Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke
Christoph Lofi
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
• More implementation and optimization techniques
 – Design Space
 – Delta Iteration
 – Logical Rewriting
 – Magic Sets
• **Datalog** can be converted to **Relational Algebra** and vice versa
 – This allows to **merge** Datalog-style reasoning techniques with relational databases
 • e.g. Datalog on RDBs, Recursive SQL, etc.
 – The **elementary production rule** (and thus the fixpoint iteration) has been implemented with relational algebra in the last lecture
• In addition to **bottom-up** approaches (like fix-point iteration), there are also **top-down** evaluation schemes for Datalog

 – Idea: Start with query and try to construct a proof tree down to the facts

 – Simple Bottom Up approach: Construct all possible search trees by their depth

 • **Search tree**: Parameterized **proof tree**

 – Search tree can be transformed to a proof tree by providing a valid substitution
– Search tree are constructed by **backwards-chaining** of rules

– Problem: **When to stop?**
 - A naïve solution: Compute the theoretical maximal chain length and use as limit

– Outlook for today: **Optimization techniques**
 - Evaluation optimization
 - Query rewriting
Exercise 2

• Fixpoint iteration
 – path(X,Y) :- edge(X,Y)
 – path(X,Y) :- edge(X,Y), path(Z,Y)

New facts added by proof tree length!
Exercise 3.2

- **Stratification**
 - `q(1,2)`
 - `q(2,3)`
 - `q(1,3)`
 - `r(X,Y) :- s(X,Y)`
 - `p(X,Y) :- q(X,Y), ¬r(X,Y)`
 - `p(X,Y) :- q(X,Y), ¬s(X,Y)`
 - `p(X,Y) :- p(X,Y), p(X,Y)`

\[
S1 := \{\text{def}(q), \text{def}(s), \text{def}(r)\}
\]
\[
S2 := \{\text{def}(p)\}
\]
Exercise 3.5

- Translate Datalogneg to Datalog. Idea:
 - Use closed world assumption
 - Constants: 1, 2, 3
 - Introduce new predicates
 - ns(X,Y)=false for X=1, Y=3, true otherwise
 - nr(X,Y):-ns(X,Y)

\begin{align*}
q(1,2) \\
q(2,3) \\
s(1,3) \\
r(X,Y):-s(X,Y) \\
p(X,Y):-q(X,Y),\neg r(X,Y) \\
p(X,Y):-q(X,Y),\neg s(X,Y) \\
p(X,Y):-p(X,Y),p(X,Y)
\end{align*}

\begin{align*}
q(1,2) \\
q(2,3) \\
s(1,3) \\
r(X,Y):-s(X,Y) \\
p(X,Y):-q(X,Y),nr(X,Y) \\
p(X,Y):-q(X,Y),ns(X,Y) \\
p(X,Y):-p(X,Y),p(X,Y)
\end{align*}
8.1 Query Optimization

• The computation algorithms introduced in the previous weeks were all far from optimal
 – Usually, a lot of unnecessary deductions were performed
 – Wasted work
 – Termination problems, etc…

• Thus, this week we will focus on optimization methods
8.1 Query Optimization

- Optimization and evaluation methods can be classified along several criterions
 - Search technique
 - Formalism
 - Objective
 - Traversal Order
 - Approach
 - Structure
8.1 Query Optimization

• **Search Technique:**

 – **Bottom-Up**

 • Start with extensional database and use *forward-chaining* of rules to generate new facts
 • Result is subset of all generated facts
 • **Set oriented-approach** → Very well-suited for databases

 – **Top-Down**

 • Start with queries and either construct a proof tree or a refutation proof by *backward-chaining* of rules
 • Result is generated **tuple-by-tuple** → More suited for complex languages, but less desirable for use within a database
Furthermore, there are two possible (non-exclusive) formalisms for query optimization

- **Logical**: A Datalog program is treated as *logical rules*
 - The predicates in the rules are connected to the *query predicate*
 - Some of the variables may already be *bound* by the query

- **Algebraic**: The rules in a Datalog program can be translated into *algebraic expressions*
 - Thus, the IDB corresponds to a *system of algebraic equations*
 - Transformations like in normal *database query optimization* may apply
8.1 Query Optimization

• Optimizations can address different objectives

 – **Program Rewriting:**

 • Given a specific evaluation algorithm, the Datalog program \(\mathcal{P} \) is rewritten into a semantically equivalent program \(\mathcal{P}' \)

 • However, the new program \(\mathcal{P} \) can be executed much faster than \(\mathcal{P} \) using the same evaluation method

 – **Evaluation Optimization:**

 • Improve the process of evaluation itself, i.e. program stays as it is but the evaluation algorithm is improved

 • Can be combined with program rewriting for even increased effect
8.1 Query Optimization

- Optimizations can focus on different traversal-orders
 - **Depth-First**
 - Order of the literals in the body of a rule may affect performance
 - e.g. consider top-down evaluation with search trees for
 \(P(X,Y) :- P(X,Z), Q(Z,Y) \) vs. \(P(X,Y) :- Q(Z,Y), P(X,Z) \)
 - In more general cases (e.g. Prolog), may even affect decidability
 - It may be possible to quickly produce the first answer
 - **Breadth-First**
 - Whole right hand-side of rules is evaluated at the same time
 - Search trees grow more balanced
 - Due to the restrictions in Datalog, this becomes a set-oriented operation and is thus very suitable for DB’s
When optimizing, two approaches are possible

– **Syntactic**: just focus on the syntax of rules
 • Easier and thus more popular than semantics
 • e.g. restrict variables based on the goal structure or use special evaluation if all rules are linear, etc.

– **Semantic**: utilize external knowledge during evaluation
 • E.g., integrity constraints
 • External constraints: “Lufthansa flights arrive at Terminal 1”
 Query: “Where does the flight LH1243 arrive?”
8.1 Query Optimization

- **Summary** of optimization classification with their (not necessarily exclusive) alternatives

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search technique</td>
<td>bottom-up</td>
</tr>
<tr>
<td></td>
<td>top-down</td>
</tr>
<tr>
<td>Formalism</td>
<td>logic</td>
</tr>
<tr>
<td></td>
<td>relational algebra</td>
</tr>
<tr>
<td>Objective</td>
<td>rewriting</td>
</tr>
<tr>
<td></td>
<td>pure evaluation</td>
</tr>
<tr>
<td>Traversal order</td>
<td>depth-first</td>
</tr>
<tr>
<td></td>
<td>breadth-first</td>
</tr>
<tr>
<td>Approach</td>
<td>syntactic</td>
</tr>
<tr>
<td></td>
<td>semantic</td>
</tr>
<tr>
<td>Structure</td>
<td>rule structure</td>
</tr>
<tr>
<td></td>
<td>goal structure</td>
</tr>
</tbody>
</table>
8.1 Query Optimization

- Not all combinations are feasible or sensible
 - We will focus on following combinations

<table>
<thead>
<tr>
<th>Evaluation Methods</th>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve (Jacobi, Gauss-Seidel)</td>
<td>Semi-naïve (Delta Iteration)</td>
<td>Naïve Top-Down with Search trees</td>
</tr>
<tr>
<td></td>
<td>Henschen-Naqvi</td>
<td>Query-Subquery</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rewriting Methods</th>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic Sets</td>
<td>Variable reduction</td>
<td>Static Filtering</td>
</tr>
<tr>
<td>Counting</td>
<td>Constant reduction</td>
<td>Variable reduction</td>
</tr>
<tr>
<td>Static Filtering</td>
<td></td>
<td>Constant reduction</td>
</tr>
</tbody>
</table>
8.1 Query Optimization

- Optimization techniques may be combined
 - Thus, mixed execution of rewriting and evaluation techniques based on logical and algebraic optimization is possible
- Start with logic program \(LP\)
8.1 Query Optimization

Transformation into Relational Algebra

Datalog program \mathcal{P}

Datalog program \mathcal{P}'

Relational algebra equations

Relational algebra equations

Logical query evaluation methods

Algebraic query evaluation methods

Query result
8.2. Evaluation Methods

• Evaluation methods actually compute the result of an (optimized or un-optimized) program \mathcal{P}

<table>
<thead>
<tr>
<th>BOTTOM-UP</th>
<th>TOP-DOWN</th>
</tr>
</thead>
</table>
| Evaluation Method | Naïve (Jacobi, Gauss-Seidel)
Semi-naïve (Delta Iteration)
Henschen-Naqvi |
| Naïve Top-Down with
Search trees
Query-Subquery |

– Better evaluation methods skip unnecessary evaluation steps and/or terminate earlier
8.2 Bottom-Up Evaluation

• Datalog programs can easily be evaluated in a bottom-up fashion, but this should also be efficient
 – The naïve algorithm derives everything that is possible from the facts
 – But naively answering queries wastes valuable work...
 – For dealing with recursion we have to evaluate fixpoints
 • For stratified Datalogf,neg programs we apply the fixpoint algorithms to every stratum
8.2 Bottom-Up Evaluation

- **Bottom-up evaluation** techniques are usually based on the **fixpoint iteration**

- Remember: Fixpoint iteration itself is a **general concept** within all fields of mathematics

 - Start with an **empty initial solution** X_0

 - Compute a new X_{n+1} from a given X_n by using a **production rule**

 - $X_{n+1} := T(X_{n+1})$

 - As soon as $X_{n+1} = X_n$, the algorithm stops

 - **Fixpoint reached**
• Up to now we have stated the elementary production rule declaratively

 \[T_P : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance } B : - A_1, A_2, \ldots, A_n \text{ of a program clause such that } \{A_1, A_2, \ldots, A_n\} \subseteq I \} \]

• However, we need an operative implementation

 – The set \(I_{i+1} \) is computed from \(I_i \) as follows:

 • Enumerate all ground instances \(GI \)

 – Each ground instance is given by some substitution (out of a finite set)

 • Iterate over the ground instances, i.e. try all different substitutions

 – For each \(B : - A_1, A_2, \ldots, A_n \in GI, \text{ if } \{A_1, A_2, \ldots, A_n\} \subseteq I_i, \text{ add } B \text{ to } I_{i+1} \)
a) **Full Enumeration:** Consecutively generate and test all instances by enumeration

- Loop over all rules
 - Apply each possible substitution on each rule

Constant symbols: \{1,2,3\}

Rules: \{p(X,Y) :- e(X,Y). p(X,Y) :- e(X,Z), p(Z,Y).\}

Enumeration of instances:

Rule 1:
- p(1,1) :- e(1,1).
- p(1,2) :- e(1,2).
- p(1,3) :- e(1,3).
- p(2,1) :- e(2,1).
- p(2,2) :- e(2,2).
- p(2,2) :- e(2,2).
- p(3,1) :- e(3,1).
- p(3,2) :- e(3,2).
- p(3,2) :- e(3,2).

Rule 2:
- p(1,1) :- e(1,1), p(1,1).
- p(1,1) :- e(1,2), p(2,1).
- ...
8.2 Bottom-Up Evaluation

b) Restricted enumeration

- Loop over all rules
 - For each rule, generate all instances possible when trying to unify the rules right hand side with the facts in I
 - Only instances which will trigger a rule in the current iteration will be generated

Constant symbols: $\{1,2,3\}$
Rules:

\[
\begin{align*}
p(X,Y) & : - e(X,Y). \\
p(X,Y) & : - e(X,Z), p(Z,Y). \\
p(Z,Y) & : - \text{can not be unified with any fact in I}
\end{align*}
\]

I: $\{e(1,2), e(2,3)\}$

Enumeration of instances:

Rule 1:

\[
p(1,2) : - e(1,2). \\
p(2,3) : - e(2,3).
\]

Rule 2: Nothing. $p(Z,Y)$ can not be unified with any fact in I
8.2 Jacobi Iteration

• The most naïve fixpoint algorithm class are the so-called **Jacobi-Iterations**

 – Developed by Carl Gustav Jacob Jacobi for solving **linear equitation systems** $Ax=b$, early 18th century

 – Characteristics:

 • Each intermediate result X_{n+1} is **wholly computed** by utilizing **all data** in X_n

 • **No reuse** between both results

 • Thus, the memory complexity for a given iteration step is roughly $|X_{n+1}|*|X_n|$
Both fixpoint iterations introduced *previously* in the lecture are *Jacobi iterations*

- i.e. fixpoint iteration and iterated fixpoint iteration

- i.e. $I_{n+1} := T_p(I_n)$

 - "Apply production rule to all elements in I_n and write results to I_{n+1}. Repeat"
• **Please note**

 – **Within each iteration, all already deduced facts of previous iteration are deduced again**

 • Yes, they were… We just used the union notation for convenience

 – \(I_1 := I_0 \cup \{e(1,2), e(1,3)\} \)

 – \(I_2 := I_1 \cup \{p(1,2), p(1,3)\} \) was actually not reflecting this correctly

 – \(I_1 := \{e(1,2), e(1,3)\} \)

 – \(I_2 := \{e(1,2), e(1,3), p(1,2), p(1,3)\} \) matches algorithm better…

 – **Furthermore, both sets** \(I_{n+1} \) **and** \(I_n \) **involved in the iteration are treated strictly separately**

 • Elementary production checks which rules are true within \(I_i \) and puts result into \(I_{i+1} \)
8.2 Gauss-Seidel Iteration

• Idea:
 – The convergence speed of the Jacobi iteration can be improved by also respecting **intermediate results of current iteration**

• This leads to the class of **Gauss-Seidel-Iterations**
 – Historically, an improvement of the Jacoby equitation solver algorithm
 • Devised by **Carl Friedrich Gauss** and **Philipp Ludwig von Seidel**
 – Base property:
 • If new information is produced by current iteration, it should also possible to use it the moment it is created (and not starting next iteration)
• A Gauss-Seidel fixpoint iteration is obtained by modifying the elementary production

\[T_p : I \mapsto \{ B \in B_L \mid \text{there exists a ground instance which has not been tested before in this iteration} \}
\]

\[B :: A_1, A_2, \ldots, A_n \text{ of a program clause such that} \]

\[\{A_1, A_2, \ldots, A_n\} \subseteq \{I \cup \text{new}_B\text{'s}\} \]

– new_B’s refers to all heads of the ground instances of rules considered in the current iteration which had their body literals in I

• Some of these are already in I, but others are new and would usually only be available starting next iteration → improved convergence speed
8.2 Gauss-Seidel Iteration

- Example program \mathcal{P}

 \[
 \begin{align*}
 \text{edge}(1, 2). \\
 \text{edge}(1, 3). \\
 \text{edge}(2, 4). \\
 \text{edge}(3, 4). \\
 \text{edge}(4, 5). \\
 \text{path}(X, Y) :&= \text{edge}(X, Y). \\
 \text{path}(X, Y) :&= \text{edge}(X, Z), \text{path}(Z, Y).
 \end{align*}
 \]

 \[
 \begin{align*}
 I_0 &= \{\} \\
 I_1 &= \{\text{edge}(1, 2). \text{edge}(1, 3). \text{edge}(2, 4). \text{edge}(3, 4). \text{edge}(4, 5). \\
 &\quad \text{path}(1, 2). \text{path}(1, 3). \text{path}(2, 4). \text{path}(3, 4). \text{path}(4, 5). \\
 &\quad \text{path}(1, 4). \text{path}(2, 5). \text{path}(3, 5) \} \\
 I_2 &= \{\text{path}(1, 5)\}
 \end{align*}
 \]
8.2 Gauss-Seidel Iteration

• Please note:
 – The **effectiveness** of **Gauss-Seidel** iteration for increasing convergence speed varies highly with respect to the chosen **order of instance enumeration**
 • e.g. “Instance K tested - generates the new fact B_1 from I”, “Instance L tested – generates the new fact B_2 from $I \cup B_1$”
 – Good luck – improvement vs. Jacobi
 • v.s. “Instance L tested – does not fire because it needs fact B_1”, “Instance K tested – generates the new fact B_1 from I”
 – Bad luck – no improvement
 – Each single iteration which can be saved improves performance dramatically as each iteration recomputes all known facts!
8.2 Semi-Naïve Evaluation

• For both Gauss-Seidel and Jacobi, a lot of wasted work is performed
 – Everything is recomputed times and again

• But it can be shown that the elementary production rule is strictly monotonic
 – Thus, each result is a subset of the next result
 • i.e. \(I_i \subseteq I_{i+1} \)

• This leads to the semi-naïve evaluation for linear Datalog
• The main operator for the fixpoint iteration is the elementary production T_P
 – Naïve Fixpoint Iteration
 • $I_{n+1} := T_P(I_n)$
 – Is there a better algorithm?
 • Idea: avoid re-computing known facts, but make sure that at least one of the facts in the body of a rule is new, if a new fact is computed!
 • Really new facts, always involve new facts of the last iteration step, otherwise they could already have been computed before…
8.2 Semi-Naïve Evaluation

- Semi-naïve linear evaluation algorithms for Datalog are generally known as **Delta-Iteration**
 - In each iteration step, compute just the **difference** between successive results \(\Delta I_i := I_i \setminus I_{i-1} \)
 - i.e. \(\Delta I_1 := I_1 \setminus I_0 = T_P(\emptyset) \)
 \(\Delta I_{i+1} := I_{i+1} \setminus I_i = T_P(I_i) \setminus I_i \)
 \(= T_P(I_{i-1} \cup \Delta I_i) \setminus I_i \)
8.2 Semi-Naïve Evaluation

- It is important to **efficiently** calculate \(\Delta I_{i+1} := T_P (I_{i-1} \cup \Delta I_i) \setminus I_i \)
 - Especially the \(T_P \) operator is often inefficient, because it simply applies **all rules** in the EDB
 - More efficient is the use of **auxiliary functions**
 - Define an auxiliary function of \(T_P \) \(\text{aux}_P : 2^{B_P} \times 2^{B_P} \to 2^{B_P} \)
 such that \(T_P (I_{i-1} \cup \Delta I_i) \setminus I_i = \text{aux}_P (I_{i-1}, \Delta I_i) \setminus I_i \)
 - Auxiliary functions can be chosen intelligently by just taking **recursive parts** of rules into account
 - A classic method of deriving auxiliary functions is **symbolic differentiation**
8.2 Semi-Naïve Evaluation

- The **symbolic differentiation operator** dF can be used on the respective relational algebra expressions E for Datalog programs

- $dF(E) := \Delta R$, if E is an IDB or EDB relation R

- $dF(\sigma_\vartheta(E)) = \sigma_\vartheta(dF(E))$ and

- $dF(\pi_\vartheta(E)) = \pi_\vartheta(dF(E))$

- $dF(E_1 \cup E_2) = dF(E_1) \cup dF(E_2)$

This is interesting, especially since delta sets of extensional predicates are **empty**

Not affected by selections, projections, and unions
8.2 Semi-Naïve Evaluation

- \(dF(E_1 \times E_2) = E_1 \times dF(E_2) \)
 \(\cup dF(E_1) \times E_2 \)
 \(\cup dF(E_1) \times dF(E_2) \)

- \(dF(E_1 \bowtie E_2) = E_1 \bowtie dF(E_2) \)
 \(\cup dF(E_1) \bowtie E_2 \)
 \(\cup dF(E_1) \bowtie dF(E_2) \)

For Cartesian products and joins mixed terms need to be considered.
Consider the program

- `ancestor(X,Y) :- parent(X,Y).`
- `ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).`

The respective expression in relational algebra for `ancestor` is

\[
\text{parent} \bigcup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \text{ancestor})
\]

– Symbolic differentiation

\[
\begin{align*}
\text{dF}(\text{parent} \bigcup \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \text{ancestor})) \\
= \text{dF}(\text{parent}) \bigcup \pi_{#1, #2}(\text{dF}(\text{parent} \bowtie_{#2=#1} \text{ancestor})) \\
= \emptyset \bigcup \pi_{#1, #2}(\text{dF}(\text{parent}) \bowtie_{#2=#1} \text{ancestor} \bowtie_{#2=#1} \text{parent} \bowtie_{#2=#1} \text{dF}(\text{ancestor})) \\
= \pi_{#1, #2}(\emptyset \bigcup \text{dF}(\text{ancestor}) \bowtie_{#2=#1} \text{parent} \bowtie_{#2=#1} \text{dF}(\text{ancestor})) \\
= \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \Delta \text{ancestor})
\end{align*}
\]
8.2 Semi-Naïve Evaluation

- Having found a suitable auxiliary function the delta iteration works as follows

 - **Initialization**
 - $I_0 := \emptyset$
 - $\Delta I_1 := TP(\emptyset)$

 - **Iteration until $\Delta I_{i+1} = \emptyset$**
 - $I_i := I_{i-1} \cup \Delta I_i$
 - $\Delta I_{i+1} := aux_P(I_{i-1}, \Delta I_i) \setminus I_i$

- Again, for stratified Datalog$^{f, neg}$ programs the iteration has to be applied to every stratum
8.2 Semi-Naïve Evaluation

Let’s consider our ancestor program again

- `parent(Thomas, John).`
 `parent(Mary, John).`
 `parent(George, Thomas).`
 `parent(Sonja, Thomas).`
 `parent(Peter, Mary).`
 `parent(Karen, Mary).`

- `ancestor(X,Y) :- parent(X,Y).`
 `ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).`

- `Aux_ancestor(ancestor, Δancestor) := π_{#1, #2}(parent \bowtie_{#2=#1} Δancestor)}`
8.2 Semi-Naïve Evaluation

- \(\text{ancestor}_0 := \emptyset \)

- \(\Delta \text{ancestor}_1 := T_\mathcal{P}(\emptyset) \)
 \[= \{(T, J), (M, J), (G, T), (S, T), (P, M), (K, M)\} \]

- \(\text{ancestor}_1 := \text{ancestor}_0 \cup \Delta \text{ancestor}_1 \)
 \[= \Delta \text{ancestor}_1 \]

- \(\Delta \text{ancestor}_2 := \text{aux}_\text{ancestor}(\text{ancestor}_0, \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 \)
 \[:= \pi_{#1, #2}(\text{parent} \bowtie_{#2=#1} \Delta \text{ancestor}_1) \setminus \text{ancestor}_1 \]
 \[= \{(G, J), (S, J), (P, J), (K, J)\} \]
8.2 Semi-Naïve Evaluation

\[\text{ancestor}_2 := \text{ancestor}_1 \cup \Delta \text{ancestor}_2 \]
\[= \{(T, J), (M, J), (G, T), (S, T), (P, M), (K, M), (G, J), (S, J), (P, J), (K, J)\} \]

\[\Delta \text{ancestor}_3 := \text{aux}_{\text{ancestor}}(\text{ancestor}_1, \Delta \text{ancestor}_2) \setminus \text{ancestor}_2 \]
\[:= \pi_{\#_1, \#_2}(\text{parent} \bowtie_{\#_2=\#_1} \Delta \text{ancestor}_2) \setminus \text{ancestor}_2 \]
\[= \emptyset \]

– Thus, the least fixpoint is \(\text{ancestor}_2 \cup \text{parent} \)
8.2 Push Selection

• Transforming a Datalog program into relational algebra also offers other optimizations
 – Typical relational algebra equivalences can be used for heuristically constructing better query plans
 • Usually an operator tree is built and transformed
 – Example: push selection
 • If a query involves a join or Cartesian product, pushing all selections down to the input relations avoids large intermediate results
 – But now we have a new operator in our query plan: the least fixpoint iteration (denoted as LFP)
8.2 Push Selection

• Consider an example
 – edge(1, 2).
 edge(4, 2).
 edge(2, 3).
 edge(3, 5).
 edge(5, 6).
 – path(X,Y) :- edge(X,Y).
 path(X,Y) :- edge(X,Z), path(Z,Y).
 – Relational algebra: edge $\cup \pi_{#1, #2}(\text{edge} \bowtie_{#2=#1} \text{path})$
• Now consider the query \texttt{?path(X, 3)}

 \begin{align*}
 &\pi_{#1} \sigma_{#2=3}(\text{LFP (edge } \bigcup \pi_{#1,#2}(\text{edge } \bowtie_{#2=#1} \text{path}))) \\
 \end{align*}

 • From which nodes there is a path to node 3?

 • The above query binds the second argument of \texttt{path}

 • \texttt{path(X,Y)} ::= \texttt{edge(X,Y)}.

 \texttt{path(X,Y)} ::= \texttt{edge(X,Z), path(Z,Y)}.

 • Thus the selection could be pushed down to the \texttt{edge} and \texttt{path} relations.
8.2 Push Selection

• To answer the query we now only have to consider the facts and rules having the correct second argument:

- `edge(2, 3)`. (fact)
- `path(2, 3)`. (R1)
- `path(1, 3)`. (R2)
- `path(4, 3)`.

– Result: \{2, 1, 4\}
Now let's try a different query \(?path(3,Y)\):

- \(\pi_{#1} \sigma_{#1=3}(\text{LFP (edge } \bigcup \pi_{#1,#2}(\text{edge } \bowtie_{#2=#1} \text{path})))\)

 - To which nodes there is a path from node 3?

 - The above query binds the first argument of \(\text{path}\)

 - \(\text{path}(X,Y) :\text{- edge}(X,Y)\).
 - \(\text{path}(X,Y) :\text{- edge}(X,Z), \text{path}(Z,Y)\).
8.2 Push Selection

- To answer the query we now only have to consider the facts and rules having the correct second argument

 - edge(3,5).
 - path(3,5).
 - Ø

- Result: {5}
- Obviously this is wrong
8.2 Push Selection

• More general: when can the least fixpoint iteration and selections be exchanged?

 – Let \(p \) be a predicate in a linear recursive Datalog program and assume a query \(\textcolor{red}{?}\ p(..., c, ...) \), binding some variable \(X \) at the \(i \)-th position to constant \(c \)

 – The selection \(\sigma_{\#i=c} \) and the least fixpoint iteration \(\text{LFP} \) can be safely exchanged, if

\[X \text{ occurs in all literals with predicate } p \text{ exactly in the } i\text{-th position} \]
8.3. Logical Rewriting

• In the following, we deal with **rewriting** methods

<table>
<thead>
<tr>
<th>Logic</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewriting Method</td>
<td>Magic Sets</td>
</tr>
<tr>
<td></td>
<td>Counting</td>
</tr>
<tr>
<td></td>
<td>Static Filtering</td>
</tr>
</tbody>
</table>

• **Basic Idea:**

 – Transform program P to a semantically equivalent program P' which can be evaluated faster using the same evaluation technique

 • e.g. same result, but faster when applying Jacobi iteration
8.3. Logical Rewriting

- **Clever** rewriting could work like this:

\[\mathcal{P}: \]

\[
\begin{align*}
\text{ancestor}(X, Y) & :\ - \text{parent}(X, Y). \\
\text{ancestor}(X, Y) & :\ - \text{ancestor}(X, Z), \text{parent}(Z, Y). \\
\text{ancestor}(\text{Wolfi}, Y) & ?:
\end{align*}
\]

- All valid proof trees for result tuples need a substitution for rule 1 and rule 2 such that \(X \) is substituted by \(\text{Wolfi} \).
8.3. Logical Rewriting

• Thus, an equivalent program \(P' \) for the query looks like this

\[
P'::
\begin{align*}
\text{ancestor}(\text{Wolfi}, Y) & : \text{parent}(\text{Wolfi}, Y). \\
\text{ancestor}(\text{Wolfi}, Y) & : \text{ancestor}(\text{Wolfi}, Z), \text{parent}(Z, Y). \\
\text{ancestor}(\text{Wolfi}, Y) & ?
\end{align*}
\]

– This simple transformation will skip the deduction of many (or in this case all) useless facts

– Actually, this transformation was straightforward and simple, but there are also unintuitive but effective translations…
 • Magic sets!
8.3. Magic Sets

• Magic Sets
 – Magic sets are a **rewriting** method exploiting the **syntactic** form of the **query**
 – The base idea is to capture some of the **binding patterns** of top-down evaluation approaches into rewriting
 • If there is a subgoal with a **bound argument**, solving this subgoal may lead to new instantiations of other arguments in the original rule
 • Only **potentially useful** deductions should be performed
• Who are the ancestors of Wolfi?
8.3. Magic Sets

• A typical **top-down search tree** for the goal \(\text{ancestor}(\text{Wolfi}, X) \) looks like this
 – Possible substitutions already restricted

\[
\begin{align*}
Q & \equiv \text{ancestor}(\text{Wolfi}, X) \\
\text{anc.}(\text{Wolfi}, X) & :- \text{anc.}(\text{Wolfi}, Z), \text{par.}(Z, X). \\
\text{anc.}(\text{Wolfi}, Z) & \\
\text{par.}(Z, X) & \\
\text{anc.}(\text{Wolfi}, X) & :- \text{par.}(\text{Wolfi}, Z). \\
\text{par.}(\text{Wolfi}, Z) &
\end{align*}
\]

– How can such a restriction be incorporated into rewriting methods?
8.3. Magic Sets

• For rewriting, propagating binding is more difficult than using top-down approaches

• **Magic Set** strategy is based on augmenting rules with additional **constraints** (collected in the magic predicate)
 – This is facilitated by "*adorning*" predicates
 – **Sideways information passing** (SIP) is used to propagate binding information
8.3. Magic Sets

• Before being able to perform the magic set transformation, we need some auxiliary definitions and considerations
 – Every query (goal) can also be seen as a rule and thus be added to the program
 • e.g. ancestor(Wolfi, X)? \Rightarrow q(X) :- ancestor(Wolfi, X)
• Arguments of predicates can be **distinguished**

 – **Distinguished arguments** have their **range restricted** by either **constants** within the same predicate or **variables** which are already restricted themselves

 – i.e.: The argument is **distinguished** if
 • it is a **constant**
 • OR it is **bound by an adornment**
 • OR it appears in an **EDB fact** that has a distinguished argument
• **Predicates occurrences** are distinguished if all its arguments are distinguished
 – In case of EDB facts, either all or none of the arguments are distinguished
• **Predicate occurrences** are then adorned (i.e. annotated) to express which arguments are distinguished
 – Adornments are added to the predicate, e.g. \(p^{fb}(X, Y) \) vs. \(p^{bb}(X, Y) \)
– For each argument, there are two possible adornments
 - \(b \) for **bound**, i.e. distinguished variables
 - \(f \) for **free**, i.e. non-distinguished variables

– Thus, for a **predicate** with \(n \) arguments, there are \(2^n \) possible **adorned occurrences**
 - e.g., \(p^{bb}(X, Y) \), \(p^{fb}(X, Y) \), \(p^{bf}(X, Y) \), \(p^{ff}(X, Y) \)
 - Those adorned occurrences are treated as if they were different predicates, each being defined by its own set of rules
8.3. Magic Sets

- Example output of magic set algorithm

\(\mathcal{P} \):

\[
\text{ancestor}(Wolfi, X) \ ? \\
\text{ancestor}(X, Y) : - \text{parent}(X, Y). \\
\text{ancestor}(X, Y) : - \text{ancestor}(X, Z), \text{parent}(Z, Y).
\]

\(\mathcal{P}' \):

\[
\text{magic}(Wolfi). \\
\text{magic}(Z) : - \text{magic}(Y), \text{parent}(Z, Y). \\
qf(X) : - \text{ancestor}^{bf}(Wolfi, X). \\
\text{ancestor}^{bf}(X, Y) : - \text{magic}(X), \text{parent}(X, Y). \\
\text{ancestor}^{bf}(X, Y) : - \text{magic}(X), \text{ancestor}^{bf}(X, Z), \text{parent}(Z, Y).
\]
8.3. Magic Sets

• The idea of the magic set method is that the **magic set contains all possibly interesting constant values**

 – The magic set is **recursively** computed by the **magic rules**

• Each **adorned predicate occurrence** has its own **defining rules**

 – In those rules, the attributes are restricted according to the adornment pattern to the magic set
Now, following problems remain

- How is the **magic set** computed?
- How are the **rules for adorned predicate occurrences** actually defined?

Before solving these problems, we have to find out which adorned occurrences are needed.

Thus, the **reachable adorned system** has to be found

- i.e. incorporate the query as rule and replace all predicate by its respective adornments
8.3. Magic Sets

- **Incorporate goal query**

 \[
 \text{ancestor}(X, \text{Wolfi})? \\
 \text{ancestor}(X, Y) :- \text{parent}(X, Y). \\
 \text{ancestor}(X, Y) :- \text{ancestor}(X, Z), \text{parent}(Z, Y).
 \]

 \[
 q(X) :- \text{ancestor}(X, \text{Wolfi}) \\
 \text{ancestor}(X, Y) :- \text{parent}(X, Y). \\
 \text{ancestor}(X, Y) :- \text{ancestor}(X, Z), \text{parent}(Z, Y).
 \]

- **Adorn predicate occurrences**

 \[
 q^f(X) :- \text{ancestor}^{fb}(X, \text{Wolfi}). \\
 \text{ancestor}^{fb}(X, Y) :- \text{parent}(X, Y). \\
 \text{ancestor}^{fb}(X, Y) :- \text{ancestor}^{fb}(X, Z), \text{parent}(Z, Y).
 \]

 reachable adorned system
For defining the magic set, we create **magic rules**

- For each adorned predicate occurrence in a rule of an intensional DB predicate, a magic rule corresponding to the right hand side of that rule is created

- Predicate occurrences is replaced by **magic predicate**, bound arguments are used in rule head, free ones are dropped

- Magic predicates in the head are **annotated** with its origin (rule & predicate), those on the right hand side just with the predicate

\[
q^f(X) :- \text{ancestor}^\text{fb}(X, \text{Wolfi}). \\
\Rightarrow \text{magic}_r0\text{_ancestor}^\text{fb}(\text{Wolfi}).
\]

\[
\text{ancestor}^\text{fb}(X, Y) :- \text{ancestor}^\text{fb}(X, Z), \text{parent}(Z, Y). \\
\Rightarrow \text{magic}_r2\text{_ancestor}^\text{fb}(Z) :- \text{magic}_\text{ancestor}^\text{fb}(Z), \text{parent}(Z, Y).
\]
8.3. Magic Sets

• Thus, we obtain multiple magic predicates for a single adorned predicate occurrence

 – Depending on the creating rule
 • e.g. magic_r0_ancestorfb, magic_r2_ancestorfb both using magic_ancestorfb

 – Now we need complementary rules connecting the magic predicates
 • Adorned magic predicate follows from special rule magic predicate with same adornment
 • magic_ancestorfb (X):- magic_r0_ancestorfb(X).
 • magic_ancestorfb (X):- magic_r2_ancestorfb(X).
Finally, we have a complete definition of magic predicates with different adornments

- In our case, we have only the fb-adornment
 - magic_r0_ancestor^{fb}(Wolfi).
 - magic_r2_ancestor^{fb}(Z) :- magic_ancestor^{fb}(Z), parent (Z, Y).
 - magic_ancestor^{fb}(X) :- magic_r0_ancestor^{fb}(X).
 - magic_ancestor^{fb}(X) :- magic_r2_ancestor^{fb}(X).

- The magic magic_ancestor^{fb} set thus contains all possibly useful constants which should considered when evaluating an ancestor subgoal with the second argument bound for the current program
 - Like, e.g. our query…
8.3. Magic Sets

• As all magic sets are defined, the original rules of the reachable adorned system have to restricted to respect the sets

 – Every rule using an adorned IDB predicate in its body is augmented with an additional literal containing the respective magic set

 – e.g.

 • \(\text{ancestor}^{\text{fb}}(X, Y) :\neg \text{ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y). \)

 \(\Rightarrow \text{ancestor}^{\text{fb}}(X, Y) :\neg\text{magic_ancestor}^{\text{fb}}(X), \text{ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y). \)
Finally, the following program is created

\[
\text{ancestor}(X, Y) :- \text{parent}(X, Y).
\]
\[
\text{ancestor}(X, Y) :- \text{ancestor}(X, Z), \text{parent}(Z, Y).
\]
\[
\text{ancestor}(X, \text{Wolfi})?
\]

\[
\text{magic\textsubscript{r0_ancestor}}^{\text{fb}}(\text{Wolfi}).
\]
\[
\text{magic\textsubscript{r2_ancestor}}^{\text{fb}}(Z) :- \text{magic_ancestor}^{\text{fb}}(Z), \text{parent}(Z, Y).
\]
\[
\text{magic_ancestor}^{\text{fb}}(X) :- \text{magic\textsubscript{r0_ancestor}}^{\text{fb}}(X).
\]
\[
\text{magic_ancestor}^{\text{fb}}(X) :- \text{magic\textsubscript{r2_ancestor}}^{\text{fb}}(X).
\]
\[
\text{ancestor}^{\text{fb}}(X, Y) :- \text{parent}(X, Y).
\]
\[
\text{ancestor}^{\text{fb}}(X, Y) :- \text{magic_ancestor}^{\text{fb}}(X), \text{ancestor}^{\text{fb}}(X, Z), \text{parent}(Z, Y).
\]
\[
q^{f}(X) :- \text{ancestor}^{\text{fb}}(X, \text{Wolfi}).
\]
8.3. Magic Sets

• In this example, following further optimizations are possible
 – In this case, it is not necessary to separate the two occurrences of magic_r0_ancestor\(_{fb}\) and magic_r2_ancestor\(_{fb}\)
 • No dependencies between both
 • We can unify and rename them
 – We have only one adornment pattern (\(_{fb}\)) and can thus drop it
 – This final program can be evaluated using any evaluation technique with increased performance

```
magic(\(Wolfi\)).
magic(Z) :- magic(Z), parent(Z, Y).
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- magic(X), ancestor(X, Z), parent(Z, Y).
```
• **Magic Sets in short form**
 – Query is part of the program
 – Determine *reachable adorned system*
 • i.e. observe which terms are distinguished and propagate the resulting adornments
 • Reachable adorned system contains separated *adorned predicate occurrences*
 – Determine the **magic set** for each adorned predicate occurrence
 • Use **magic rules** and **magic predicates**
 – **Restricts rules** using adorned predicates to using inly the constant in the respective magic set
• Uncertain Reasoning!