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Distributed Data Management



12.1 Map & Reduce

12.2 Cloud beyond Storage

12.3 Computing as a Service

ïSaaS

ïPaaS

ïIaaS
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12.0 The Cloud



ÅJust storing massive amounts of data is often not 
enough!
ïOften, we also need to process and transform that data

ÅLarge -Scale Data Processing
ïUse thousands of worker nodes within a computation

cluster to process large data batches
ÅBut donõt want hassle of managing things

ÅMap & Reduce provides
ïAutomatic parallelization & distribution

ïFault tolerance

ïI/O scheduling

ïMonitoring & status updates
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12.1 Map & Reduce



ÅInitially, implemented by Google for building the 

Google search index 

ïi.e. crawling the web, building 

inverted word index , computing page rank , etc.

ÅGeneral framework for parallel high volume data processing

ïJ. Dean, S. Ghemawat. òMapReduce: Simplified Data

Processing on Large Clustersó, Symp. Operating System Design 

and Implementation, San Francisco, USA, 2004

ïAlso available as Open Source implementation as 

part of Apache Hadoop

Åhttp://hadoop.apache.org/mapreduce/
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12.1 Map & Reduce

http://hadoop.apache.org/mapreduce/


ÅBase idea
ïThere is a large number of input data , identified by a key
Åi.e. input given as key-value pairs

Åe.g. all web pages of the internet identified by their URL 

ïA map operation is a simple function which accepts one 
input key-value pair
ÅA map operation runs as a autonomous thread on one single 

node of a cluster
ïMany map jobs can run in parallel on different input keys

ÅReturns for a single input key-value pair a set of
intermediate key-value pairs
ïmap(key, value) ᴼ  Set of intermediate (key, value) 

ÅAfter map job is finished, the node is free to perform another 
map job for the next input key-value pair
ïA central controller distributes map jobs to free nodes
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12.1 Map & Reduce



ïAfter input data is mapped, reduce jobs can start

ïreduce(key, values) is run for each unique key 

emitted by map()

ÅEach reduce job is also run autonomously on one single 

node

ïMany reduce jobs can run in parallel on different intermediate key 

groups

ÅReduce emits final output of the map-reduce operation

ÅEach reduce job takes all map tuples with a given key as 

input

ÅGenerate usually one, but possible more output tuples
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12.1 Map & Reduce



ÅEach reduce is executed on a set of intermediate 

map results which have the same key

ïTo efficiently select that set, the intermediate key-

value pairs are usually shuffled

Åi.e. just sorted and grouped by their respective key

ïAfter shuffling, reduce input data can be selected by a 

simple range scan
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12.1 Map & Reduce



ÅExample: Counting words in documents
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12.1 Map & Reduce

reduce(key , values):

// key: a word; 

// values : list of counts

result = 0;

for each v in values)

result += v;

emit (key , result);

map(key, value):

// key: doc name; 

// value : text of doc

for each word w in value: 

emit (w , 1);



ÅExample: Counting words in documents
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12.1 Map and Reduce
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ÅImprovement: Combiners

ïCombiners are mini -reducers that run in-memory 

after the map phase

ïUsed to group rare map keys into larger groups

Åe.g. word counts: group multiple extremely rare words 

under one key (and mark that they are groupedé)

ïUsed to reduce network and worker scheduling 

overhead

Distributed Data Management ðChristophLofiðIfISðTU Braunschweig 10

12.1 Map and Reduce



ÅResponsibility of the map and reduce master
ÅOften, also called scheduler

ïAssign Map and Reduce tasks to workers on nodes

ÅUsually, map tasks are assigned to worker nodes as a batch and 
not one by one

ïOften called a split , i.e. subset of the whole input data 

ïSplit often implemented by a simple hash function with as many buckets 
as worker nodes

ïFull split data is assigned to worker node which starts a map task for 
each input key-value pair

ïCheck for node failure

ïCheck for task completion

ïRoute map results to reduce tasks
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12.1 Map & Reduce



ÅMap and Reduce overview
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12.1 Map & Reduce



ÅMaster is responsible for worker node fault

tolerance

ïHandled via re-execution

ÅDetect failure via periodic heartbeats

ÅRe-execute completed + in-progress map tasks

ÅRe-execute in progress reduce tasks

ÅTask completion committed through master 

ïRobust: lost 1600/1800 machines once Ą finished ok

ÅMaster failures are not handled

ïUnlikely due to redundant hardwareé
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12.1 Map and Reduce



ÅShowcase: machine usage during web indexing

ïFine granularity tasks:   map tasks >> machines

ÅMinimizes time for fault recovery

ÅCan pipeline shuffling with map execution

ÅBetter dynamic load balancing 

ïShowcase uses 200,000 map  &  5,000 reduce tasks 

ïRunning on 2,000 machines 
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12.1 Map and Reduce
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12.1 MR - Performance
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12.1 MR - Performance
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12.1 MR - Performance
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12.1 MR - Performance
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12.1 MR - Performance


