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@ 8. Deduction with Uncertainty

8.1 Uncertain Knowledge
8.2 Probabilistic Application
8.3 Belief Networks
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@ 8.1 Uncertainty

A We have discussed ways @édriving new facts
from other (ground) facts

I But oftenseveral rules can lead to a certain fact anc
we cannot be sure which one it was

AA patient experiences toothaches, what is tle@ason ?
I Sometimes a certain fact might be deri
from ground facts only igertain cases

AA normal bird can fly, except for |
Ppenguil ns, 0S5 S

- N
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@ 8.1 Uncertainty

A Typicalsources of imperfect information  in
deductive databases &e

I Incomplete information

A Information is simply missing, which might clash with the close
world assumption

I Imprecise information

A The information needed has only been specified in a vague we
e.g., a person is youngoung(Tim).

AQueries, about Ti mds &age(Tim,r e
67) Is false, but what abottage(Tim, 25)?

I Uncertain information

A A deduction is not always correct, e.g., the question whether a
bird can fly:fly(X) :- bird(X).

A What about penguins, dead birds, or birds with clipped wings?

KnowledgeBased Systems and Deductive Datab&sehristoph Lof¢ IfIS¢ TU Braunschweig 4



@ 8.1 Uncertainty

A Consider arexpert system for dentists

I All possible causes for toothaches are contained in
database and the reason should be deduced

| cavities(X) - toothache(X).
periodontosis(X) :- toothache(X).
ANot very helpful, sincall possible
causes are |1 sted.s
I cavities(X) - toothache(X), —lperlodontos,ls(X)
periodontosis(X) :- toothache(X), ~cavities(X).

ANot very helpful either, because now we need to disprove
al | alternatives Dbefore ar

ARemember the assumption of
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@ 8.1 Uncertainty

A But how dodentists deal with the problem?

I Like in our second prograrnook for positive or
negative clues

Ae.g.bleeding of gums é

look for?
I What are probable causes?
I What are possible causes?

I Knowing the patient, what is the
(subjectivejudgement ?
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@ 8.1 Uncertainty

A Basic idea: assign aneasure of validity to each
rule or statement and propagate this measure
through the deduction process

I Probabilistic truth values

A Use statistics: how often is cavities the reason and how often i
peridontosi®

A Leads to a probability distribution over possible worlds
I Possiblility values

AWhat are possible causes an to what degree do they cause
toothache?

A Leads to a possibility distribution over possible worlds

| Belief values
A Lead to belief networks with facts that may influence each othe

i 6
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@ 8.1 Uncertainty

A Usually dealing with uncertainty needsagen
world assumption

I Facts not stated in the database may or may not be
false

A But the reasoning gets moudifficult

I Remember our discussion about the existence of
several minimal models Datalog®?

I The reasoning process it monotonic any more

Alntroduction of new knowledge might lead to a revision
(and sometimes refutation) of previously derived facts
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@ 8.1 Non -Monotonic Reasoning D@folui

A Non -monotonic reasoning considers that
sometimes statements considered true, have to
be revised in the light of new facts
I Tweetyis a bird.

ACanTweetyfly? Yes!

I Tweetyis a bird. Tweetyis 2.5 meters.
ACanTweetyfly? Nol!
I The introduction of anew fact has ik
challenged the general rule that birds can fly
AOnly ostriches reach a height of 2.5 meters!
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@ 8.1 Non -Monotonic Reasoning Detolm

the problem

I Default logic
I Predicate circumscription
I Autoepistemicreasoning

7

I é
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@ 8.1 Non -Monotonic Reasoning Delollﬁ

A Default logic wasproposedby Raymond Relter
(Universityof Toronto) in 1980 :

| Can express logical facts like
Oby defaul t, som»_, \
i Basically a default theory consists of}
two parts D andW
AW is a set of first order logical formulae known to be true
AD is a set of default rules of the form

prerequisite : justification,;h jistification,,
conclusion
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@ 8.1 Non -Monotonic Reasoning

| prerequisite : justification,h j@stification
conclusion

I If we believe thererequisite to be true , and each of
justification; is consistent with our current beliefs, we
are led to believe thatonclusionistrue

A Example:bird(X) : fly(X) with {bird(condor), bird(penguin),
fly(X) fly(eagle), —fly(penguin)}
Afly(condor) is true by default, since it is a bird and we have no
justification to believe otherwise

A But fly(penguin) cannot be derived here, since although
bird(penguin) is true, we know that the justification is false

A Neither can we deduceird(eagle) which would be abduction
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A A common default assumption is tictosed world
assumption true : -F

-F

A The semantics of default logics is again based on
fixpoints

I Use setW as initial theoryT

I Add to a theoryT every fact that can be deduced by usir

any of the default rules ID, so-calledextensions to the
theory T

I Repeat until nothing new can be deduced

I If T isconsistent with all justifications of the default
rules used to derive any extension, outplt
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@ 8.1 Non -Monotonic Reasoning Detolm

A The last check in the algorithm is necessary to
avoidinconsistent theories

I I.e.something has been deduced using a justificatio
that waslater proven to be false

I E.g.consider a default rulerue : A(X) and W =@
- A(X)
A SinceA(X) is consistent withV we may conclude A(X),

which however isnconsistent with the previously
assumedi(X)

Aln this case the theory simply hae extensions
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@ 8.1 Non -Monotonic Reasoning

A Interestingly, the semanticsnen-deterministic

I The deduced theory may depend on teequence in
which defaults are applied
AExampleD:={ bird(X) : fly(X) , penguin(X) : =fly(X) }

fly(X) =fly(X)
with {bird( Tweety), penguin(Tweety)}

A Starting withw both default rules are applicable

AlIf we use the first rule, the extensidiy( Tweety) would be
added, and the second default rule is no longer applicable

Aln case we apply the second rule first, the extension wouls
be fly( Tweety)
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@ 8.1 Non -Monotonic Reasoning Detollk

A Entailment of a formula  from a default theory
can be defined in two ways

I Skeptical entailment

A A formula is entailed by a default theory if it is entaibgdall its
extensions

I Credulous entailment

Aa formula is entailed by a default theory if it is entatgdat
least one of its extensions

I For example oufiweetytheory hastwo extensions , one
In whichTweety can fly and one in which he cannot fly

A Neither extension is skeptically entailed
A Both of them are credulously entailed
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8.1 Non-Monotonic Reasoning &4 Pr

J I
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A Predicate circumscription was introduced by
John McCarthy (Stanford University) in 1978

Il nvent or o f LI SP and t h
fount aili no

KnowledgeBased Systems and Deductive Datab&sghristoph Lofg IfiIS¢ TU Braunschweig 17



@ 8.1 Non -Monotonic Reasoning

I Basically circumscription tries to
formalize the common sense
assumption thathings are as
expected, unless specified

otherwise
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@ 8.1 Non -Monotonic Reasoning Delollﬁ

A Consider the problenwhether Tweety can fly,
If we assume thaliweetyis apenguiné

I SureJweetyc an f |l vy, é
ébecause he t a

I This solution igntuitively
not valid, since no helicopter
was mentioned in our facts

I Of course we coulcexclude
all possible ways to fly in our &=
program, bute™
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@ 8.1 Non -Monotonic Reasoning Deiollﬁ

A Circumscription is a rule of conjecture that can
be used fopumping to certain conclusions
I The objects that can be shown to have a certain

property P by reasoning from certain facts A, até
the objects that satisfy P

AMore generally, circumscription can be used to conjecture
that the substitutions that can be shown to satisfy a
predicate, arall the tuples satisfying this predicate

I Thus, the set of relevant tuples is circumscribed
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@ 8.1 Non -Monotonic Reasoning Delollﬁ

A Example: by circumscription a bird can be
conjectured to fly unless somethipgevents it

I The only entities that can prevent the bird from flying
are those whose existendellows from the facts

Alf no clipped wings, being a penguin or other circumstanc
preventing flight are deducible, then the bird is concluded

fly
ABasically, this can be done by adding a predicate
—abnormal(X) to all rules about flying
I The correctness of this conclusion depends on havi
taken into accountll relevant facts when the
circumscription was made
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@ 8.1 Non -Monotonic Reasoning Detolm

A Circumscription therefore tries to derive all
minimal models of a set of formulae

i If we have a predicate(X,;h X8)then a model tells
whether the predicate is true for any possible substitutic
with terms for X

AThe extension op(X;h ) fin a model is the set of
substitutions for whiclp(X;h X3) levaluates to true

I The circumscription of a formula is a minimization
believing only théeast possible number of predicates

A The circumscription op(X;h  X)hn a formula is obtained by
selecting only models withminimal extension ofp(X;h >X3)h

KnowledgeBased Systems and Deductive Datab&sehristoph Lof¢ IfIS¢ TU Braunschweig 22



@ 8.1 Non -Monotonic Reasoning

A Example

| Consider a formula of the type Z “Dlke #
fly(X) :- bird(X), eagle(X).
fly(X) :- bird(X), condor(X).
A Obviouslybird(X) has to be true in any model, but to be
minimalonly eagle(X)or condor(X) has to be true

AHence there arawo circumscriptions of the formula
{bird(X), eagle(X)} and{bird(X), condor(X)}, but not
{bird(X), eagle(X), condor(X)}

I Note that predicates are only evaluate
as false, if it is possible

Aeagle(X)andcondor(X) cannot both be fals |
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@ 8.1 Non -Monotonic Reasoning

A But sometimes circumscription handldisjunctive
Information incorrectly

I Toss a coin onto a chess board and consider the predic
lies_on(X, Y)where it lies
I There are several possibilities of models

A Obviously{lies_or(coin, floor)} should be false, since it was not
mentioned that the coin could miss the board

A That leaveglies_or(coin, white)}, {lies_or(coin, black)}, and
{lies_or(coin, white), lies_or(coin, black)} for the overlapping
case

I But the last model would be filtered out as not being
minimal by circumscription

A One possibility to remedy this casetlseory curbing , where
iteratively the least upper bound(s) of the minimal models is
added until the set of models is closed
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A Autoepistemic Logic was introduced Pt
by Robert C. Moore (Microsoft Research) ‘zg)
In 1985 P o

A Autoepistemidogic cannot only express
facts, but als&knowledge andlack of knowledge
about facts

A Formalizes noimonotonicityusing statements with :
belief operator B

i For every welformed formulaF, t he 0 IB&) i €
means that is believed

i =B(F) means thaf is not believed
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@ 8.1 Non -Monotonic Reasoning D@[OHK

A It uses the followingixioms
I All propositional tautologies are axioms

I If we believe IB(X) - A(X)., then whenever we
nelieve INA(X), we also have to believe B(X)

I Inconsistent conclusions are never believed, i.e.
-B( false)
A It usesmodus ponens as inference rule

I Given an conditional claih —B and the truth of the
antecedentA, it can be logically concluded that the
consequenB must be true as well

KnowledgeBased Systems and Deductive Datab&sehristoph Lof¢ IfIS¢ TU Braunschweig 26



8.1 Non -Monotonic Reasoning \J,j;‘/, ’
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A This can be used to deriv&@able sets of
sentences which are then believed

I I.e.the reflection of our own state of knowledge
A If we do not believe in a fact, then wéelieve
that we do not believe it
i B AEOA B(=fly(X))Z—fly(X)

I Ifl believethaki s a Dbird and Xf
cannot fly, then | will conclude thatflies

KnowledgeBased Systems and Deductive Datab&sghristoph Lofg IfiIS¢ TU Braunschweig 27



@ 8.1 Non -Monotonic Reasoning Deiollﬁ

A A belief theory T describeghe knowledgebase

I A restricted belief interpretation of T Is a set of
belief atomd such that for eaclB(F) appearing Il
either B(F) 1 or = B(F) el (but not both)

I A restricted belief model of
T I1s a belief interpretation
such that4  as consistent
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@ 8.1 Non -Monotonic Reasoning Deiollﬁ

A Againexpansions to the theory can be derived

I Since all belief atoms have to be either true or false
the theory can be treated likpropositional
formulae

I In particular, checking whethdrentails F can be
done using the rules of the propositional calculus

I In order for aninitial assumption to be an
expansion, it must be thdt is entailediff B(F) has
been initially assumed true
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8.2 Probability

A Probability theory deals with expressing the
belief or knowledge that a certainevent will
or hasoccurred

A In general, there are two major factions among
probability theorists ol

I Frequentistic view: A

AProbability of an event is itelative frequency of
occurrence during dong running random experiment

AMajor supportersNeyman Pear son, Wal d
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(D) 8.2 Probability

| Bayesian view:
A Probabilities can be assigneday event or statement
whether it is part of a random process or not

A Probabilities thus express thegree of belief that a given
event will happen

AMajor supportersBayes, Laplace, d€inettj é
A During the following slides, we will
encounter both views

I ébut sti 1|1, f or ma
is similar in both |
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(D) 8.2 Probability

A The probability of an event or statemenh is

given byP(A)
10 | N mhp

P(=A):=1 -P(A)
Depending on your world view, probabillity of

P(A)=0.8 may mean

ADuring an longer random experiment, A was tbatcome
of 80%of all tries

AYou have astrong belief (quantified by 0.8 of a maximum
of 1) that A can / will happen
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(D) 8.2 Probability

A Given two eventsA andB and assuming that the
are statistically independent of each other,

probabilities may be combined =% 15

io 1z " 0 ! ‘
Aalso writtenP(A, B)

1 e.q.

AP(isYellow(Tweety))=0.8 andP(canFly(Tweety))=0.2
P(isYellow(Tweety), canFly Tweety)) = 0.16
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8.2 Probabillistic Reasoning

A However, events are often not independent, thus
we needconditional probabilities
I This is written as A | B)
AP | B) is the conditional probability ok givenB
AO ' s " 44 O ! ZzZ " T O
Ae.g.P(canBark(X) | dog(X)) = 0.9
I Given thatX is a dogX can bark with a probability of 0.9
A Based on conditional probabilities, we can deriv
simple deductive system 4

I Probabilistic rules :
AB N PBIA) A or B - PBIA) A

Y
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@ 8.2 Probabilistic Reasoning

A Of course, we can also form deductive chains

A Example :

i Al C 8%domestic_anima(X).
canBark 8 99dvg(X).
UcanBark 8 *“ddmestic_anima(Xx).

I So, assumingtatistical independence between
barking and domestic animals, we may conclude thze
the probabilities may be just multiplied, 1. €.
canBark 8 9>4domestic_anima(Xx).
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@ 8.2 Probabilistic Reasoning

A Unfortunately, this naive approach breaks quick

A Example :

i Al C 8%domestic_anima(X).
canBark 8 99dvg(X).
UcanBark 8 9>4domestic_anima(X).

i domestic_animal 8 19cat(X).

UcanBark 8 09->4dat(X).

ACats can bark with 0.54 pi
I Problem:

AAT C 8fdomestic_animal 8 L1Ocht(X). 2?
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