Knowledge-Based Systems and Deductive Databases

Christoph Lofi
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
5. Semantics of Datalog

5.1 Herbrand Models
5.2 An Operative Semantics
5.3 5th Generation Project

\[
\begin{align*}
\text{ancestor}(X,Y) & : \text{parent}(X,Y). \\
\text{ancestor}(X,Y) & : \text{ancestor}(X,Z),\text{ancestor}(Z,Y).
\end{align*}
\]
Satisfiability in **Boolean logic** is decidable

- For any given set of Boolean formulas, there is a algorithm which reliably **tests for satisfiability**
 - This problem is known as **SAT**
 - Still, SAT is **NP-complete**
 - Applicable algorithm: Davis-Putnam

- The restriction of SAT to **Horn formulae** (i.e. a set of Horn clauses) results in the Horn-SAT problem
 - Horn-SAT is **P-complete**
In general satisfiability in first order logics is undecidable

- There is no algorithm which can check the satisfiability of any first order logic formula in finite time

- There are semi-decidable algorithms
 - If a given formula is unsatisfiable, the algorithm will find out in finite time
 - If the formula is satisfiable, the algorithm will run forever

- First order logic can be restricted to a decidable subset
 - E.g., Schönfinkel-Barnays formulas
 - However, complexity is prohibitive for general application in a DB (SB-SAT ∈ NEXP)
• **Datalog** is an implementation of a logical programming language

 – Similar, but less powerful than **Prolog**

 – **Datalog** is restricted to **horn clauses**

 • **Fact horn clauses** provide the data of the extensional database

 • **Definite horn clauses** provide rules

 • **Goal horn clauses** with only a single literal are used to state queries
• **Datalog** can be further classified
 – **Datalog** with no functions and negations
 – **Datalog**\(^{\text{neg}}\) with negations
 – **Datalog**\(^{f}\) with functions
 – **Datalog**\(^{f,\text{neg}}\) with both

• It is possible to construct programs where predicate definitions rely on **cyclic negations**
 – This kind of program must be detected and **rejected**
 – To detect this, the program needs to be **stratified**
 • i.e.: do the predicates depend negatively on each other in an **hierarchical** fashion or a **circular** fashion?
5.1 Semantics of Datalog

• What do Datalog programs mean and how can queries be evaluated?
 – To avoid unpleasantness with negation: Datalog

• Remember: a program is given by a set of fact and rule horn clauses
 – A query is given by a goal clause
 – A set of DB-clauses \mathcal{W} and a query $Q \equiv L_1, \ldots, L_n$ are unsatisfiable, iff $\mathcal{W} \models \neg Q$ with $\neg Q \equiv \exists (L_1 \land \ldots \land L_n)$
Thus, for evaluating a program and a query, an operator for **semantic conclusions** is needed

- We need to find some interpretation which is a model
- And it should be **decidable**
- And it should be **efficient** to find
- And...
Because Datalog programs consist of clauses, we can use Herbrand interpretations.

Remember:

- Herbrand interpretations interpret all constants, functions, and terms purely syntactical as themselves.
- The set of all truth values for all possible atoms of an Herbrand interpretation is called Herbrand base.
 - i.e. Herbrand base provides the predicate interpretation.
– Different Herbrand interpretations only differ on which elements of the base are true and which are false

– Thus, each Herbrand interpretation can be identified with some subset of the Herbrand base

• That means a set of atoms with all variables substituted by ground terms
5.1 Semantics of Datalog

- A Herbrand interpretation, thus, abstracts from the real world interpretation
 - It purely works on the symbols for constants and functions
 - For the predicates is has to come up with a set of atoms
 - These are the only consistent atoms from the Herbrand base
 - These are all atoms from the Herbrand base making the formulas of a Datalog program true
 - That means any operator to derive this interpretation has to be sound and complete
5.1 Semantics of Datalog

• Idea:
 – All given facts (which are a subset of the Herbrand base) should all be interpreted as true
 • E.g., I(Q(x)) = true
 iff there is a fact rule Q(x):- ⇔ (true→ Q(x))
 – Furthermore, rules can propagate truth values, iff all premises are true
 • Given a Datalog rule B :- A₁, A₂, ..., Aₙ, then B has to evaluate to true, if all A₁,..., Aₙ are true
• This allows us to define **semantic conclusion of a datalog program** $\mathcal{P} \vdash W$

 – W is the **consequence** of the set of Datalog clauses iff each Herbrand interpretation satisfying each clause in \mathcal{P} also satisfies W

• or: W is a **semantic consequence** of \mathcal{P}, iff every Herbrand model of \mathcal{P} is also a Herbrand model for W
5.1 Example

• **Example** for interpretations and models

 – Let’s assume we have only two constants \{Hektor, Christoph\} and two predicates \{green(x), frog(x)\}

 – Consider the program:

 green(Hektor).
 frog(X) :- green(X).

 – We can come up with several interpretations

 • Basically due to the closed world assumption all X in the atoms substituted by all possible constants, either positive or negative

 • Negative atoms can also be simply left out
5.1 Example

• A total of 16 possible interpretations
 – \{\text{green}(\text{Hektor}), \text{green}(\text{Christoph}), \text{frog}(\text{Hektor}), \text{frog}(\text{Christoph})\}
 – \{\text{green}(\text{Hektor}), \text{green}(\text{Christoph}), \text{frog}(\text{Hektor})\}
 – \{\text{green}(\text{Hektor}), \text{frog}(\text{Christoph})\}
 – \{\text{green}(\text{Christoph}), \text{frog}(\text{Christoph})\}
 – …
But which of them are models for our program?

- We have the fact green(Hektor).
 - Hence all models have to contain green(Hektor)
- And we have the rule frog(X) :- green(X).
 - Hence all models also have to contain frog(Hektor)
- But our program is not adversely affected by the atoms green(Christoph) and frog(Christoph)
 - On the other hand our models don’t need these atoms…
Thus, there are 3 models for our program

- \{\text{green(Hektor), frog(Hektor)}\}
- \{\text{green(Hektor), frog(Hektor), frog(Christoph)}\}
- \{\text{green(Hektor), frog(Hektor), green(Christoph), frog(Christoph)}\}

Which one do we want?!

- Note: the first model is the intersection of all models!
The intended Herbrand Model for Datalogf programs can thus be described as

- **The least model**: A given Herbrand model M is called **least model**, iff $M \subseteq M'$ for all other Herbrand models M'

 - The semantics induced by the least model is often called **stable model semantics**
 - Since negation is prohibited in Datalogf, there **exists always** a least model
• **Lemma**: Given a Datalog\(^f\) program \(P\) and the set \(M\) of all its Herbrand models. Then the least **Herbrand** model of \(P\) is defined as \(M_P := \bigcap M\)

 – \(M_P\) represents the intended semantics of \(P\), as it evaluates all given facts and rules to true, **but not more**

 – Only what is **explicitly stated** by the program is true, the rest is considered false
• Consider Datalogneg for a moment…

 – Given the constant Hector and the program: toad(X) :- not frog(X).
 – We can come up with two models \{\text{toad}(\text{Hector})\} and \{\text{frog}(\text{Hector})\}
 • Both satisfy the program, but their intersection is empty…
 • Note that (\neg A \rightarrow B) is equivalent to (A \lor B)
5.2 Evaluating Programs

• Thus, for evaluating the semantics of a given Datalog program \mathcal{P}, actually finding the least Herbrand Model $\mathcal{M}_\mathcal{P}$ is essential

 – Unfortunately, finding $\mathcal{M}_\mathcal{P}$ using the intersections of models in the previous lemma is often not possible, because \mathcal{M} may be of infinite size
5.2 Evaluating Programs

• For more expressive logic languages (like Prolog), **deductive systems** are used to find the truth values for the elements of the Herbrand universe
 – E.g., **SDL resolution**
 – But this may lead to severe performance penalties

• In Datalog, the problem is solved using the simpler **fixpoint iteration**
 – A sound and complete deductive system for Datalog
 – Base Idea: **iteratively compute all true ground facts** until no new ground facts can be found
5.2 Operative Semantics

• **Basic idea of fix point iteration**

 – Start with an empty subset I_0 of the Herbrand base of the logic language used by P

 • Later, this subset will be identified with a special Herbrand interpretation, i.e. all atoms of the Herbrand base $\mathcal{B}_\mathcal{L}$ evaluate to false

 – Transform the set I_n into the set I_{n+1}, i.e. $I_{n+1} := T_P(I_n)$, $I_{n+1} := T_P(...T_P(T_P(I_0)))$

 • T_P is some **transformation rule**
• **Elementary Production** T_P

 - $T_P : 2^{BL} \rightarrow 2^{BL}$
 - Maps an element of the power set of the Herbrand base to another, i.e. one *subset of atoms* to another subset of atoms

 - $T_P : I \mapsto \{B \in BL | \text{there exists a ground instance } B : \neg A_1, A_2, ..., A_n \text{ of a program clause such that } \{A_1, A_2, ..., A_n\} \subseteq I\}$
 - Captures the idea of *forward-chaining*, i.e. start with base facts and produce new facts by applying the rules
5.2 Operative Semantics

– Remember: **ground instances** are quantifier-free subformulas of a formula in prenex form where all **free variables are substituted** with some term from the universe

– Example with $\mathcal{U}_L = \{v_1, v_2, v_3, \ldots\}$

 • program clause: $\text{path}(X, Y) :- \text{edge}(X, Y)\)
 meaning $\forall X, Y (\text{path}(X, Y) \lor \neg\text{edge}(X, Y))$
 • A ground instance is $\text{path}(v_1, v_2) \lor \neg\text{edge}(v_1, v_2)$ with substitution $X|_{v_1}$ and $Y|_{v_2}$
5.2 Example

• Example program \mathcal{P}
 – $\text{edge}(v1, v2)$.
 – $\text{edge}(v1, v3)$.
 – $\text{edge}(v2, v4)$.
 – $\text{edge}(v3, v4)$.
 – $\text{path}(X, Y) : \text{edge}(X, Y)$. [rule 1]
 – $\text{path}(X, Y) : \text{edge}(X, Z), \text{path}(Z, Y)$. [rule 2]
5.2 Example

- **Fixpoint Iteration:**
 - \(I_0 := \{\} \)
 - \(I_1 := T_P(I_0) = \{\text{edge}(v1, v2), \text{edge}(v1, v3), \text{edge}(v2, v4), \text{edge}(v3, v4)\} \)
 - The (empty) premises are triggered by the transformation rule
 - The elements of \(I_1 \) are the **ground facts**

![Graph with vertices v1, v2, v3, and v4 connected by edges](image)
5.2 Example

- $I_2 := T_P(I_1) = I_1 \cup \{\text{path}(v1, v2), \text{path}(v1, v3), \text{path}(v2, v4), \text{path}(v3, v4)\}$
 - Rule 1: $\text{path}(X, Y) : \neg \text{edge}(X, Y)$ is applied to all atoms in I_1
 - Rule 2: $\text{path}(X, Y) : \neg \text{edge}(X, Z), \text{path}(Z, Y)$ is not triggered, since there are no path-atoms in I_1

- $I_3 := T_P(I_2) = I_2 \cup \{\text{path}(v1, v4)\}$
 - Rule 2: $\text{path}(X, Y) : \neg \text{edge}(X, Z), \text{path}(Z, Y)$ is triggered

- $I_4 := T_P(I_3) = I_3 \cup \{\}$
 - Fixpoint reached
 - Set remains stable

This is just sloppy writing. Everything is computed.
With T_P as constructed above it can be shown that...

- $I_n \subseteq I_{n+1}$, i.e. within each iteration, the set may only grow (the evaluation is monotonic)
- There exists an $f \geq 0$ such that $\forall m \geq f : I_m = I_{m+1}$
 - f is called the fixpoint, after the fixpoint the sets are stable
 - Also, the following holds: $\forall m < f : I_m \subset I_{m+1}$
- I_f can be identified with the least Herbrand model M_P
 - I_f is not just some set of Herbrand base elements, but can be seen as a minimal interpretation that is consistent with the program P (and thus a model)
5.2 Fixpoint Semantics

• Fixpoint iteration may be understood as a deductive system
 – The program \mathcal{P} provides the axioms
 – The only deduction rule is $T_{\mathcal{P}}$

• Thus, fixpoint iteration purely syntactically produces inferred ground facts with each iteration
 – Inferred ground fact $W : \mathcal{P} \vdash W$
 • Either $W \in \mathcal{P}$ or $W \notin \mathcal{P}$ can be obtained after a finite number of iteration steps
• Thus, for each inferred ground fact \(W \), a proof tree can be constructed

 – Proof tree has two types of nodes:
 • **Fact nodes**: Contains a inferred ground fact or a fact clause from \(P \)
 • **Rule nodes**: Contains a rule from \(P \)
5.2 Fixpoint Semantics

The proof tree shows the minimal set of rules and facts that have been necessary to infer W

- W itself is in the tree root which is a fact node
- Each level of the tree represents an iteration
- The lowest level represents the first iteration
- The depth of the tree thus represents the number of necessary iterations to deduce W
- If the same clause is used multiple times, it is copied
5.2 Fixpoint Semantics

• Example (cont.): Proof tree of path(v1, v4)

\[\text{path}(v1, v4)\]

\[\text{path}(X, Y) : \neg \text{edge}(X, Z), \text{path}(Z, Y).\]

\[\text{edge}(v1, v2)\]

\[\text{path}(v2, v4)\]

\[\text{path}(X, Y) : \neg \text{edge}(X, Y).\]

\[\text{edge}(v2, v4)\]

• Alternative tree

\[\text{path}(v1, v4)\]

\[\text{path}(X, Y) : \neg \text{edge}(X, Z), \text{path}(Z, Y).\]

\[\text{edge}(v1, v3)\]

\[\text{path}(v3, v4)\]

\[\text{path}(X, Y) : \neg \text{edge}(X, Y).\]

\[\text{edge}(v3, v4)\]
• **Soundness Theorem:**
 – Each inferred ground fact W with $\mathcal{P} \vdash W$ is also a *semantic conclusion* $\mathcal{P} \models W$

• **Proof:**
 – **Idea:** Show by induction over the depth of the proof tree of W
 – **Induction Base:**
 • If W has a proof tree of depth 0 then $W \in \mathcal{P}$. Thus W must be in each Herbrand model and $\mathcal{P} \models W$.
5.2 Fixpoint Semantics

• Induction Step:
 – Assume W has a proof tree of depth $i+1$. Then there is a rule $R \equiv B: - A_1, ..., A_n$ and some ground facts $F_1, ..., F_n$ at level i such that W can be inferred in one step by applying $T_{\mathcal{P}}$ on R and $F_1, ..., F_n$.
 – Since the facts $F_1, ..., F_n$ appear on level i, they each must have a proof tree of a depth $\leq i$.
 – By induction hypothesis, we have for $i \leq k \leq n : \mathcal{P} \models F_k$; thus for each Herbrand model I we have $F_k \in I$.
 – Since also $R \in I$, we also have $W \in I$ and thus $\mathcal{P} \models W$.

Knowledge-Based Systems and Deductive Databases – Christoph Lofi – IfIS – TU Braunschweig
• **Completeness Theorem:**
 – Each semantic conclusion $\mathcal{P} \vdash W$ is also an inferred ground fact W with $\mathcal{P} \models W$

• **Proof:**
 – Consider the set $\text{infer}(\mathcal{P}) := \{W | W \text{ is ground fact and } \mathcal{P} \vdash W\}$
 – By definition of \vdash, each fact $W \in \mathcal{P}$ is also in $\text{infer}(\mathcal{P})$
 – Consider any rule $R \in \mathcal{P} \equiv B :- A_1, \ldots, A_n$
 – Assume a substitution ρ such that $\mathcal{P} \models \rho(A_1), \ldots, \rho(A_n)$
Then, also $\rho(B) \in \text{infer}(\mathcal{P})$ and $\mathcal{P} \vdash \rho(B)$

Hence, $\text{infer}(\mathcal{P})$ is a Herbrand model of \mathcal{P}

Now assume that $\mathcal{P} \models W$

Thus, W is in each Herbrand model of \mathcal{P} and particularly in $\text{infer}(\mathcal{P})$, so finally $\mathcal{P} \vdash W$

Finally, we may combine both theorems:

Given a set of Datalog clauses \mathcal{P}, then $\mathcal{P} \models W$, iff $\mathcal{P} \vdash W$
• Corollary: If \mathcal{P} is finite, then also $\{W \mid W$ is ground fact and $\mathcal{P} \vdash W\}$ is finite
 – Thus, any Datalog model can be represented and computed in finite space and time
 – By proving this, we can show that there has to be a fixpoint which can be reached
5.2 Fixpoint Semantics

• Naïve algorithm for query execution:
 – Given a Datalog program \mathcal{P} and a query $Q \equiv A_1, ..., A_n$
 – Start fixpoint iteration on \mathcal{P}
 • As soon as $\mathcal{P} \not\models \neg Q$, the query is unsatisfiable and return an empty result set
 • For every inferred ground fact W which is a ground instance of Q, put W into the result set
 • If fixpoint is reached, return result set
 – Please note: in every iteration step, the whole set of currently known ground facts is also recomputed!
5.2 Example

- Example program \mathcal{P}
 - $e(1, 2)$.
 - $e(1, 3)$.
 - $e(2, 4)$.
 - $e(3, 4)$.
 - $e(4, 5)$.
 - $p(X, Y) :- e(X, Y)$. [rule 1]
 - $p(X, Y) :- e(X, Z), p(Z, Y)$. [rule 2]
5.2 Example

- **Query:** $p(2, X)$?
 - (i.e. which vertices can be reached starting from 2)

- **Fixpoint-Iteration**
 - $I_0 := \{\}$
 - $I_1 := I_0 \cup \{e(1,2), e(1,3), e(2,4), e(3,4), e(4,5)\}$
 - $I_2 := I_1 \cup \{p(1,2), p(1,3), p(2,4), p(3,4), p(4,5)\}$
 - $I_3 := I_2 \cup \{p(1,4), p(2,5), p(3,5)\}$
 - $I_4 := I_3 \cup \{p(1,5)\}$
 - $I_5 := I_4 \cup \{\}$
 - Result := $\{p(2,4), p(2,5)\}$
• Program

parent(Kronus, Poseidon).
parent(Rhea, Poseidon).
parent(Poseidon, Theseus).
parent(Aethra, Theseus).

ancestor(X, Y) :- parent(X, Y)
ancestor(X, Y) :- ancestor(X, Z) , ancestor(Z, Y)
descendant(X, Y) :- ancestor(Y, X)

:- descendant (Theseus, X)
• Thus, Datalogf has a clear **operative semantics** which allows computation of models and facts
 – But, remember, we excluded negation… but do we need it?

• **Theorem:** Datalogf is Turing-complete
 – Thus, by using Datalogf you can compute anything you can compute with any other programming language (like C, Java, Pascal, etc)
• However, it might be a nice feature to be able to express negation
 – e.g. “A day which is no holiday and no week end is a working day.“
 – workday(X) :-
 day(X), not holiday(X), not weekend(X)
 – Negation allows for a more intuitive modeling of the real world in Datalog programs
However, allowing negation opens up many problems

- For Datalogf, we used the notion of the least Herbrand model
- Then the least Herbrand model of \mathcal{P} can be defined as $M_\mathcal{P} := \bigcap \mathcal{M}$ (\mathcal{M} being any model of \mathcal{P})
- The previous definition was used to prove the soundness and completeness of the fixpoint iteration.
• Let's go back some slides
 – Given the constant Hector and the program: `toad(X) :- not frog(X)`.
 – We can come up with two models `{toad(Hector)}` and `{frog(Hector)}`
 • Both satisfy the program, but their intersection is empty…
 • Note that (¬A → B) is equivalent to (A ∨ B)
 • Thus, there is no least Herbrand model and fixpoint iteration is broken
5.2 Datalog$^{\text{neg}}$

- Usually, Datalog$^{\text{neg}}$ doesn’t have a least Herbrand model, instead they may have multiple minimal models
 - **Minimal Model**: A given Herbrand model M is minimal iff there is no other Herbrand model M' such that $M' \subseteq M$
 - The induced semantics is called **minimal Herbrand semantics**
• However, it is **unclear** which model should be used

 – Both \{toad(Hector)\} and \{frog(Hector)\} are valid **minimal models** of the previous example

• So, we need a **deterministic decision criteria** for selecting an **appropriate model**
• One promising way is to use the results of stratification

• **Remember:** Stratification determines negative dependencies of predicates within a program by ordering predicates into an hierarchy
 – Only programs that can be stratified can also be executed
• Example:

 \[\text{path}(1,2). \text{path}(1,3). \text{path}(3,4). \text{toll}(1,2). \]

 \[\text{goodpath}(X, Y) \leftarrow \text{path}(X, Y), \neg \text{toll}(X, Y). \]

 \[\text{goodpath}(X, Z) \leftarrow \text{goodpath}(X, Y), \text{goodpath}(Y, Z). \]

 \[S_1 := \{\text{def(path)}, \text{def(toll)}\} : \text{first stratum} \]

 \[S_2 := \{\text{def(goodpath)}\} : \text{second stratum} \]
• Problems with negation in detail
 – toad(y) :- ¬frog(y)
 – To evaluate this rule, all universe ground terms have to be tested (in some cases of Datalog, the universe may be infinite…)
 – It’s possible that just for a small (finite) part of the universe, frog(y) is true
 • an excessively large or even infinite number of toad facts have to be included in the model
 • This rule is thus unsafe (possibly infinite or excessively large models)
Furthermore, the choice of models is **ambiguous**

- No information about \texttt{frog(Hector)}… does this mean that \texttt{toad(Hector)} is true? Or might \texttt{frog(Hector)} be true although it was not stated explicitly?
5.2 Datalogneg

• These two problems (ambiguous, unsafe) can be countered with the following constraints:

 – “If a \textbf{variable} appears in a negative literal, it must also appear in a \textbf{positive literal} in the body.”

 – toad(y) :- green(y), ¬frog(y)

 • Variable \(y\) also appears in a positive literal (\(y\) is “grounded”)

 • This is called “\textbf{safe negation}”
– Now, we can **first** evaluate the **positive** and then the **negative** literals

 • For any \(y \) for which \(\text{toad}(y) \) becomes true, \(\text{green}(y) \) needs to be true first

 • If that was the case, there has been a rule/ fact stating this; i.e. number of candidate terms is **very limited**

 • To capture this, organize evaluation **strata per strata**
 – Positive facts are in lower strata
 – i.e.: to fire rule, positive literal has to be fact in a higher strata, negative literal must not be a fact of a higher strata
5.2 Datalog$^{\text{neg}}$

- In the following, we formalize the observation of the previous slides.
- Based on the **negative dependencies**, we can define a **Priority Relation** \langle_p on the elements of the Herbrand base $B_{\mathcal{L}}$:

 - $P(t_1, ..., t_n) \langle_p Q(s_1, ..., t_m)$ iff there is a negative edge from P to Q in the program connection graph (PCG) of \mathcal{P}

- **Lemma**: If a program \mathcal{P} is **stratified**, \langle_p is an **irreflexible partial order**:

 - If not, there may be cycles, e.g.

 $P(t_1, ..., t_n) \langle_p Q(s_1, ..., t_m) \langle_p P(t_1, ..., t_n)$
Based on the priority relation, we define a preference relation between minimal models:

- Let \mathcal{M}_1 and \mathcal{M}_2 be models of \mathcal{P}
- Then \mathcal{M}_1 is preferred over \mathcal{M}_2 ($\mathcal{M}_1 \leq \mathcal{M}_2$) iff
 - $\mathcal{M}_1 = \mathcal{M}_2$
 - OR $\mathcal{M}_1 \neq \mathcal{M}_2$ and for all $A \in \mathcal{M}_1 \setminus \mathcal{M}_2$ there exists a $B \in \mathcal{M}_2 \setminus \mathcal{M}_1$ such that $A <_P B$

A model \mathcal{M} is called perfect model iff

- $\mathcal{M} \leq \mathcal{M}'$ for all Herbrand Models \mathcal{M}' of \mathcal{P}
Example:

- $P :=$
 - green(Hector)
 - $\text{toad}(X) :\neg\text{green}(X), \neg\text{frog}(X)$.

Two models:

- $M_1 := \{\text{toad}(Hector), \text{green}(Hector)\}$
- $M_2 := \{\text{frog}(Hector), \text{green}(Hector)\}$

- $\text{toad}(Hector) \prec_P \text{frog}(Hector)$
 $\Rightarrow M_1 \leq M_2$ and M_1 is the perfect model
5.2 Datalog$^{\text{neg}}$

- **Theorem:** For each Datalog$^{\text{neg}}$ program, there exists a **perfect model** which is also a **minimal model**
 - We define that this **perfect** and **minimal** model is the **intended semantic** of a given Datalog$^{\text{neg}}$ program

- **However, fixpoint iteration** is still broken and needs some modification
 - Idea: Modify elementary production rule $T_\mathcal{P}$ such that it works along the strata of \mathcal{P}
 - Negation as failure semantics should be captured
• **Elementary Production** \(T^J_P \) depending on \(J \)

- \(T^J_P : 2^{B_L} \rightarrow 2^{B_L} \)
- \(T^J_P : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance } B :: A_1, \ldots, A_n, \neg C_1, \ldots, \neg C_m \text{ of a program clause such that } \{A_1, A_2, \ldots, A_n\} \subseteq I \text{ and for all } 1 \leq i \leq m : C_i \notin J \} \)
• Example:

 – goodpath(X, Y) :- path(X, Y), ¬toll(X).
 goodpath(X, Z) :- goodpath(X, Y), goodpath(Y, Z).

 – \(J := \{ \text{toll}(1,2) \} \)
 \(I := \{ \text{path}(1,2), \text{path}(2,4), \text{path}(1,4) \} \)

 – \(\mathcal{T}^I \mathcal{P}(I) := I \cup \{ \text{goodpath}(2,4), \text{goodpath}(1,4) \} \)
Based on the new definition of elementary production, we can define a new iterated fixpoint iteration using stratification.

Let P be a stratified program as $P := P_0 \cup \ldots \cup P_n$

- $I_0 := T_{P_0}^\infty (\emptyset)$
- $I_1 := T_{P_1 \cup P_0}^\infty (T_{I_0}^1 P_1 \cup I_0)$
- ...
- $I_n := T_{P_n \cup \ldots \cup P_0}^\infty (T_{I_{n-1}}^n P_n \cup I_{n-1})$

As soon as we reach the fixpoint n, we call I_n the iterated fixpoint of P.
Informally, this means

- Partition all clauses of the program \mathcal{P} such that each partition corresponds with a strata

- Apply T_{neg}, \mathcal{P} iteratively to each strata program fragment, starting with the lowest

 - This creates a set of all facts which positively follow from clauses in the first stratum
 - Especially, all facts of a predicate that is negatively used by clauses in a higher stratum will all be derived before that stratum is reached
 - i.e. for testing $\neg P(a)$, a simple test for $P(a)$ in the current intermediate iteration set is needed
 - If $P(a)$ is found, then not $\neg P(a) = \text{false}$ else $\neg P(a) = \text{true}$
5.2 Operative Datalogneg

- Theorem: The iterated fixpoint I_n is indeed the minimal perfect Herbrand model of P
 - Thus, the iterated fixpoint iteration provides a computable operative semantic for Datalogneg

- However, the performance of naïve operational semantics of Datalogneg or Datalogf still remains suboptimal
 - Room for further improvement \rightarrow next lecture
Example:

- Program \mathcal{P} stratified in \mathcal{P}_1 and \mathcal{P}_2

- $\mathcal{P}_1 := \{$

 edge(1,2). edge(1,4). edge(2,4).
 edge(3,4). toll(1,2).
 path(X, Y) :- edge(X, Y).
 path(X, Y) :- edge(X, Z), path(Z, Y)\}

- $\mathcal{P}_2 := \{$goodpath(X, Y) :- path(X, Y), \neg toll(X).
 goodpath(X, Z) :- goodpath(X, Y), goodpath(Y, Z) \}$
5.2 Operative Datalog$^{\text{neg}}$

- $I_1 := \mathcal{T}_{\mathcal{P}}^\infty(T_{\text{neg}}, \mathcal{P}_1) =$
 \{edge(1,2), edge(1,4), edge(2,4), edge(3,4),
 toll(1.2), path(1,2), path(1,3), path(1,4), path(2,4),
 path(3,4)\}

- $I_2 := \mathcal{T}_{\mathcal{P}}^\infty(T_{\text{neg}}^I, \mathcal{P}_2 \cup I_1) = I_1 \cup$
 \{goodpath(1,3), goodpath(2,4), goodpath(3,4), goodpath(1,4)\}
• What is a **least** Herbrand model?
• What are **minimal** Herbrand models?
• What are **perfect** Herbrand models?
• In general, why aren’t there least Herbrand models for $Datalog^{neg}$?
During the 80ties, commonly **five computer generations** have been distinguished

- **0th generation**: Full mechanical (like IBM407) or mechanical switching computers (like Harvard Mark 1)

- **1st generation**: (around 1940’s) using pluggable vacuum tubes (ENIAC)
– **2nd generation:** (after 1953) computers using transistors instead of vacuum tubes (like Manchester Mark I or IBM 7090)

– **3rd generation:** (around 1964)
 Usage of integrated circuits
 • Large number of transistors on a single chip
 • IBM 360

– **4th generation:** Micro-processors
 • Entire processing units on a single chip
 • The F-14A “Tom Cat” Microprocessor, Intel 4004
• In the mid-70’s, Japan felt that it was vastly behind the U.S. and the U.K. regarding computer technology

• To fight this fact, the Ministry of International Trade and Industry (MITI) requested a roadmap of potential future “hot topics” from Japanese research companies and academics
 – Mainly Japan Information Processing Development Center (JIPDEC)
5.3 5th Generation Computer

- 5 potential fields have been identified
 - Inference computer technologies for knowledge processing
 - Computer technologies to process large-scale databases and knowledge bases
 - High performance workstations
 - Distributed functional computer technologies
 - Super-computers for scientific computing
• Based on these, the 5th Generation Computer (FGCS) project was funded for a 10-year-period
 – Started 1982 with a funding of 900 Million US-$
• **Idea:** Build a computer which is completely different from current systems
 – It runs on top of a massive distributed **knowledge base**
 – It uses **logic programming** only
 – It allows for massively **distributed processing** of logical inference
 • 100M-1G LIPS compared to “normal mainframe” 100K LIPS
 • LIPS: Logical Inference Per Second
After the **striking results** of the previous MITI projects (e.g. **consumer electronics** in the 70ties and **automotives** in the 80ties), the other active countries in computer research were **struck with fear**
Counter projects world wide (Sputnik Effect):

- Microelectronics and Computer Technology Corporation (MCC) in US
- Alvey in UK
- ESPRIT and ECRC in Europe
- ...
Core results have been

- Prototype Parallel Inference Machines PIM/m, PIM/p, PIM/I, PIM/k and PIM/c
- Parallel Logic Programming Language KL-I
- Parallel Logic Based Operation System PIMOS
5.3 5th Generation Computer

- Parallel DBMS Kappa-P
- Theorem Prover MGTP
- Inference Engine Quixote
- Application Programs
 - Legal Reasoning Systems, VLSI-CAD, Generic Information Processing, Software Generation, Expert Systems, etc.
Depending on whom you ask, the project was either a complete failure or just ahead of its time (and still a failure)

- Cheaper desktop system with standardized hardware developed much faster and became cheaper
 - No parallelization necessary
 - FGCS had no focus on HCI
- Logic Programming never took foot
- The A.I. winter killed a lot of A.I. dreams
In any case, many ideas currently return

- Parallelization in massive multi-cores
- Reasoning in the form of Logic Programming for the Semantic Web
- Knowledge Based Systems
Implementation of Datalog
Efficient computation of fixpoints