I_P)$ is given by

- $U = U_\mathcal{L}$
 - The Herbrand universe is used as universe
- $I_C(c) := c$
 - Thus, any constant symbol $c \in \Gamma$ is interpreted by itself
- $I_F(f): U_\mathcal{L} \times \ldots \times U_\mathcal{L} \to U_\mathcal{L}$, $f(t_1,\ldots,t_n) \mapsto f(t_1,\ldots,t_n)$
 - Any functional symbol $f \in \Omega$ is interpreted by itself
- Each language entity is mapped to an equivalent universe symbol
 - Thus, we create a completely **symbolic interpretation** without a specific real-world semantics
• Example:
 – An Herbrand Interpretation evaluates the term $f(g(a))$ to $f(g(a)) \in U_\mathcal{L}$
 – Given a substitution $\rho(x) = g(f(b))$, the term $f(x)$ evaluates to $f(g(f(b))) \in U_\mathcal{L}$

 – Keep in mind that the term $f(g(a))$ and the universe element $f(g(a))$ are not the same although they look the same!
 • One actually means something, the other is just a symbol
3.3 The Herbrand Universe

• U, I_C, and I_F are the same for all Herbrand interpretations

• Herbrand interpretations only differ with respect to the predicate interpretation I_P

 – For two different Herbrand interpretations, $P(a)$ might be true in one and false in another

 – Thus, Herbrand interpretation can be defined by listing all atoms from the base which evaluate to true

• A Herbrand interpretation can identified with a subset of the Herbrand base and vice versa

• e.g. Herbrand Interpretation $I_1 = \{P(a), P(f(a))\}$, Herbrand Interpretation $I_2 = \{P(g(a)), P(g(b))\}$
3.3 The Herbrand Universe

• A Herbrand Model of a set of formulas \mathcal{W} is a Herbrand interpretation, which is a model of \mathcal{W}

• Example: $W \equiv \forall x,y(\text{loves}(x, y) \rightarrow \text{loves}(y, x))$

 – ... language \mathcal{L} is implicitly given

 – $I_1 := \{\text{loves}(\text{Tarzan}, \text{Jane}), \text{loves}(\text{Jane}, \text{Tarzan})\}$
 • I_1 is a Herbrand Model (remember, closed world!)

 – $I_2 := \{\text{loves}(\text{Tarzan}, \text{Jane}), \text{loves}(\text{Jane}, \text{Paul D’Arnot})\}$
 • I_2 is not a Herbrand Model
Lemma

- Given a set of clauses \mathcal{W}
 - \mathcal{W} has a model, if and only if \mathcal{W} has a Herbrand model
 - \mathcal{W} is unsatisfiable, if and only if \mathcal{W} has no Herbrand model

- That means that all symbols in a (set of) clause(s) can be interpreted in a purely syntactical way
 - If there is a syntactic possibility to satisfy the clause(s), there will also be some (more or less useful) semantic interpretation
• Using this lemma, we can finally test the unsatisfiability of $\mathcal{W} \cup \{W\}$
 – Remember: we have to show $\mathcal{W} \models \neg W$
 – But now, we just have to show the existence/nonexistence of a single Herbrand model instead testing all existing models

• But careful, this lemma only works for clauses, not for general closed formulas
3.3 The Herbrand Universe

• **So... How do Herbrand models help?**
 – They are just a *syntactical interpretation* without any relation to the real world…?
 – Can’t I always construct a Herbrand model for a satisfiable formula?

• **Consider this:**
 – We want to build a deductive *database*.
 – So, we need rules how to *use the data* within a database to *construct* Herbrand interpretations!
 – If a Herbrand interpretation constructed by the symbolic data of a DB is also a *model*, it can be used to for further evaluation and querying!
• **Herbrand Theory**
 – Why and how do Herbrand interpretations work?

• **Database Clauses**
 – How does data relate to models, interpretations, and rules?

• **Datalog**
 – How can we work with deduction in a database?

\[
\begin{align*}
\text{ancestor}(X,Y) & : = \text{parent}(X,Y) . \\
\text{ancestor}(X,Y) & : = \text{ancestor}(X,Z) , \text{ancestor}(Z,Y)
\end{align*}
\]