
Christoph Lofi
Institut für Informationssysteme

TechnischeUniversitätBraunschweig

http://www.ifis.cs.tu-bs.de

Distributed Data Management

12.1 Map & Reduce

12.2 Cloud beyond Storage

12.3 Computing as a Service

ïSaaS

ïPaaS

ïIaaS

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 2

12.0 The Cloud

ÅJust storing massive amounts of data is often not
enough!
ïOften, we also need to process and transform that data

ÅLarge -Scale Data Processing
ïUse thousands of worker nodes within a computation

cluster to process large data batches
ÅBut donõt want hassle of managing things

ÅMap & Reduce provides
ïAutomatic parallelization & distribution

ïFault tolerance

ïI/O scheduling

ïMonitoring & status updates

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 3

12.1 Map & Reduce

ÅInitially, implemented by Google for building the

Google search index

ïi.e. crawling the web, building

inverted word index , computing page rank , etc.

ÅGeneral framework for parallel high volume data processing

ïJ. Dean, S. Ghemawat. òMapReduce: Simplified Data

Processing on Large Clustersó, Symp. Operating System Design

and Implementation, San Francisco, USA, 2004

ïAlso available as Open Source implementation as

part of Apache Hadoop

Åhttp://hadoop.apache.org/mapreduce/

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 4

12.1 Map & Reduce

http://hadoop.apache.org/mapreduce/

ÅBase idea
ïThere is a large number of input data , identified by a key
Åi.e. input given as key-value pairs

Åe.g. all web pages of the internet identified by their URL

ïA map operation is a simple function which accepts one
input key-value pair
ÅA map operation runs as a autonomous thread on one single

node of a cluster
ïMany map jobs can run in parallel on different input keys

ÅReturns for a single input key-value pair a set of
intermediate key-value pairs
ïmap(key, value) ᴼ Set of intermediate (key, value)

ÅAfter map job is finished, the node is free to perform another
map job for the next input key-value pair
ïA central controller distributes map jobs to free nodes

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 5

12.1 Map & Reduce

ïAfter input data is mapped, reduce jobs can start

ïreduce(key, values) is run for each unique key

emitted by map()

ÅEach reduce job is also run autonomously on one single

node

ïMany reduce jobs can run in parallel on different intermediate key

groups

ÅReduce emits final output of the map-reduce operation

ÅEach reduce job takes all map tuples with a given key as

input

ÅGenerate usually one, but possible more output tuples

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 6

12.1 Map & Reduce

ÅEach reduce is executed on a set of intermediate

map results which have the same key

ïTo efficiently select that set, the intermediate key-

value pairs are usually shuffled

Åi.e. just sorted and grouped by their respective key

ïAfter shuffling, reduce input data can be selected by a

simple range scan

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 7

12.1 Map & Reduce

ÅExample: Counting words in documents

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 8

12.1 Map & Reduce

reduce(key , values):

// key: a word;

// values : list of counts

result = 0;

for each v in values)

result += v;

emit (key , result);

map(key, value):

// key: doc name;

// value : text of doc

for each word w in value:

emit (w , 1);

ÅExample: Counting words in documents

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 9

12.1 Map and Reduce

doc1: òdistributed db

and p2pó

distributed 1

db 1

and 1

p2p 1

map 1

and 1

reduce 1

is

a 1

distributed 1

é

distributed 2

db 2

and 2

p2p 1

map 1

reduce 1

is 1

é

doc2: òmap and reduce is

a distributed processing

technique for dbó

m
a

p
(
k
e

y
,v

a
lu

e
)

re
d
u

c
e

(
k
e

y
,v

a
lu

e
s

)

ÅImprovement: Combiners

ïCombiners are mini -reducers that run in-memory

after the map phase

ïUsed to group rare map keys into larger groups

Åe.g. word counts: group multiple extremely rare words

under one key (and mark that they are groupedé)

ïUsed to reduce network and worker scheduling

overhead

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 10

12.1 Map and Reduce

ÅResponsibility of the map and reduce master
ÅOften, also called scheduler

ïAssign Map and Reduce tasks to workers on nodes

ÅUsually, map tasks are assigned to worker nodes as a batch and
not one by one

ïOften called a split , i.e. subset of the whole input data

ïSplit often implemented by a simple hash function with as many buckets
as worker nodes

ïFull split data is assigned to worker node which starts a map task for
each input key-value pair

ïCheck for node failure

ïCheck for task completion

ïRoute map results to reduce tasks

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 11

12.1 Map & Reduce

ÅMap and Reduce overview

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 12

12.1 Map & Reduce

ÅMaster is responsible for worker node fault

tolerance

ïHandled via re-execution

ÅDetect failure via periodic heartbeats

ÅRe-execute completed + in-progress map tasks

ÅRe-execute in progress reduce tasks

ÅTask completion committed through master

ïRobust: lost 1600/1800 machines once Ą finished ok

ÅMaster failures are not handled

ïUnlikely due to redundant hardwareé

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 13

12.1 Map and Reduce

ÅShowcase: machine usage during web indexing

ïFine granularity tasks: map tasks >> machines

ÅMinimizes time for fault recovery

ÅCan pipeline shuffling with map execution

ÅBetter dynamic load balancing

ïShowcase uses 200,000 map & 5,000 reduce tasks

ïRunning on 2,000 machines

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 14

12.1 Map and Reduce

Distributed Data Management ςChristophLofiςIfISςTU Braunschweig 15

12.1 MR - Performance

Distributed Data Management ςChristophLofiςIfISςTU Braunschweig 16

12.1 MR - Performance

Distributed Data Management ςChristophLofiςIfISςTU Braunschweig 17

12.1 MR - Performance

Distributed Data Management ςChristophLofiςIfISςTU Braunschweig 18

12.1 MR - Performance

Distributed Data Management ςChristophLofiςIfISςTU Braunschweig 19

12.1 MR - Performance

