Deductive Databases & Knowledge Based Systems

Sheet 1

Exercise 1
All the sub-exercises should be answered with First Order Logic in mind. Answer briefly!

1. Describe the relation between a language, an interpretation, and a system.
2. What is the difference between functions and predicates? Could you use functions instead of predicates or vice-versa?
3. What is the difference between a term and an atom
4. What is an open or closed formula?
5. What is a rectified formula and which problem does it address?
6. What is the difference between an interpretation and a substitution? Would it be a good idea to merge the substitution into the interpretation?
7. What is closed world assumption and why is it often used in deductive databases?

Exercise 2
All the sub-exercises should be answered with First Order Logic in mind.

1. Design a first order language for simple arithmetic’s on natural numbers. One should be able to add numbers, subtract numbers, multiply two numbers, decide if a number is equal another number, and if a number is greater than another number.
2. Provide an interpretation for your language of the previous sub-exercise.
3. Provide a formula for following statements:
 a. “5 is greater than 2”
 b. “If x is greater than 0, then also x*y is greater than 0”
 c. “x is either greater than y, or x is equal to y, or x is smaller than y”
 d. “The sum of any two numbers is always smaller than the product of the same two numbers”
4. Evaluate the previous terms a-d. Are they always true? Can they be true? If a term is not always true but can be true, provide an example substitution which makes it true.
Exercise 3

All the sub-exercises should be answered with First Order Logic in mind.

1. Given is a language \(\mathcal{L} = (\Gamma, \Omega, \Pi, \mathcal{X}) \) with \(\Gamma = \{a, b\}, \Omega = \{f(x), g(x, y)\}, \Pi := \{P, Q(x, y), R(x)\}, \) and \(\mathcal{X} := \{x, y\}. \)
 a. Provide at least 10 (different) terms for \(\mathcal{L}. \)
 b. Provide at least 6 (different) atoms for \(\mathcal{L}. \)

2. Are the following “strings” valid formulas with respect to \(\mathcal{L} \)?
 a. \(f(g(x, y)) \)
 b. \(P \)
 c. \(Q(x, y) \lor Q(a, b) \)
 d. \(Q(g(f(a), x), f(y)) \)
 e. \(\forall a(R(a)) \)
 f. \(\exists x(f(x)) \)
 g. \(R(x) \rightarrow \neg R(x) \)
 h. \(\neg R(\neg R(f(x))) \)