Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke
Christoph Lofi
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
8 Datalog Optimization

• More implementation and optimization techniques
 – Design Space
 – Delta Iteration
 – Logical Rewriting
 – Magic Sets
• Datalog can be converted to Relational Algebra and vice versa
 – This allows to merge Datalog-style reasoning techniques with relational databases
 • e.g. Datalog on RDBs, Recursive SQL, etc.
 – The elementary production rule (and thus the fixpoint iteration) has been implemented with relational algebra in the last lecture
• In addition to **bottom-up** approaches (like fix-point iteration), there are also **top-down** evaluation schemes for Datalog

 – Idea: Start with query and try to construct a proof tree down to the facts

 – Simple Bottom Up approach: Construct all possible search trees by their depth

 • **Search tree**: Parameterized **proof tree**
 – Search tree can be transformed to a proof tree by providing a valid substitution
– Search tree are constructed by **backwards-chaining** of rules

– Problem: **When to stop?**

 • A naïve solution: Compute the theoretical maximal chain length and use as limit

– **Outlook for today: Optimization techniques**

 • Evaluation optimization

 • Query rewriting
• The **computation algorithms** introduced in the previous weeks were all far from optimal
 – Usually, a lot of unnecessary deductions were performed
 – Wasted work
 – Termination problems, etc…

• Thus, this week we will focus on **optimization methods**
Optimization and evaluation methods can be classified along several criterions:

- Search technique
- Formalism
- Objective
- Traversal Order
- Approach
- Structure
• **Search Technique:**

 – **Bottom-Up**
 - Start with extensional database and use forward-chaining of rules to generate new facts
 - Result is subset of all generated facts
 - **Set oriented-approach →** Very well-suited for databases

 – **Top-Down**
 - Start with queries and either construct a proof tree or a refutation proof by backward-chaining of rules
 - Result is generated **tuple-by-tuple →** More suited for complex languages, but less desirable for use within a database
Furthermore, there are two possible (non-exclusive) formalisms for query optimization

- **Logical**: A Datalog program is treated as **logical rules**
 - The predicates in the rules are connected to the **query predicate**
 - Some of the variables may already be **bound** by the query

- **Algebraic**: The rules in a Datalog program can be translated into **algebraic expressions**
 - Thus, the IDB corresponds to a **system of algebraic equations**
 - Transformations like in normal **database query optimization** may apply
Optimizations can address different objectives

– Program Rewriting:
 • Given a specific evaluation algorithm, the Datalog program P is rewritten into a semantically equivalent program P'
 • However, the new program P' can be executed much faster than P using the same evaluation method

– Evaluation Optimization:
 • Improve the process of evaluation itself, i.e. program stays as it is but the evaluation algorithm is improved
 • Can be combined with program rewriting for even increased effect
7.1 Query Optimization

- Optimizations can focus on different traversal-orders
 - Depth-First
 - Order of the literals in the body of a rule may affect performance
 - e.g. consider top-down evaluation with search trees for $P(X,Y) :- P(X,Z), Q(Z,Y)$ vs. $P(X,Y) :- Q(Z,Y), P(X,Z)$
 - In more general cases (e.g. Prolog), may even affect decidability
 - It may be possible to quickly produce the first answer
 - Breadth-First
 - Whole right hand-side of rules is evaluated at the same time
 - Search trees grow more balanced
 - Due to the restrictions in Datalog, this becomes a set-oriented operation and is thus very suitable for DB’s
When optimizing, two approaches are possible

- **Syntactic**: just focus on the syntax of rules
 - Easier and thus more popular than semantics
 - e.g. restrict variables based on the goal structure or use special evaluation if all rules are linear, etc.

- **Semantic**: utilize external knowledge during evaluation
 - E.g., integrity constraints
 - External constraints: “Lufthansa flights arrive at Terminal 1”
 - Query: “Where does the flight LH1243 arrive?”
7.1 Query Optimization

- **Summary** of optimization classification with their (not necessarily exclusive) alternatives

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search technique</td>
<td>bottom-up</td>
</tr>
<tr>
<td></td>
<td>top-down</td>
</tr>
<tr>
<td>Formalism</td>
<td>logic</td>
</tr>
<tr>
<td></td>
<td>relational algebra</td>
</tr>
<tr>
<td>Objective</td>
<td>rewriting</td>
</tr>
<tr>
<td></td>
<td>pure evaluation</td>
</tr>
<tr>
<td>Traversal order</td>
<td>depth-first</td>
</tr>
<tr>
<td></td>
<td>breadth-first</td>
</tr>
<tr>
<td>Approach</td>
<td>syntactic</td>
</tr>
<tr>
<td></td>
<td>semantic</td>
</tr>
<tr>
<td>Structure</td>
<td>rule structure</td>
</tr>
<tr>
<td></td>
<td>goal structure</td>
</tr>
</tbody>
</table>
• Not all combinations are feasible or sensible
 – We will focus on following combinations

<table>
<thead>
<tr>
<th>Evaluation Methods</th>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naïve (Jacobi, Gauss-Seidel)</td>
<td>Naïve Top-Down with Search trees</td>
</tr>
<tr>
<td></td>
<td>Semi-naïve (Delta Iteration)</td>
<td>Query-Subquery</td>
</tr>
<tr>
<td></td>
<td>Henschen-Naqvi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewriting Methods</td>
<td></td>
</tr>
<tr>
<td>Magic Sets</td>
<td>Variable reduction</td>
</tr>
<tr>
<td>Counting</td>
<td>Constant reduction</td>
</tr>
<tr>
<td>Static Filtering</td>
<td></td>
</tr>
</tbody>
</table>
7.1 Query Optimization

- Optimization techniques may be combined
 - Thus, **mixed execution** of rewriting and evaluation techniques based on logical and algebraic optimization is possible
- Start with logic program L_P
7.1 Query Optimization

Logical query evaluation methods

Transformation into Relational Algebra

Relational algebra equations

Algebraic query evaluation methods

Query result
Evaluation methods actually compute the result of an (optimized or un-optimized) program \(\mathcal{P} \).

<table>
<thead>
<tr>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation Method</td>
<td></td>
</tr>
<tr>
<td>Naïve (Jacobi, Gauss-Seidel)</td>
<td>Naïve Top-Down with Search trees</td>
</tr>
<tr>
<td>Semi-naïve (Delta Iteration)</td>
<td>Query-Subquery</td>
</tr>
<tr>
<td>Henschen-Naqvi</td>
<td></td>
</tr>
</tbody>
</table>

– Better evaluation methods skip unnecessary evaluation steps and/or terminate earlier.
• Datalog programs can easily be evaluated in a bottom-up fashion, but this should also be efficient
 – The naïve algorithm derives everything that is possible from the facts
 – But naively answering queries wastes valuable work…
 – For dealing with recursion we have to evaluate fixpoints
 • For stratified Datalog^{f,neg} programs we apply the fixpoint algorithms to every stratum
7.2 Bottom-Up Evaluation

- **Bottom-up evaluation** techniques are usually based on the **fixpoint iteration**

- Remember: Fixpoint iteration itself is a **general concept** within all fields of mathematics
 - Start with an **empty initial solution** X_0
 - Compute a new X_{n+1} from a given X_n by using a **production rule**
 - $X_{n+1} := T(X_{n+1})$
 - As soon as $X_{n+1} = X_n$, the algorithm stops
 - **Fixpoint reached**
• Up to now we have stated the elementary production rule declaratively
 \[T_p : I \mapsto \{ B \in \mathcal{B}_L \mid \text{there exists a ground instance } B ::= A_1, A_2, \ldots, A_n \text{ of a program clause such that } \{A_1, A_2, \ldots, A_n\} \subseteq I \} \]

• However, we need an operative implementation
 – The set \(I_{i+1} \) is computed from \(I_i \) as follows:
 • Enumerate all ground instances \(\mathcal{G} \)
 – Each ground instance is given by some substitution (out of a finite set)
 • Iterate over the ground instances, i.e. try all different substitutions
 – For each \(B ::= A_1, A_2, \ldots, A_n \in \mathcal{G} \), if \(\{A_1, A_2, \ldots, A_n\} \subseteq I_i \), add \(B \) to \(I_{i+1} \)
7.2 Bottom-Up Evaluation

a) **Full Enumeration:** Consecutively generate and test all instances by enumeration

- Loop over all rules
 - Apply each possible substitution on each rule

Constant symbols: \{1,2,3\}

Rules: \{p(X,Y) :- e(X,Y). p(X,Y) :- e(X,Z), p(Z,Y).\}

Enumeration of instances:

Rule 1:
- p(1,1) :- e(1,1).
- p(1,2) :- e(1,2).
- p(1,3) :- e(1,3).
- p(2,1) :- e(2,1).
- p(2,2) :- e(2,2).
- p(3,1) :- e(3,1).
- p(3,2) :- e(3,2).

Rule 2:
- p(1,1) :- e(1,1), p(1,1).
- p(1,1) :- e(1,2), p(2,1).
- p(1,1) :- e(1,2), p(2,2).
- p(1,2) :- e(1,1), p(1,2).
- p(1,2) :- e(1,2), p(2,1).
- p(1,2) :- e(1,2), p(2,2).
- ...
7.2 Bottom-Up Evaluation

b) Restricted enumeration

- Loop over all rules
 - For each rule, generate all instances possible when trying to unify the rules right hand side with the facts in I
 - Only instances which will trigger a rule in the current iteration will be generated

Constant symbols: \{1,2,3\}
Rules: \{p(X,Y) :- e(X,Y). \ p(X,Y) :- e(X,Z), p(Z,Y).\}
I: \{e(1,2), e(2,3)\}
Enumeration of instances:
Rule 1:
p(1,2) :- e(1,2). \ p(2,3) :- e(2,3).
Rule 2: Nothing. p(Z,Y) can not be unified with any fact in I
7.2 Jacobi Iteration

• The most naïve fixpoint algorithm class are the so-called Jacobi-Iterations
 – Developed by Carl Gustav Jacob Jacobi for solving linear equitation systems \(Ax=b \), early 18th century
 – Characteristics:
 • Each intermediate result \(X_{n+1} \) is \textbf{wholly computed} by utilizing \textbf{all data} in \(X_n \)
 • \textbf{No reuse} between both results
 • Thus, the memory complexity for a given iteration step is roughly \(|X_{n+1}| \times |X_n| \)
7.2 Jacobi Iteration

• Both fixpoint iterations introduced previously in the lecture are Jacobi iterations
 – i.e. **fixpoint iteration and iterated fixpoint iteration**
 – i.e. \(I_{n+1} := T_P(I_n) \)
 • “Apply production rule to all elements in \(I_n \) and write results to \(I_{n+1} \). Repeat”
• Please note

– Within each iteration, **all already deduced facts of previous iteration are deduced again**
 • Yes, they were… We just used the union notation for convenience
 – \(I_1 := I_0 \cup \{e(1,2), e(1,3)\} \)
 – \(I_2 := I_1 \cup \{p(1,2), p(1,3)\} \) was actually not reflecting this correctly
 – \(I_1 := \{e(1,2), e(1,3)\} \)
 – \(I_2 := \{e(1,2), e(1,3), p(1,2), p(1,3)\} \) matches algorithm better…

– Furthermore, both sets \(I_{n+1} \) and \(I_n \) involved in the iteration are treated strictly **separately**
 • Elementary production checks which rules are true within \(I_i \) and puts result into \(I_{i+1} \)
7.2 Gauss-Seidel Iteration

• Idea:
 – The convergence speed of the Jacobi iteration can be improved by also respecting intermediate results of current iteration

• This leads to the class of Gauss-Seidel-Iterations
 – Historically, an improvement of the Jacoby equitation solver algorithm
 • Devised by Carl Friedrich Gauss and Philipp Ludwig von Seidel
 – Base property:
 • If new information is produced by current iteration, it should also possible to use it the moment it is created (and not starting next iteration)
• A Gauss-Seidel fixpoint iteration is obtained by modifying the elementary production

\[T_P : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance which has not been tested before in this iteration} \} \]

\[B : \leftarrow A_1, A_2, ..., A_n \text{ of a program clause such that } \{A_1, A_2, ..., A_n\} \subseteq \{I \cup \text{new}_B's\} \]

new_B’s refers to all heads of the ground instances of rules considered in the current iteration which had their body literals in I

• Some of these are already in I, but others are new and would usually only be available starting next iteration → improved convergence speed
7.2 Gauss-Seidel Iteration

- Example program \mathcal{P}

```
edge(1, 2).
edge(1, 3).
edge(2, 4).
edge(3, 4).
edge(4, 5).
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).
```

$I_0 = {}$
$I_1 = \{ \text{edge}(1, 2). \text{edge}(1, 3). \text{edge}(2, 4). \text{edge}(3, 4). \text{edge}(4, 5).$
\hspace{1cm} \text{path}(1, 2). \text{path}(1, 3). \text{path}(2, 4). \text{path}(3, 4). \text{path}(4, 5).$
\hspace{1cm} \text{path}(1, 4). \text{path}(2, 5). \text{path}(3, 5) \}$
$I_2 = \{ \text{path}(1, 5) \}$
7.2 Gauss-Seidel Iteration

• Please note:
 – The **effectiveness** of **Gauss-Seidel** iteration for increasing convergence speed varies highly with respect to the chosen **order of instance enumeration**
 • e.g. “Instance K tested - generates the new fact B_1 from I”, “Instance L tested – generates the new fact B_2 from $I \cup B_1$”
 – Good luck – improvement vs. Jacobi
 • v.s. “Instance L tested – does not fire because it needs fact B_1”, “Instance K tested – generates the new fact B_1 from I”
 – Bad luck – no improvement
 – Each single iteration which can be saved improves performance dramatically as each iteration recomputes all known facts!
• For both Gauss-Seidel and Jacobi, a lot of **wasted work** is performed
 – Everything is recomputed times and times again

• But it can be shown that the elementary production rule is **strictly monotonic**
 – Thus, each result is a subset of the next result
 • i.e. \(I_i \subseteq I_{i+1} \)

• This leads to the **semi-naïve evaluation** for linear Datalog
7.2 Semi-Naïve Evaluation

• The main operator for the fixpoint iteration is the elementary production T_P
 – Naïve Fixpoint Iteration
 • $I_{n+1} := T_P(I_n)$
 – Is there a better algorithm?
 • Idea: avoid re-computing known facts, but make sure that at least one of the facts in the body of a rule is new, if a new fact is computed!
 • Really new facts, always involve new facts of the last iteration step, otherwise they could already have been computed before…
7.2 Semi-Naïve Evaluation

• Semi-naïve linear evaluation algorithms for Datalog are generally known as **Delta-Iteration**

 – In each iteration step, compute just the **difference** between successive results \(\Delta I_i := I_i \setminus I_{i-1} \)

 – i.e. \(\Delta I_1 := I_1 \setminus I_0 = T_P(\emptyset) \)
 \[\begin{align*}
 \Delta I_{i+1} &:= I_{i+1} \setminus I_i = T_P(I_i) \setminus I_i \\
 &= T_P(I_{i-1} \cup \Delta I_i) \setminus I_i
 \end{align*} \]

• Especially: \(\Delta I_i \cup I_{i-1} := I_i \)
It is important to efficiently calculate
\[\Delta I_{i+1} := T_\mathcal{P} (I_{i-1} \cup \Delta I_i) \setminus I_i \]

- Especially the \(T_\mathcal{P} \) operator is often inefficient, because it simply applies all rules in the EDB
- More efficient is the use of auxiliary functions
 - Define an auxiliary function of \(T_\mathcal{P} \) \(\text{aux}_\mathcal{P} : 2^{B_\mathcal{P}} \times 2^{B_\mathcal{P}} \rightarrow 2^{B_\mathcal{P}} \) such that \(T_\mathcal{P} (I_{i-1} \cup \Delta I_i) \setminus I_i = \text{aux}_\mathcal{P} (I_{i-1}, \Delta I_i) \setminus I_i \)
 - Auxiliary functions can be chosen intelligently by just taking recursive parts of rules into account
 - A classic method of deriving auxiliary functions is symbolic differentiation
7.2 Semi-Naïve Evaluation

- The **symbolic differentiation operator** dF can be used on the respective relational algebra expressions E for Datalog programs

 Definition $dF(E)$:
 - $dF(E) := \Delta R$, if E is an IDB relation R
 - $dF(E) := \emptyset$, if E is an EDB relation R

 - $dF(\sigma_\varphi(E)) = \sigma_\varphi(dF(E))$ and
 - $dF(\pi_\varphi(E)) = \pi_\varphi(dF(E))$

 - $dF(E_1 \cup E_2) = dF(E_1) \cup dF(E_2)$

Not affected by selections, projections, and unions
7.2 Semi-Naïve Evaluation

- \(dF(E_1 \times E_2) = E_1 \times dF(E_2) \)
 \[\cup dF(E_1) \times E_2 \]
 \[\cup dF(E_1) \times dF(E_2) \]

- \(dF(E_1 \bowtie \vartheta E_2) = E_1 \bowtie \vartheta dF(E_2) \)
 \[\cup dF(E_1) \bowtie \vartheta E_2 \]
 \[\cup dF(E_1) \bowtie \vartheta dF(E_2) \]

For Cartesian products and joins mixed terms need to be considered.
7.2 Semi-Naïve Evaluation

• Consider the program

 • ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

 • The respective expression in relational algebra for ancestor
 is

 \[
 \text{parent} \cup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \text{ancestor})
 \]

 = Symbolic differentiation

 \[
 dF(\text{parent} \cup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \text{ancestor})) \\
 = dF(\text{parent}) \cup \pi_{#1, #2}(dF(\text{parent} \bowtie_{#2=#1} \text{ancestor})) \\
 = \emptyset \cup \pi_{#1, #2}(dF(\text{parent}) \bowtie_{#2=#1} \text{ancestor} \cup \text{parent} \\
 \bowtie_{#2=#1} dF(\text{ancestor}) \cup dF(\text{parent}) \bowtie_{#2=#1} dF(\text{ancestor})) \\
 = \pi_{#1, #2}(\emptyset \cup \text{parent} \bowtie_{#2=#1} dF(\text{ancestor}) \cup \emptyset) \\
 = \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \Delta \text{ancestor})
 \]
• Having found a suitable auxiliary function the delta iteration works as follows

 – Initialization
 • $I_0 := \emptyset$
 • $\Delta I_1 := T_P(\emptyset)$

 – Iteration until $\Delta I_{i+1} = \emptyset$
 • $I_i := I_{i-1} \cup \Delta I_i$
 • $\Delta I_{i+1} := aux_P(I_{i-1}, \Delta I_i) \setminus I_i$

 – Again, for stratified Datalog$^{f,\text{neg}}$ programs the iteration has to be applied to every stratum
• Let’s consider our ancestor program again

 – parent(Thomas, John).
 parent(Mary, John).
 parent(George, Thomas).
 parent(Sonja, Thomas).
 parent(Peter, Mary).
 parent(Karen, Mary).

 – ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

 – Aux\text{\textsubscript{ancestor}}(ancestor, Δancestor)
 := π_{#1, #2}(parent \Join_{#2=#1} Δancestor)
7.2 Semi-Naïve Evaluation

- \(\text{ancestor}_0 := \emptyset \)

- \(\Delta \text{ancestor}_1 := T_{\mathcal{P}}(\emptyset) = \{(T, J), (M, J), (G, T), (S, T), (P, M), (K, M)\} \)

- \(\text{ancestor}_1 := \text{ancestor}_0 \cup \Delta \text{ancestor}_1 = \Delta \text{ancestor}_1 \)

- \(\Delta \text{ancestor}_2 := \text{aux}_{\text{ancestor}}(\text{ancestor}_0, \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 := \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 = \{(G, J), (S, J), (P, J), (K, J)\} \)
7.2 Semi-Naïve Evaluation

\[\text{ancestor}_2 := \text{ancestor}_1 \cup \Delta \text{ancestor}_2 \]
\[= \{(T, J), (M, J), (G, T), (S, T), (P, M), (K, M), (G, J), (S, J), (P, J), (K, J)\} \]

\[\Delta \text{ancestor}_3 := \text{aux}_{\text{ancestor}}(\text{ancestor}_1, \Delta \text{ancestor}_2) \setminus \text{ancestor}_2 \]
\[:= \pi_{\#1, \#2}(\text{parent} \bowtie_{\#2=\#1} \Delta \text{ancestor}_2) \setminus \text{ancestor}_2 \]
\[= \emptyset \]

– Thus, the least fixpoint is \(\text{ancestor}_2 \cup \text{parent} \)
7.2 Push Selection

• Transforming a Datalog program into relational algebra also offers other optimizations
 – Typical relational algebra equivalences can be used for heuristically constructing better query plans
 • Usually an operator tree is built and transformed
 – Example: push selection
 • If a query involves a join or Cartesian product, pushing all selections down to the input relations avoids large intermediate results
 – But now we have a new operator in our query plan: the least fixpoint iteration (denoted as LFP)
Consider an example

- `edge(1, 2).
 edge(4, 2).
 edge(2, 3).
 edge(3, 5).
 edge(5, 6).

- `path(X,Y) :- edge(X,Y).`
 `path(X,Y) :- edge(X,Z), path(Z,Y).`

- Relational algebra: `edge \cup \pi_{#1, #2}(edge \bowtie_{#2=#1} path)`
• Now consider the query ?path(X, 3)
 \[- \pi_{#1} \sigma_{#2=3}(LFP (edge \cup \pi_{#1,#2}(edge \bowtie_{#2=#1} path)))\]
 • From which nodes there is a path to node 3?
 • The above query binds the second argument of path
 • path(X,Y) :- edge(X,Y).
 path(X,Y) :- edge(X,Z), path(Z,Y).
 • Thus the selection could be pushed down to the edge and path relations
7.2 Push Selection

To answer the query we now only have to consider the facts and rules having the correct second argument:

- `edge(2, 3).` (fact)
- `path(2,3).` (R1)
- `path(1,3).` (R2)
- `path(4,3).`

Result: `{2, 1, 4}`
7.2 Push Selection

• Now let’s try a different query \(\text{?path}(3,Y) \)

 \[\pi_{\#1} \sigma_{\#1=3}(\text{LFP (edge} \cup \pi_{\#1,\#2}(\text{edge} \bowtie_{\#2=\#1}\text{path}))) \]

 • To which nodes there is a path from node 3?

 – The above query binds the first argument of \(\text{path} \)

 • \(\text{path}(X,Y) :- \text{edge}(X,Y) \).

 • \(\text{path}(X,Y) :- \text{edge}(X,Z), \text{path}(Z,Y) \).
To answer the query we now only have to consider the facts and rules having the correct second argument:

- `edge(3,5).` \text{fact}
- `path(3,5).` \text{R1}
- `\emptyset` \text{R2}

Result: \{5\}

Obviously this is wrong.
7.2 Push Selection

• More general: when can the **least fixpoint iteration** and **selections** be re-ordered?

 – Let p be a predicate in a linear recursive Datalog program and assume a query $? \ p(..., c, ...)$, binding some variable X at the i-th position to constant c

 – The selection $\sigma_{#i=c}$ and the least fixpoint iteration LFP can be safely exchanged, if X occurs in all literals with predicate p exactly in the i-th position
7.3. Logical Rewriting

• In the following, we deal with rewriting methods

<table>
<thead>
<tr>
<th>Rewriting Method</th>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic Sets</td>
<td>Counting</td>
<td>Variable reduction</td>
</tr>
<tr>
<td>Static Filtering</td>
<td></td>
<td>Constant reduction</td>
</tr>
</tbody>
</table>

• Basic Idea:
 – Transform program \mathcal{P} to a semantically equivalent program \mathcal{P}' which can be evaluated faster using the same evaluation technique
 • e.g. same result, but faster when applying Jacobi iteration
7.3. Logical Rewriting

- **Clever** rewriting could work like this:

\[
P : \\
\text{ancestor}(X, Y) : \neg \text{parent}(X, Y). \\
\text{ancestor}(X, Y) : \neg \text{ancestor}(X, Z), \text{parent}(Z, Y). \\
\text{ancestor}(Wolfi, Y) ?
\]

- All valid proof trees for result tuples need a substitution for rule 1 and rule 2 such that X is substituted by Wolfi.
• Thus, an \textbf{equivalent program} \mathcal{P}' for the query looks like this

\begin{verbatim}
\mathcal{P'}:
ancestor(\textit{Wolfi}, Y) :- parent(\textit{Wolfi}, Y).
ancestor(\textit{Wolfi}, Y) :- ancestor(\textit{Wolfi}, Z), parent(Z, Y).
ancestor(\textit{Wolfi}, Y) ?
\end{verbatim}

– This simple transformation will skip the deduction of many (or in this case all) useless facts

– Actually, this transformation was straight forward and simple, but there are also unintuitive but effective translations…

• Magic sets!
7.3. Magic Sets

• Magic Sets
 – Magic sets are a **rewriting** method exploiting the **syntactic** form of the **query**
 – The base idea is to capture some of the **binding patterns** of top-down evaluation approaches into rewriting
 • If there is a subgoal with a **bound argument**, solving this subgoal may lead to new instantiations of other arguments in the original rule
 • Only **potentially useful** deductions should be performed
7.3. Magic Sets

- Who are the ancestors of Wolfi?
A typical **top-down search tree** for the goal ancestor(\textit{Wolfi}, \textit{X}) looks like this

\begin{align*}
Q &\equiv \text{ancestor}(\textit{Wolfi}, \textit{X}) \\
\text{anc.}(\textit{Wolfi}, \textit{X}) &\text{ :- } \text{anc.}(\textit{Wolfi}, \textit{Z}), \text{par.}(\textit{Z}, \textit{X}). \\
\text{anc.}(\textit{Wolfi}, \textit{Z}) &\quad \text{par.}(\textit{Z}, \textit{X}) \\
\text{anc.}(\textit{Wolfi}, \textit{X}) &\text{ :- } \text{par.}(\textit{Wolfi}, \textit{Z}). \\
\text{par.}(\textit{Wolfi}, \textit{Z}) &
\end{align*}

\begin{itemize}
\item Possible substitutions already restricted
\item How can such a restriction be incorporated into rewriting methods?
\end{itemize}
7.3. Magic Sets

- For rewriting, propagating binding is more difficult than using top-down approaches.
- **Magic Set** strategy is based on augmenting rules with additional **constraints** (collected in the magic predicate).
 - This is facilitated by “adorning” predicates.
 - **Sideways information passing** (SIP) is used to propagate binding information.
Before being able to perform the magic set transformation, we need some auxiliary definitions and considerations

- Every query (goal) can also be seen as a rule and thus be added to the program

 - e.g. \text{ancestor}(Wolfi, X) \Rightarrow q(X) :- \text{ancestor}(Wolfi, X)
• Arguments of predicates can be distinguished
 – Distinguished arguments have their range restricted by either constants within the same predicate or variables which are already restricted themselves
 – i.e.: The argument is distinguished if
 • it is a constant
 • OR it is bound by an adornment
 • OR it appears in an EDB fact that has a distinguished argument
7.3. Logical Rewriting

- **Predicates occurrences** are distinguished if **all its arguments are distinguished**
 - In case of EDB facts, either all or none of the arguments are distinguished

- **Predicate occurrences** are then **adorned** (i.e. annotated) to express which arguments are distinguished
 - Adornments are added to the predicate, e.g. $p^{fb}(X, Y)$ vs. $p^{bb}(X, Y)$
7.3. Magic Sets

– For each argument, there are two possible adornments
 • \(b \) for \textit{bound}, i.e. distinguished variables
 • \(f \) for \textit{free}, i.e. non-distinguished variables

– Thus, for a \textit{predicate} with \(n \) arguments, there are \(2^n \) possible \textit{adorned occurrences}
 • e.g., \(p^{bb}(X, Y) \), \(p^{fb}(X, Y) \), \(p^{bf}(X, Y) \), \(p^{ff}(X, Y) \)
 • Those adorned occurrences are treated as if they were different predicates, each being defined by its own set of rules
7.3. Magic Sets

- Example output of magic set algorithm

\[\mathcal{P} : \]
ancestor(\textit{Wolfi}, Y) ?
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).

\[\mathcal{P}' : \]
magic(\textit{Wolfi}).
magic(Y) :- magic(Z), parent(Z, Y).
q^f(Y) :- ancestor^{bf}(\textit{Wolfi}, Y).
ancestor^{bf}(X, Y) :- magic(X), parent(X, Y).
ancestor^{bf}(X, Y) :- magic(X), ancestor^{bf}(X, Z), parent(Z, Y).

Adornment

Magic set

Magic rule

Encoded query

Rule Restriction
7.3. Magic Sets

• The idea of the magic set method is that the magic set contains all possibly interesting constant values
 – The magic set is recursively computed by the magic rules

• Each adorned predicate occurrence has its own defining rules
 – In those rules, the attributes are restricted according to the adornment pattern to the magic set
Now, following problems remain

– How is the magic set computed?
– How are the rules for adorned predicate occurrences actually defined?

Before solving these problems, we have to find out which adorned occurrences are needed.

Thus, the reachable adorned system has to be found.

– i.e. incorporate the query as rule and replace all predicate by its respective adornments.
7.3. Magic Sets

- **Incorporate goal query**

 \[
 \text{ancestor}(X, \text{Wolfi})? \\
 \text{ancestor}(X, Y) : - \text{parent}(X, Y). \\
 \text{ancestor}(X, Y) : - \text{ancestor}(X, Z), \text{parent}(Z, Y).
 \]

- **Adorn predicate occurrences**

 \[
 q^f(X) : - \text{ancestor}^{fb}(X, \text{Wolfi}). \\
 \text{ancestor}^{fb}(X, Y) : - \text{parent}(X, Y). \\
 \text{ancestor}^{fb}(X, Y) : - \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y).
 \]

 reachable adorned system
7.3. Magic Sets

• For defining the magic set, we create **magic rules**
 – For each adorned predicate occurrence in a rule of an intensional DB predicate, a magic rule corresponding to the right hand side of that rule is created
 • Predicate occurrences is replaced by **magic predicate**, bound arguments are used in rule head, free ones are dropped
 • Magic predicates in the head are **annotated** with its origin (rule & predicate), those on the right hand side just with the predicate
 – \(q^f(X) :\text{-} \text{ancestor}^{fb}(X, \text{Wolfi}). \)
 \(\Rightarrow \text{magic}_r0_\text{ancestor}^{fb}(\text{Wolfi}). \)
 – \(\text{ancestor}^{fb}(X, Y) :\text{-} \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y). \)
 \(\Rightarrow \text{magic}_r2_\text{ancestor}^{fb}(Z):\text{-} \text{magic}_\text{ancestor}^{fb}(Z), \text{parent}(Z, Y). \)
7.3. Magic Sets

• Thus, we obtain multiple magic predicates for a single adorned predicate occurrence
 – Depending on the creating rule
 • e.g. magic_r0_ancestor^{fb}, magic_r2_ancestor^{fb} both using magic_ancestor^{fb}
 – Now we need complementary rules connecting the magic predicates
 • Adorned magic predicate follows from special rule magic predicate with same adornment
 • magic_ancestor^{fb} (X):- magic_r0_ancestor^{fb}(X).
 • magic_ancestor^{fb} (X):- magic_r2_ancestor^{fb}(X).
7.3. Magic Sets

• Finally, we have a complete definition of magic predicates with different adornments
 – In our case, we have only the fb-adornment
 • magic_r0_ancestor^{fb}(Wolfi).
 • magic_r2_ancestor^{fb}(Z) :- magic_ancestor^{fb}(Z), parent(Z, Y).
 • magic_ancestor^{fb}(X) :- magic_r0_ancestor^{fb}(X).
 • magic_ancestor^{fb}(X) :- magic_r2_ancestor^{fb}(X).
 – The magic magic_ancestor^{fb} set thus contains all possibly useful constants which should considered when evaluating an ancestor subgoal with the second argument bound for the current program
 • Like, e.g. our query…
7.3. Magic Sets

• As all magic sets are defined, the original rules of the reachable adorned system have to be restricted to respect the sets

 – Every rule using an adorned IDB predicate in its body is augmented with an additional literal containing the respective magic set

 – e.g.

 • \(\text{ancestor}^{\text{fb}}(X, Y) :\) \(\text{- ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y). \)

 \[\Rightarrow \text{ancestor}^{\text{fb}}(X, Y) : \text{- magic}_\text{ancestor}^{\text{fb}}(X), \text{ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y). \]
Finally, the following program is created:

\[
\text{ancestor}(X, Y) :- \text{parent}(X, Y).
\]

\[
\text{ancestor}(X, Y) :- \text{ancestor}(X, Z), \text{parent}(Z, Y).
\]

\[
\text{ancestor}(X, \text{Wolfi})?
\]

\[
\text{magic}_r0_\text{ancestor}^{\text{fb}}(\text{Wolfi}).
\]

\[
\text{magic}_r2_\text{ancestor}^{\text{fb}}(Z) :- \text{magic}_\text{ancestor}^{\text{fb}}(Y), \text{parent}(Z, Y).
\]

\[
\text{magic}_\text{ancestor}^{\text{fb}}(X) :- \text{magic}_r0_\text{ancestor}^{\text{fb}}(X).
\]

\[
\text{magic}_\text{ancestor}^{\text{fb}}(X) :- \text{magic}_r2_\text{ancestor}^{\text{fb}}(X).
\]

\[
\text{ancestor}^{\text{fb}}(X, Y) :- \text{parent}(X, Y).
\]

\[
\text{ancestor}^{\text{fb}}(X, Y) :- \text{magic}_\text{ancestor}^{\text{fb}}(Y), \text{ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y).
\]

\[
\text{q}^f(X) :- \text{ancestor}^{\text{fb}}(X, \text{Wolfi}).
\]
7.3. Magic Sets

• In this example, following further optimizations are possible
 – In this case, it is not necessary to separate the two occurrences of magic_r0_ancestorfb and magic_r2_ancestorfb
 • No dependencies between both
 • We can unify and rename them
 – We have only one adornment pattern (fb) and can thus drop it
 – This final program can be evaluated using any evaluation technique with increased performance

\begin{verbatim}
magic(Wolfi).
magic(Z) :- magic(Z), parent(Z, Y).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- magic(X), ancestor(X, Z), parent(Z, Y).
\end{verbatim}
7.3. Magic Sets

- **Magic Sets in short form**
 - Query is part of the program
 - Determine **reachable adorned system**
 - i.e. observe which terms are distinguished and propagate the resulting adornments
 - Reachable adorned system contains separated *adorned predicate occurrences*
 - Determine the **magic set** for each adorned predicate occurrence
 - Use **magic rules** and **magic predicates**
 - **Restricts rules** using adorned predicates to using only the constant in the respective magic set
• Uncertain Reasoning!