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8. Deduction with Uncertainty  



ÅWe have discussed ways of deriving new facts 

from other (ground) facts 

ïBut often several rules can lead to a certain fact and 

we cannot be sure which one it was  

ÅA patient experiences toothaches, what is the reason? 

ïSometimes a certain fact might be derived  

from ground facts only in certain cases  

ÅA normal bird can fly, except for  

penguins, ostriches,é  
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8.1  Uncertainty  



ÅTypical sources of imperfect information in 
deductive databases areé  
ïIncomplete  information 
ÅInformation is simply missing, which might clash with the closed 

world assumption 

ïImprecise  information 
ÅThe information needed has only been specified in a vague way, 

e.g., a person is young:  young(Tim). 
ÅQueries, about Timõs age are difficult to answer, e.g., ?age(Tim, 

67) is false, but what about ?age(Tim, 25)? 

ïUncertain  information  
ÅA deduction is not always correct, e.g., the question whether a 

bird can fly:  fly(X) :- bird(X).  
ÅWhat about penguins,  dead birds, or birds with clipped wings? 
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8.1  Uncertainty  



ÅConsider an expert system for dentists  

ïAll possible causes for toothaches are contained in a 
database and the reason should be deduced 

ïcavities(X) :- toothache(X).  
periodontosis(X) :- toothache(X). 
ÅNot very helpful, since all possible  
causes are listed. Thus, all rules fireé 

ïcavities(X) :- toothache(X), ¬periodontosis(X).  
periodontosis(X) :- toothache(X), ¬cavities(X). 
ÅNot very helpful either, because now we need to disprove 
all alternatives before any rule firesé 

ÅRemember the assumption of ônegation as failureõ 
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8.1 Uncertainty  



ÅBut how do dentists  deal with the problem? 

ïLike in our second program look for positive or 

negative clues  

Åe.g., bleeding of gums,é 

ÅStill, how does a dentist know what to  

look for?  

ïWhat are probable causes? 

ïWhat are possible causes?  

ïKnowing the patient, what is the  

(subjective) judgement ? 
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8.1 Uncertainty  



ÅBasic idea: assign a measure of validity to each 
rule or statement and propagate this measure 
through the deduction process 
ïProbabilistic truth values   
ÅUse statistics: how often is cavities the reason and how often is 

peridontosis? 

ÅLeads to a probability distribution over possible worlds 

ïPossibility values  
ÅWhat are possible causes an to what degree do they cause 

toothache? 

ÅLeads to a possibility distribution over possible worlds 

ïBelief values  
ÅLead to belief networks with facts that may influence each other 

ïé 
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8.1  Uncertainty  



ÅUsually dealing with uncertainty needs an open 

world assumption  

ïFacts not stated in the database may or may not be 

false 

ÅBut the reasoning gets more difficult  

ïRemember our discussion about the existence of 

several minimal models in Datalogneg 

ïThe reasoning process is not monotonic any more 

ÅIntroduction of new knowledge might lead to a revision 

(and sometimes refutation) of previously derived facts   
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8.1  Uncertainty  



ÅNon -monotonic reasoning considers that 

sometimes statements considered true, have to 

be revised in the light of new facts  

ïTweety is a bird.  

ÅCan Tweety fly?   Yes!  

ïTweety is a bird.  Tweety is 2.5 meters.  

ÅCan Tweety fly?  No! 

ïThe introduction of a new fact has  

challenged  the general rule that birds can fly 

ÅOnly ostriches reach a height of 2.5 meters! 
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8.1 Non -Monotonic Reasoning  



ÅThere are several classical  

approaches  of dealing with  

the problem 

ïDefault logic 

ïPredicate circumscription 

ïAutoepistemic reasoning 

ïé 
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8.1 Non -Monotonic Reasoning  



ÅDefault logic  was proposed by Raymond Reiter 

(University of Toronto) in 1980 

ïCan express logical facts like  

ôby default, something is trueõ 

ïBasically a default theory consists of  

two parts D and W  

ÅW is a set of first order logical formulae known to be true 

ÅD is a set of default rules of the form 
  

prerequisite :  justification1ȟ ȣȟ justification n 
                               conclusion 
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8.1 Non -Monotonic Reasoning  



ïprerequisite :  justification1ȟ ȣȟ justification n 
                               conclusion 
 

ïIf we believe the prerequisite to be true , and each of 

justification i is consistent  with our current beliefs, we 

are led to believe that conclusion is true  

ÅExample:  bird(X) :  fly(X)   with {bird(condor), bird(penguin),   

                       fly(X)                      fly(eagle), ¬fly(penguin)} 

Åfly(condor)  is true by default, since it is a bird and we have no 

justification to believe otherwise 

ÅBut fly(penguin)  cannot be derived here, since although 

bird(penguin)  is true, we know that the justification is false 

ÅNeither can we deduce bird(eagle) which would be abduction  
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8.1 Non -Monotonic Reasoning  



ÅA common default assumption is the closed world 
assumption     true : ¬F 
                                   ¬F 
 

ÅThe semantics of default logics is again based on 
fixpoints   
ïUse set W as initial theory T 
ïAdd to a theory T every fact that can be deduced by using 

any of the default rules in D, so-called extensions  to the 
theory T 
ïRepeat until nothing new can be deduced  

ïIf T is consistent with all justifications of the default 
rules used to derive any extension, output T 
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8.1 Non -Monotonic Reasoning  



ÅThe last check in the algorithm is necessary to 

avoid inconsistent theories  

ïi.e. something has been deduced using a justification 

that was later  proven to be false 

ïE.g. consider a default rule   true :  A(X)  and  W := Ø 
                                                        ¬ A(X)  

ÅSince A(X) is consistent with W we may conclude ¬A(X), 
which however is inconsistent  with the previously 

assumed A(X) 

ÅIn this case the theory simply has no extensions  
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8.1 Non -Monotonic Reasoning  



ÅInterestingly, the semantics is non-deterministic  

ïThe deduced theory may depend on the sequence in 

which defaults are applied 

ÅExample: D:={ bird(X) : fly(X) ,  penguin(X) : ¬fly(X) }  

                              fly(X)                          ¬fly(X) 

with {bird( Tweety), penguin(Tweety)}  

ÅStarting with W both default rules are applicable 

ÅIf we use the first rule, the extension fly( Tweety) would be 

added, and the second default rule is no longer applicable 

ÅIn case we apply the second rule first, the extension would 

be ¬fly( Tweety) 
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8.1 Non -Monotonic Reasoning  



ÅEntailment of a formula from a default theory 
can be defined in two ways 

ïSkeptical  entailment 

ÅA formula is entailed by a default theory if it is entailed by all its 
extensions  

ïCredulous  entailment  

Åa formula is entailed by a default theory if it is entailed by at 
least one of its extensions  

 

ïFor example our Tweety theory has two extensions , one 
in which Tweety can fly and one in which he cannot fly 
ÅNeither extension is skeptically entailed 

ÅBoth of them are credulously entailed 
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8.1 Non -Monotonic Reasoning  



ÅPredicate circumscription was introduced by 

John McCarthy (Stanford University) in 1978 

ïInventor of LISP and the ôspace  

fountainõ  
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8.1 Non -Monotonic Reasoning  



ïBasically circumscription tries to  

formalize the common sense  

assumption that things are as  

expected, unless specified  

otherwise  
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8.1 Non -Monotonic Reasoning  



ÅConsider the problem whether Tweety  can fly , 

if we assume that Tweety is a penguiné  

ïSure, Tweety can fly,é  

                                ébecause he takes a helicopter! 

ïThis solution is intuitively   

not valid, since no helicopter  

was mentioned in our facts 

ïOf course we could exclude   

all possible ways to fly in our  

program, buté   
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8.1 Non -Monotonic Reasoning  



ÅCircumscription is a rule of conjecture that can 

be used for jumping to certain conclusions  

ïThe objects that can be shown to have a certain 

property P by reasoning from certain facts A, are all 

the objects  that satisfy P 

ÅMore generally, circumscription can be used to conjecture 

that the substitutions that can be shown to satisfy a 

predicate, are all the tuples  satisfying this predicate  

ïThus, the set of relevant tuples is circumscribed 
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8.1 Non -Monotonic Reasoning  



ÅExample:  by circumscription a bird can be 
conjectured to fly unless something prevents  it 

ïThe only entities that can prevent the bird from flying 
are those whose existence follows from the facts  

ÅIf no clipped wings, being a penguin or other circumstances 
preventing flight are deducible, then the bird is concluded to 
fly 

ÅBasically, this can be done by adding a predicate 
¬abnormal(X) to all rules about flying 

ïThe correctness of this conclusion depends on having 
taken into account all relevant facts when the 
circumscription was made  
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8.1 Non -Monotonic Reasoning  



ÅCircumscription therefore tries to derive all 

minimal models of a set of formulae 

ïIf we have a predicate p(X1ȟ ȣȟ Xn) then a model tells 

whether the predicate is true for any possible substitution 

with terms for Xi  

ÅThe extension of p(X1ȟ ȣȟ Xn) in a model is the set of 

substitutions for which p(X1ȟ ȣȟ Xn) evaluates to true 

ïThe circumscription of a formula is a minimization 

believing only the least possible number of predicates 

Å The circumscription of p(X1ȟ ȣȟ Xn) in a formula is obtained by 

selecting only models with a minimal  extension of p(X1ȟ ȣȟ Xn) 
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8.1 Non -Monotonic Reasoning  



ÅExample  

ïConsider a formula of the type ! Ẓ " ẓ #   D like 
fly(X) :- bird(X), eagle(X). 
fly(X) :- bird(X), condor(X). 
ÅObviously bird(X) has to be true in any model, but to be 

minimal only eagle(X) or condor(X) has to be true 

ÅHence there are two circumscriptions of the formula 
{bird(X), eagle(X)} and {bird(X), condor(X)} , but not 
{bird(X), eagle(X), condor(X)} 

ïNote that predicates are only evaluated  
as false, if it is possible 

Åeagle(X) and condor(X) cannot both be false 
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8.1 Non -Monotonic Reasoning  



ÅBut sometimes circumscription handles disjunctive 
information incorrectly 
ïToss a coin onto a chess board and consider the predicate 

lies_on(X, Y) where it lies 

ïThere are several possibilities of models 
ÅObviously {lies_on(coin, floor)} should be false, since it was not 

mentioned that the coin could miss the board 
ÅThat leaves {lies_on(coin, white)}, { lies_on(coin, black)}, and 

{lies_on(coin, white), lies_on(coin, black)} for the overlapping 
case 

ïBut the last model would be filtered out as not being 
minimal by circumscription 
ÅOne possibility to remedy this case is theory curbing , where 

iteratively the least upper bound(s) of the minimal models is 
added until the set of models is closed  
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8.1 Non -Monotonic Reasoning  



ÅAutoepistemic  Logic was introduced  
by Robert C. Moore (Microsoft Research)  
in 1985 

ÅAutoepistemic logic cannot only express  
facts, but also knowledge  and lack of knowledge 
about facts  

ÅFormalizes non-monotonicity using statements with a 
belief operator B  

ïFor every well-formed formula F, the ôbelief atomõ B(F) 
means that F is believed  

ï¬B( F) means that F is not believed 
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8.1 Non -Monotonic Reasoning  



ÅIt uses the following axioms  

ïAll propositional tautologies are axioms 

ïIf we believe in B(X) :- A(X)., then whenever we 

believe in A(X), we also have to believe in B(X)  

ïInconsistent conclusions are never believed, i.e. 

¬B( false) 

ÅIt uses modus ponens as inference rule 

ïGiven an conditional claim A  B and the truth of the 

antecedent  A, it can be logically concluded that the 

consequent B must be true as well 
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8.1 Non -Monotonic Reasoning  



ÅThis can be used to derive stable sets of 

sentences which are then believed  

ïi.e. the reflection of our own state of knowledge 

ÅIf we do not believe in a fact, then we believe  

that we do not believe it 

ïB ÂÉÒÄ 8  Ẓ B(¬fly(X))  fly(X)  

ïIf I believe that X is a bird and if I donõt believe that X 

cannot fly, then I will conclude that X flies 
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8.1 Non -Monotonic Reasoning  



ÅA belief theory  T describes the knowledge base 

ïA restricted belief interpretation of T is a set of 

belief atoms I such that for each B(F) appearing in T 

either B(F)  I or ¬ B(F)  I (but not both) 

ïA restricted belief model of  

T is a belief interpretation I  
such that 4 ẕ ) is consistent 
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8.1 Non -Monotonic Reasoning  



ÅAgain expansions to the theory can be derived  

ïSince all belief atoms have to be either true or false, 

the theory can be treated like propositional  

formulae 

ïIn particular, checking whether T entails F can be 

done using the rules of the propositional calculus 

ïIn order for an initial assumption to be an 

expansion, it must be that F is entailed, iff B(F)  has 

been initially assumed true 
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8.1 Non -Monotonic Reasoning  



ÅProbability theory deals with expressing the 

belief  or knowledge  that a certain event  will 

or has occurred  

ÅIn general, there are two major factions among 

probability theorists 

ïFrequentistic  view : 

ÅProbability of an event is its relative frequency of 

occurrence during a long running random experiment  

ÅMajor supporters: Neyman, Pearson, Wald, é 
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8.2 Probability  



ïBayesian view : 

ÅProbabilities can be assigned to any event or statement 

whether it is part of a random process or not 

ÅProbabilities thus express the degree of belief that a given 

event will happen 

ÅMajor supporters: Bayes, Laplace, de Finetti, é 

ÅDuring the following slides, we will  

encounter both views 

ïébut still, formal notation and theory 

is similar in both 
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8.2 Probability  



ÅThe probability  of an event or statement A is 

given by P(A) 

ï0 !  ᶰ πȟρ 

ïP(¬A):=1 -P(A) 

ïDepending on your world view, probability of 

P(A)=0.8 may mean 

ÅDuring an longer random experiment, A was the outcome 

of 80% of all tries 

ÅYou have a strong belief (quantified by 0.8 of a maximum 

of 1) that A can / will happen 
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8.2 Probability  



ÅGiven two events A and B and assuming that they 

are statistically  independent  of each other, 

probabilities may be combined 

ï0 ! Ẓ "  0 !  ɕ 0 " 

Åalso written P(A, B) 

ïe.g.  

ÅP(isYellow(Tweety))=0.8  and P(canFly(Tweety))=0.2  
 P(isYellow(Tweety), canFly(Tweety)) = 0.16  
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8.2 Probability  



ÅHowever, events are often not independent, thus 
we need conditional probabilities  

ïThis is written as P(A | B)  

ÅP(A | B) is the conditional probability of A given B 

Å0 ! ȿ "  ȡ  0 ! Ẓ "  Ⱦ 0 " 

Åe.g.  P(canBark(X) | dog(X)) = 0.9 
ïGiven that X is a dog, X can bark with a probability of 0.9  

ÅBased on conditional probabilities, we can derive 
simple deductive system 

ïProbabilistic rules :  

ÅB  N P(B|A) A or  B :- P(B|A) A 
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8.2 Probabilistic Reasoning  



ÅOf course, we can also form deductive chains 

ÅExample : 

ïÄÏÇ 8  ᴺ0.6 domestic_animal(X).  
canBark 8  ᴺ0.9 dog(X).  
Ṳ canBark 8  ᴺ?? domestic_animal(X). 

ïSo, assuming statistical independence between 

barking and domestic animals, we may conclude that 

the probabilities may be just multiplied, i.e.  

canBark 8  ᴺ0.54 domestic_animal(X). 
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8.2 Probabilistic Reasoning  



ÅUnfortunately, this naïve approach breaks quickly 

ÅExample : 

ïÄÏÇ 8  ᴺ0.6 domestic_animal(X).  
canBark 8  ᴺ0.9 dog(X).  
 Ṳ canBark 8  ᴺ0.54 domestic_animal(X). 

ïdomestic_animal 8  ᴺ1.0 cat(X). 
 Ṳ canBark 8  ᴺ0.54 cat(X). 

ÅCats can bark with 0.54 probability? Something is wrongé 

ïProblem:  

ÅÄÏÇ 8  ᴺ0.6 domestic_animal 8  ᴺ1.0 cat(X).  ?? 
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8.2 Probabilistic Reasoning  


