Lecture “Data Warehousing and Data Mining Techniques”

Information
Classification: 
Master Informatik, Master Wirtschaftsinformatik
Credits: 
4 or 5 (depending on course of study and exam regulations)
Exam: 
Oral. Dates: 18.02, 19.02, 21.02, 22.02, 11.03, 12.03, 13.03 (only in the afternoon), 14.03, 15.03
Regular Dates: 
Tuesdays, 09:45-12:25 (10 minutes break included), IZ 161
The first lecture day will be Tuesday the 16th of October
Contents
Contents: 

There will be no lecture on the 29th of January!

 

EXAMINATION DATES:
18.02, 19.02, 21.02, 22.02, 11.03, 12.03, 13.03 (only in the afternoon), 14.03, 15.03

 

In this course, we examine the aspects regarding building maintaining and operating data warehouses as well as give an insight to the main knowledge discovery techniques. The course deals with basic issues like storage of the data, execution of the analytical queries and data mining procedures.

Course will be tought completly in English.

The general structure of the course is:

  • Typical dw use case scenarios
  • Basic architecture of dw
  • Data modelling on a conceptual, logical and physical level
  • Multidimensional E/R modelling
  • Cubes, dimensions, measures
  • Query processing, OLAP queries (OLAP vs OLTP), roll-up, drill down, slice, dice, pivot
  • MOLAP, ROLAP, HOLAP
  • SQL99 OLAP operators, MDX
  • Snowflake, star and starflake schemas for relational storage
  • Multimedia physical storage (linearization)
  • DW Indexing as search optimization mean: R-Trees, UB-Trees, Bitmap indexes
  • Other optimization procedures: data partitioning, star join optimization, materialized views
  • ETL
  • Association rule mining, sequence patterns, time series
  • Classification: Decision trees, naive Bayes classifications, SVM
  • Cluster analysis: K-means, hierarchical clustering, aglomerative clustering, outlier analysis

 

Materials

Download

Date Topic Slides Exercises Video
16.10 Introduction Slides - Print Slides - Video1
23.10 Architecture  Slides - Print Slides  Exercise1 Video2 
30.10 Modeling Slides - Print Slides  - Video3
06.11 Indexes Slides - Print Slides Exercise2 Video4
13.11 Optimization Slides - Print Slides  - Video5
20.11 Queries Slides - Print Slides - Video6
27.11 ETL Slides - Print Slides Exercise3 Video7
04.12  Real-Time ETL  Slides - Print Slides   - Video8 
11.12  Association Rule Mining  Slides - Print Slides   - Video9 (older version)
18.12  Sequence patterns & Time series  Slides - Print Slides  Exercise4 Video10
08.01 Classification Slides - Print Slides  - Video11
15.01 Clustering Slides - Print Slides   Video12
22.01 Meta-Algorithms for Classification Slides - Print Slides  - Video13
  No lecture      

 

AttachmentDateSize
File C2.pdf24/10/12 3:25 pm3.4 MB
File Print_C2.pdf24/10/12 3:25 pm1.56 MB
File DW_01_Uebung.pdf24/10/12 3:25 pm329.9 KB
File C3.pdf01/11/12 9:34 am3.95 MB
File C3_Print.pdf01/11/12 9:34 am2.41 MB
File dwhc3.flv01/11/12 4:09 pm275.03 MB
File C4.pdf08/11/12 8:30 pm2.3 MB
File C4_Print.pdf08/11/12 8:30 pm1.58 MB
File DW_02_Uebung.pdf09/11/12 4:42 pm486.27 KB
File C5.pdf16/11/12 8:57 am2.43 MB
File Print_C5.pdf16/11/12 8:57 am1.63 MB
File dwh_c5.flv16/11/12 8:58 am301.16 MB
File C6.pdf11/02/13 11:08 am3.23 MB
File Print_C6.pdf11/02/13 11:08 am2.23 MB
File C7.pdf26/11/12 12:46 pm2.54 MB
File Print_C7.pdf26/11/12 12:46 pm1.44 MB
File DW_03_Uebung.pdf26/11/12 12:48 pm334.8 KB
File Solutions Ex2.pdf04/12/12 9:32 am805.68 KB
File C8.pdf04/12/12 9:34 am2.57 MB
File Print_C8.pdf04/12/12 9:34 am1.4 MB
File C9.pdf11/12/12 9:26 am2.04 MB
File Print_C9.pdf11/12/12 9:26 am1.38 MB
File C10.pdf17/12/12 5:41 pm2.3 MB
File Print_C10.pdf17/12/12 5:41 pm1.58 MB
File DW_04_Uebung.pdf19/12/12 10:15 am540.94 KB
File C11.pdf08/01/13 10:13 am1.91 MB
File Print_C11.pdf08/01/13 10:14 am1.32 MB
File C12.pdf15/01/13 9:38 am2.1 MB
File Print_C12.pdf15/01/13 9:38 am1.21 MB
File Solutions Ex4.pdf15/01/13 3:20 pm813.05 KB
File C13.pdf22/01/13 11:03 am2.07 MB
File Print_C13.pdf22/01/13 11:04 am1.14 MB