Distributed Data Management

Christoph Lofi
José Pinto
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
• There are 3 major architectures for DDBMS
 – **Share-Everything Architecture**
 • Nodes share main memory
 • Suitably for tightly coupled high performance highly parallel DDBMS
 • Weaknesses wrt. scalability and reliability
 – **Shared-Disk Architecture**
 • Nodes have access to same secondary storage (usually **SAN**)
 • Strengths wrt. complex data and transactions
 • Common in enterprise level DDBMS
 – **Share-Nothing Architecture**
 • Node share nothing and only communicate over network
 • Common for web-age DDBMS and the cloud
 • Strength wrt. scalability and elasticity
• Data has to be distributed across nodes
• Main concepts:
 – **Fragmentation**: partition all data into smaller fragments / “chunks”
 • How to fragment? How big should fragments be? What should fragments contain?
 – **Allocation**: where should fragments be stored?
 • **Distribution and replication**
 • Where to put which fragment? Should fragments be replicated? If yes, how often and where?
• In general, fragmentation and allocation are optimization problems which are closely depended on the actual application
 – Focus on high availability?
 – Focus on high degree of distribution?
 – Focus on low communication costs and locality?
 – Minimize or maximize geographic diversity?
 – How complex is the data?
 – Which queries are used how often?
• Many possibilities and decision!
3.0 Query Processing

3.1 Basic Distributed Query Processing

3.2 Data Localization

3.3 Response Time Models
• After the partitioning has been decided, the fragments have to be allocated at different sites of a computer network
 – Different allocation strategies
 – Focus on high availability
 – Performance gain vs. replication

• History: file allocation problem in networks
Where is my data?

Sudarshan Kadambi, Jianjun Chen, Brian F. Cooper, David Lomax, Raghu Ramakrishnan, Adam Silberstein, Erwin Tam, Hector Garcia-Molina; VLDB 2011
Platform for Nimble Universal Table Storage: “a massively parallel and geographically distributed database system for Yahoo!’s web applications”

- Record level operation
- Indexes and views
- Novel Consistency model
- Structured, flexible schema
- Geographic replication
- Asynchronous operations
- Flexible access: hashed or ordered
Timeline consistency: Timeline consistency enforced through record mastership. Record mastery ensures that her writes get applied in all regions in the order in which she made them.
Where is my data?

• Motivation and goals:
 – Legal constraints.
 – Minimum number of copies of critical data.
 – Inter-datacenter bandwidth can be extremely expensive: replication and forward bandwidth.
 – Latency constraints.
• Selective replication mechanism:
 – Finer grained: per-record selective replication policy.
 – Goal: minimize replication costs but:
 • Respecting policy constraints.
Selective replication

• Policy constraints:
 – MIN_COPIES: The minimum number of full replicas of the record that must exist.
 – INCL_LIST: An inclusion list, the locations where a full replica of the record must exist.
 – EXCL_LIST: An exclusion list, the locations where a full replica of the record cannot exist.
• Rule 1:

IF

 TABLE_NAME = "Users"

THEN

 SET 'MIN_COPIES' = 2
 CONSTRAINT_PRI = 0
• Rule 2:

IF

TABLE_NAME = "Users" AND
FIELD STR('home location') = 'France'

THEN

SET 'MIN_COPIES' = 3 AND
SET 'EXCL LIST' = 'USWest, USEast'

CONSTRAINT PRI = 1
• Static constraint-based data placement
 – Define a function `choose_replicas(R,C)`, based on the values of the fields

• Dynamic placement
 – Make full replica (read pattern) and
 – Demote a full replica (write pattern)
 – Key aspect: retention interval
Data Allocation

• **Practice shows**…
 – Sophisticated algorithms are **rarely** needed in real life scenarios
 – In most cases **simple analytical models** are sufficient to support decisions

• **Major factors**
 – Fragmentation schema
 – User queries/update and their frequencies
 – Network topology, bandwidth and latency
 – The sites’ storage and processing characteristics
• What is the best placement of fragments and/or best number of copies to:
 – minimize query response time
 – maximize throughput
 – minimize “some cost”: communication, storage, updates, at sites…

• Subject to constraints?
 – Available storage
 – Available bandwidth, power,…
 – Keep 90% of response time below X
 – …
• **Golden Rules**

 – Place data **as close as possible** to where it will be used

 – Use **load balancing** to find a global optimization of system performance
• The task of DB query processing is to answer user queries
 – e.g. “How many students were at TU BS in 2014?”
 • Answer: 17.200

• However, some additional constraints must be satisfied
 – Low response times
 – High query throughput
 – Efficient hardware usage
 – …
 – Relational Databases 2!
The generic workflow for centralized query processing involves multiple steps and components.
• **Query, Parser, and Naïve Query Plan**

 – Usually, the query is given by some *higher-degree declarative query language*

 • Most commonly, this is SQL

 – The query is translated by parser into some *internal representation*

 • Called *naïve query plan*

 • This plan is usually described by an *relational algebra operator tree*
• **Example:**

 – Database storing mythical creatures and heroes
 * Creature(cid, cname, type); Hero(hid, hname)
 * Fights(cid, hid, location, duration)

 – “Return the name of all creatures which fought at the Gates of Acheron”
 * SELECT cname FROM creature c, fights f
 WHERE c.cid = f.cid
 AND location = “Gates Of Acheron”
3.0 Query Processing

- Example (cont.)
 - Translate to relational algebra
 - $\pi_{\text{cname}} \sigma_{\text{location} = 'GoA'} \land \text{creature.cid = fights.cid} \text{creature} \times \text{fights}$
 - In contrast to the SQL statement, the algebra statement already contains the required basic evaluation operators
Example (cont.)

- Represent as operator tree
• After the naïve query plan is found, the **query rewriter** performs simple transformations
 – **Simple optimizations** which are always beneficial regardless of the system state (**Algebraic Query Rewriting**)
 • Mostly, **cleanup operations** are performed
 • Elimination of redundant predicates
 • Simplification of expressions
 • Normalization
 • Unnesting of subqueries and views
 • etc.
 – **System state**
 • Size of tables
 • Existence or type of indexes
 • Speed of physical operations
 • etc.
• The most effort in query preprocessing is spent on **query optimization**

 – **Algebraic Optimization**
 • Find a better relational algebra operation tree
 • **Heuristic** query optimization
 • **Cost-based** query optimization
 • **Statistical** query optimization

 – **Physical Optimization**
 • Find suitable **algorithms** for implementing the operations
• Heuristic query optimization
 – Use simple heuristics which usually lead to better performance
 – Basic Credo: **Not the optimal plan is needed, but the really crappy plans have to be avoided!**
 – Heuristics
 • **Break Selections**
 – Complex selection criteria should be broken into multiple parts
 • **Push Projection and Push Selection**
 – Cheap selections and projections should be performed as early as possible to reduce intermediate result size
 • **Force Joins**
 – In most cases, using a join is much cheaper than using a Cartesian product and a selection
• Example (cont.)

 – Perform **algebraic optimization heuristics**

 • Push selection & Projection
 • Force Join

\[
\begin{align*}
\pi_{\text{cname}} \\
\bowtie \\
\pi_{\text{cid}, \text{cname}} \\
\sigma_{\text{location}='\text{GoA}'} \\
\pi_{\text{cid}} \\
\text{Creatures} \\
\text{Fights}
\end{align*}
\]
• Most non-distributed RDBMS rely strongly on cost-based optimizations
 – Aim for better optimized plan which respect system and data characteristics
 • Especially, join order optimization is a challenging problem
 – Idea
 • Establish a cost model for various operations
 • Enumerate all query plans
 • Pick best query plan
 – Usually, dynamic programming techniques are used to keep computational effort manageable
Algebraic optimization results in an optimized query plan which is still represented by relational algebra

- How is this plan finally executed?
 - > Physical Optimization

- There are multiple algorithms for implementing a given relational algebra operation
 - **Join**: Block-Nested-Loop join? Hash-join? Merge-Join? etc.
 - **Select**: Scan? Index-lookup? Ad-hoc index generation & lookup? etc.
 - ...

Distributed Data Management – Christoph Lofi – IfiS – TU Braunschweig
Physical optimization translates the query plan into an execution plan

- Which algorithms will be used on which data and indexes?
 - **Physical Relational Algebra**
 - For each standard algebra operation, several physical implementations are offered
 - Should pipelining (iterator model) be used? How?
- Physical and algebraic optimization are often tightly interleaved
 - Most physical optimization also relies on cost-models
 - Idea: perform cost-based optimization algorithm “in one sweep” for algebraic, join order, and physical optimization
3.0 Query Processing

• Example (cont.)

Filter all but cname

Index Nested Loop Join

Primary Index Of Creatures

Table Creatures

Index Key Lookup: fights.location=“GoA”
3.0 Query Processing

• In general, centralized non-distributed query processing is a well understood problem
 – Current problems
 • Designing effective and efficient cost models
 • Eliciting meaningful statistics for use in cost models
 • Allow for database self-tuning
3.1 Basic DQP

• **Distributed query processing (DQP)** shares many properties of centralized query processing
 – Basically, the same problem…
 – But: objectives and constraints are different!

• Objectives for **centralized query processing**
 – Minimize number of disk accesses!
 – Minimize computational time
3.1 Basic DQP

• Objectives for distributed query processing are usually less clear…
 – Minimize resource consumption?
 – Minimize response time?
 – Maximize throughput?

• Additionally, costs are more difficult to predict
 – Hard to elicit meaningful statistics on network and remote node properties
 • Also, high variance in costs
3.1 Basic DQP

- Additional **cost factors, constraints, and problems** must be respected
 - Extension of physical relational algebra
 - Sending and receiving data
 - Data localization problems
 - Which node holds the required data?
 - Deal with replication and caching
 - Network models
 - Response-time models
 - Data and structural heterogeneity
 - Think federated database…
• Often, **static enumeration optimizations** are difficult in distributed setting
 – More difficult than non-distributed optimization
 • More and conflicting **optimization goals**
 • **Unpredictability of costs**
 • More **costs factors** and constraints
 • Quality-of-Service agreements (**QoS**)
 – Thus, most successful queries optimization techniques are **adaptive**
 • Query is optimized **on-the-fly** using current, directly measured information of the system’s behavior and workload
 – Don’t target for the **best plan**, but for a **good plan**
3.1 Basic DQP

• Example distributed query processing:
 – “Find the creatures involved in fights being decided in exactly one minute”
 • \[\pi_{\text{cname}} \sigma_{\text{duration}=1\text{min}} \text{creature} \bowtie \text{fights} \]
 – Problem:
 • Relations are fragmented and distributed across five nodes
 • The *creature* relation uses primary horizontal partitioning by creature type
 – One fragment of the relation is located at node 1, the other on node 2; no replication
 • The *fights* relation uses derived horizontal partitioning
 – One fragment on node 3, one on node 4; no replication
 • Query originates from node 5
3.1 Basic DQP

Diagram showing relationships between different entities labeled as `Creatures_1`, `Creatures_2`, `Fights_1`, `Fights_2`, and a query node labeled `Query`. Nodes are connected with lines indicating relationships or data flow.
3.1 Basic DQP

• **Cost model and relation statistics**
 – Accessing a tuple \((tupacc)\) costs 1 unit
 – Transferring a tuple \((tuptrans)\) costs 10 units
 – There are 400 creatures and 1000 fights
 • 20 fights are one minute
 • All tuples are uniformly distributed
 – i.e. node 3 and 4 contain 10 short-fight-tuples each
 – There are local indexes on attribute “duration”
 • Direct tuple access possible on a local sites, no scanning
 – All nodes may directly communicate with each other
3.1 Basic DQP

\[\pi_{\text{name}} \sigma_{\text{duration} = 1 \text{min}} \text{creature} \Join \text{fights} \]

- \(\text{Creatures}_1 \): 200 tuples
- \(\text{Creatures}_2 \): 200 tuples
- \(\text{Fights}_1 \): 500 tuples, 10 matches
- \(\text{Fights}_2 \): 500 tuples, 10 matches
Two simple distributed query plans

- Version A: Transfer all data to node 5
3.1 Basic DQP

– Version B: ship intermediate results
3.1 Basic DQP

- Costs A: 23,000 Units

\[
\pi_{\text{cname}} (\text{Creature}_1 \cup \text{Creature}_2) \bowtie (\sigma_{\text{duration}=1\min} \text{Fights}_1 \cup \text{Fights}_2)
\]

- Node 1: Send Creature_1
 - \(200 \times \text{tuptrans} = 2,000\)

- Node 2: Send Creature_2
 - \(200 \times \text{tuptrans} = 2,000\)

- Node 3: Send Fights_1
 - \(500 \times \text{tuptrans} = 5,000\)

- Node 4: Send Fights_2
 - \(500 \times \text{tuptrans} = 5,000\)

- Node 5
 - \(400 \times 20 \times \text{tupacc} = 8,000\)
 - (BNL join)
 - \(1,000 \times \text{tupacc} = 1,000\)
 - (selection w/o index)

\[\text{tupacc}=1; \text{tuptrans}=10\]
3.1 Basic DQP

Cost B: 460 Units

Node 5

\[\pi_{cname} (\text{Creature}_1^* \cup \text{Creature}_2^*) \]

Node 1

Send \text{Creature}_1^*

Node 2

Send \text{Creature}_2^*

Node 3

Send \text{Fights}_1^*

\[\sigma_{duration=1\text{min} \text{Fights}_1} \]

Node 4

Send \text{Fights}_2^*

\[\sigma_{duration=1\text{min} \text{Fights}_2} \]

tupacc=1; tuptrans=10
For performing any query optimization meta data is necessary

- Meta data is stored in the catalog
- The catalog of a DDBMS especially has to store information on data distribution

Typical catalog contents

- Database schema
 - Definitions of tables, views, UDFs & UDTs, constraints, keys, etc.
3.1 Basic DQP

– **Partitioning schema**
 • Information on how the schema is **partitioned** and how tables can be **reconstructed**

– **Allocation schema**
 • Information on where which fragment can be found
 • Thus, also contains information on **replication** of fragments

– **Network information**
 • Information on node connections
 • Connection information (network model)

– **Additional physical information**
 • Information on indexes, data statistics (basic statistics, histograms, etc.), hardware resources (processing & storage), etc.
Central problem in DDBMS: Where and how should the catalog be stored?

- Simple solution: store at a central node
- For slow networks, it beneficial to replicate the catalog across many / all nodes
 - Assumption: catalog is small and does not change often
- Also, caching is a viable solution
 - Replicate only needed parts of a central catalog, anticipate potential inconsistencies
- In rare cases, the catalog may grow very large and may change often
 - Catalog has to be fragmented and allocated
 - New meta problem: where to find which catalog fragment?
3.1 Basic DQP

• What should be optimized when and where?
 – We assume that most applications use **canned queries**
 • i.e. prepared and parameterized SQL statements

• **Full compile time-optimization**
 – Similar to centralized DBs, the full query execution plan is computed at compile time
 – **Pro:**
 • Queries can be directly executed
 – **Con:**
 • Complex to model
 • Many information unknown or too expensive to gather (collect statistics on all nodes?)
 • Statistics outdated
 – Especially, machine load and network properties are very volatile

PLAN FIRST!
3.1 Basic DQP

- **Fully dynamic optimization**
 - Every query is optimized individually at **runtime**
 - Heavily relies on heuristics, learning algorithms, and luck
 - **Pro**
 - Might produce very good plans
 - Uses current network state
 - Also usable for ad-hoc queries
 - **Con**
 - Might be very unpredictable
 - Complex algorithms and heuristics
3.1 Basic DQP

- **Semi-dynamic and hierarchical approaches**
 - Most DDBMS optimizers use semi-dynamic or hierarchical optimization techniques (or both)
 - **Semi-dynamic**
 - Pre-optimize the query
 - During query execution, test if execution follows the plan
 - e.g. if tuples/fragments are delivered in time, if network has predicted properties, etc.
 - If execution shows severe plan deviations, compute a new query plan for all missing parts
• Hierarchical Approaches
 – Plans are created in multiple stages
 – **Global-Local Plans**
 • Global query optimizer creates a **global query plan**
 – i.e. **focus on data transfer**: which intermediate results are to be computed by which node, how should intermediate results be shipped, etc.
 • Local query optimizers create **local query plans**
 – Decide on query plan layout, algorithms, indexes, etc. to deliver the requested intermediate result
3.1 Basic DQP

- **Two-Step-Plans**
 - During *compile time*, only *stable* parts of the plan are computed
 - Join order, join methods, access paths, etc.
 - During *query execution*, all missing plan elements are added
 - Node selection, transfer policies, …
 - Both steps can be performed using *traditional query optimization* techniques
 - Plan enumeration with dynamic programming
 - Complexity is manageable as each optimization problem is much easier than a full optimization
 - During runtime optimization, fresh statistics are available
The first problem in distributed query processing is \textbf{data localization}.

- **Problem:** \textit{query transparency} is needed
 - User queries the global schema
 - However, the relations of global schema are fragmented and distributed

- **Assumption**
 - Fragmentation is given by \textit{partitioning rules}
 - \textbf{Selection} predicates for horizontal partitioning
 - Attribute \textbf{projection} for vertical partitioning
 - Each fragment is allocated only at one node
 - \textbf{No replication}
 - Fragmentation rules and location of the fragments is stored in \textit{catalog}
3.2 Data Localization

• **Base Idea:**
 – **Query Rewriter** is modified such that each query to **global schema** is replaced by a query on the **distributed schema**
 • i.e. each reference to a global relation is replaced by a **localization program** which **reconstructs** the table
 – If the localization program reconstructs the **full relation**, this is called a **generic query**
 – Often, the full relation is not necessary and by inspecting the query, simplifications can be performed
 • **Reduction techniques** for the localization program
3.2 Data Localization

• **Example:**

 – Relation $\textit{Creature} = (\textit{cid}, \textit{cname}, \textit{type})$

 – Primary partitioning by id

 • $\text{Crt}_1 = \sigma_{\textit{cid} \leq 100} \textit{Creature}$

 • $\text{Crt}_2 = \sigma_{100 < \textit{cid} < 200} \textit{Creature}$

 • $\text{Crt}_3 = \sigma_{\textit{cid} \geq 200} \textit{Creature}$

 – Allocate each fragment to its own node

 • Crt_1 to node 1, ...

 – A **generic localization program** for $\textit{Creature}$ is given by

 • $\textit{Creature} = \text{Crt}_1 \cup \text{Crt}_2 \cup \text{Crt}_3$
3.2 Data Localization

- **Global queries** can now easily be transformed to **generic queries** by replacing table references

 – `SELECT * FROM creatures WHERE cid = 9`

- Send and receive operations are implicitly assumed

![Diagram showing global query transformation](image)
Often, when using generic queries, **unnecessary fragments** are transferred and accessed

- We know the **partitioning rules**, so it is clear that the requested tuple is in fragment Cr_{t1}
- Use this knowledge to **reduce** the query
3.2 Data Localization

- In general, the **reduction rule** for **primary horizontal partitioning** can be stated as
 - Given fragments of R as $F_R = \{R_1, \ldots, R_n\}$ with $R_j = \sigma_{p_j}(R)$
 - **Reduction Rule 1:**
 - All fragments R_j for which $\sigma_{p_S}(R_j) = \emptyset$ can be omitted from localization program
 - p_S is the query selection predicate
 - e.g. in previous example, $cid = 9$ contradicts $100 < cid < 200$
 - $\sigma_{p_S}(R_j) = \emptyset \iff \forall x \in R: \neg(p_S(x) \land p_j(x))$
 - “The selection with the query predicate p_S on the fragment R_j will be empty if p_S contradicts the partitioning predicate p_j of $R_j”$
 - i.e. p_S and p_j are never true at the same time for all tuples in R_j
3.2 Data Localization

- **Join Reductions**
 - Similar reductions can be performed with queries involving a **join** and relations partitioned along the join attributes
 - Base Idea: Larger joins are replaced by multiple **partial joins** of fragments
 - \((R_1 \cup R_2) \bowtie S \equiv (R_1 \bowtie S) \cup (R_2 \bowtie S)\)
 - Which might or might not be a good idea depending on the data or system
 - **Reduction**: Eliminate all those unioned fragments from evaluation which will return an empty result
3.2 Data Localization

• i.e.: join according to the join graph
 – Join graph usually not known (full join graph assumed)
 • Discovering the non-empty partial joins will construct join graph
3.2 Data Localization

• We hope for
 – …many partial joins which will definitely produce empty results and may be omitted
 • This is not true if partitioning conditions are suboptimal
 – …many joins on small relations have lower resource costs than one large join
 • Also only true if “sensible” partitioning conditions used
 • Not always true, depends on used join algorithm and data distributions; still a good heuristic
 – …smaller joins may be executed in parallel
 • Again, this is also not always a good thing
 • May potentially decrease response time…
 – Response time cost models!
 • …but may also increase communication costs
3.2 Data Localization

- **Example:**

 - \(\text{Creature} = (cid, \text{name}, \text{type}) \)
 - \(Crt_1 = \sigma_{cid \leq 100} \text{Creature} \)
 - \(Crt_2 = \sigma_{100 < cid < 200} \text{Creature} \)
 - \(Crt_3 = \sigma_{cid \geq 200} \text{Creature} \)

 - \(\text{Fights} = (cid, hid, \text{location}, \text{duration}) \)
 - \(Fg_1 = \sigma_{cid \leq 200} \text{Fights} \)
 - \(Fg_2 = \sigma_{cid > 200} \text{Fights} \)

- **SELECT** * FROM creature c, fight f
 WHERE c.cid = f cid
3.2 Data Localization

- By splitting the joins, six fragment joins are created
- 3 of those fragment joins are empty
 - e.g. $\textit{Crt}_1 \Join Fg_2 = \emptyset$
 - \textit{Crt}_1 contains tuples with cid≤100
 - Fg_2 contains tuples with cid>200
3.2 Data Localization

- **Formally**

 - **Join Fragmentation**

 \[(R_1 \cup R_2) \bowtie S \equiv (R_1 \bowtie S) \cup (R_2 \bowtie S)\]

 - **Reduction Rule 2:**

 \[R_i \bowtie R_j = \emptyset \iff \forall x \in R_i, y \in R_j: \lnot(p_i(x) \land p_j(y))\]

 - “The join of the fragments \(R_j\) and \(R_i\) will be empty if their respective partition predicates (on the join attribute) contradict.”

 - i.e. there is no tuple combination \(x\) and \(y\) such that both partitioning predicates are fulfilled at the same time

 - **Empty join fragments may be reduced**
• Obviously, the easiest join reduction case follows from **derived horizontal fragmentation**
 – For each fragment of the first relation, there is **exactly one matching fragment** of the second relation
 • The **reduced query** will always be more **beneficial** than the generic query due to small number of fragment joins
 – Derived horizontal fragmentation is especially effective to represent **one-to-many** relationships
 • Many-to-many relationships are only possible if tuples are replicated
 – No fragment disjointness!

3.2 Data Localization
3.2 Data Localization

- **Example:**
 - \(\text{Creature} = (\text{cid}, \text{cname}, \text{type}) \)
 - \(\text{Crt}_1 = \sigma_{\text{cid} \leq 100} \text{Creature} \)
 - ...
 - \(\text{Fights} = (\text{cid}, \text{hid}, \text{location}, \text{duration}) \)
 - \(\text{Fg}_1 = \text{Fights} \bowtie \text{Creature} \)
 - ...
 - **SELECT** * FROM creature c, fight f
 WHERE c.cid=f.cid
3.2 Data Localization

- **Reduction for vertical fragmentation** is very similar

 - **Localization program** for R is usually of the form

 $R = R_1 \bowtie R_2$

 - When reducing generic vertically fragmented queries, avoid joining in fragments containing useless attributes

 - **Example:**

 - $Creature = (cid, cname, type)$ is fragmented to $Creature_1 = (cid, cname)$ and $Creature_2 = (cid, type)$

 - For the query **SELECT** $cname$ **FROM** $creature$ **WHERE** $cid = 9$, no access to $Creature_2$ is necessary
3.2 Data Localization

- Reducing Queries w. Hybrid Fragmentation
 - Localization program for R combines joins and unions
 - e.g. $R = (R_1 \cup R_2) \bowtie R_3$
 - General guidelines are
 - Remove empty relations generated by contradicting selections on horizontal fragments
 - Relations containing useless tuples
 - Remove useless relations generated by vertical fragments
 - Relations containing unused attributes
 - Break and distribute joins, eliminate empty fragment joins
 - Fragment joins with guaranteed empty results
Previously, we computed **reduced queries** from global queries

However, where should the query be executed?

- **Assumption**: only two nodes involved
 - i.e. **client-server setting**
 - Server stores data, query originates on client

- **Query shipping**
 - Common approach for centralized DBMS
 - Send query to the server node
 - Server computes the query result and ships result back
3.2 Data Localization

Data Shipping

- Query remains at the client
- Server ships all required data to the client
- Client computes result
3.2 Data Localization

- **Hybrid Shipping**
 - Partially send query to server
 - Execute some query parts at the server, send intermediate results to client
 - Execute remaining query at the client
3.2 Data Localization

• Of course, these simple models can be extended to **multiple nodes**
 – Query optimizer has to decide which parts of the query have to be shipped to which node
 • Cost model!
 – In heavily replicated scenarios, clever hybrid shipping can effectively be used for **load balancing**
 • Move expensive computations to lightly loaded nodes
 • Avoid expensive communications
3.3 Response Time Models

• “Classic” DB cost models focus on **total resource consumption** of a query
 – Leads to good results for **heavy computational load** and **slow network connections**
 • If query saves resources, many queries can be **executed in parallel** on different machines
 – However, queries can also be optimized for **short response times**
 • “Waste” some resources to get query results earlier
 • Take advantage of lightly loaded machines and fast connections
 • Utilize intra-query parallelism
 – Parallelize one query instead of multiple queries
3.3 Response Time Models

- **Response time models** are needed!
 - “When does the **first result tuple** arrive?”
 - “When have **all tuples** arrived?”

- **Example**
 - Assume relations or fragments A, B, C, and D
 - All relations/fragments are available on all nodes
 - Full replication
 - Compute \((A \bowtie B) \bowtie (C \bowtie D)\)

- **Assumptions**
 - Each join costs 20 time units (TU)
 - Transferring an intermediate result costs 10 TU
 - Accessing relations is free
 - Each node has one computation thread
3.3 Response Time Models

- **Two plans:**
 - **Plan 1:** Execute all operations on one node
 - **Total costs:** 60
 - **Plan 2:** Join on different nodes, ship results
 - **Total costs:** 80

Plan 1

- **Node 1**
 - A
 - B
 - C
 - D

Plan 2

- **Node 1**
 - A
 - B

- **Node 2**
 - C
 - D

- **Node 3**
 - Receive

Send

Receive
3.3 Response Time Models

• With respect to total costs, plan 1 is better
• Example (cont.)
 – But: Plan 2 is better wrt. to \textit{response time} as operations can be carried out in parallel
3.3 Response Time Models

- **Response Time**
 - Two types of response times
 - **First Tuple & Full Result** Response Time

- **Computing response times**
 - Sequential execution parts
 - Full response time is sum of all computation times of all used operations
 - Multiple parallel threads
 - Maximal costs of all parallel sequences
3.3 Response Time Models

Considerations:

- How much speedup is possible due to parallelism?
 - Or: “Does kill-it-with-iron” work for parallel problems?
- Performance **speed-up of algorithms** is limited by **Amdahl’s Law**
 - Gene Amdahl, 1968
 - Algorithms are composed of parallel and sequential parts
 - **Sequential code fragments** severely limit potential speedup of parallelism!
3.3 Response Time Models

- Possible maximal speed-up:
 \[\text{maxspeedup} \leq \frac{p}{1 + s \times (p-1)} \]
 - \(p \) is number of parallel threads
 - \(s \) is percentage of single-threaded code

- e.g. if 10% of an algorithm is sequential, the maximum speed up regardless of parallelism is 10x

- For maximal efficient parallel systems, all sequential bottlenecks have to be identified and eliminated!
3.3 Response Time Models

Amdahl’s Law

<table>
<thead>
<tr>
<th>Parallel Portion</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Processors</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

- 50%
- 75%
- 90%
- 95%
• Good **First Tuple Response** benefits from queries executed in a pipelined fashion

 – **Not pipelined:**
 • Each operation is fully completed and a **intermediate result** is created
 • Next operation reads intermediate result and is then fully completed
 – Reading and writing of intermediate results costs resources!

 – **Pipelined**
 • Operations **do not create intermediate** results
 • Each finished tuple is fed directly into the next operation
 • Tuples “**flow**” through the operations
• Usually, the tuple flow is controlled by iterator interfaces implemented by each operation
 – “Next tuple” command
 – If execution speed of operations in the pipeline differ, tuples are either cached or the pipeline blocks

• Some operations are more suitable than others for pipelining
 – **Good**: scan, select, project, union, …
 – **Tricky**: join, intersect, …
 – **Very Hard**: sort
3.3 Response Time Models

- **Simple pipeline example:**
 - **Tablescan, Selection, Projection**
 - 1000 tuples are scanned, selectivity is 0.1
 - **Costs:**
 - Accessing one tuple during tablescan: 2 TU (time unit)
 - Selecting (testing) one tuple: 1 TU
 - Projecting one tuple: 1 TU

<table>
<thead>
<tr>
<th>Non-Pipelined</th>
<th>Pipelined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Scan</td>
<td>Table Scan</td>
</tr>
<tr>
<td>IR1</td>
<td>Selection</td>
</tr>
<tr>
<td>Selection</td>
<td>Projection</td>
</tr>
<tr>
<td>Projection</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>First tuple in IR1</td>
</tr>
<tr>
<td>2000</td>
<td>All tuples in IR1</td>
</tr>
<tr>
<td>2001</td>
<td>First tuple in IR2</td>
</tr>
<tr>
<td>3000</td>
<td>All tuples in IR2</td>
</tr>
<tr>
<td>3001</td>
<td>First tuple in Final</td>
</tr>
<tr>
<td>3100</td>
<td>All tuples in Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>First tuple finished tablescan</td>
</tr>
<tr>
<td>3</td>
<td>First tuple finished selection (if selected...)</td>
</tr>
<tr>
<td>4</td>
<td>First tuple in Final</td>
</tr>
<tr>
<td>3098</td>
<td>Last tuple finished tablescan</td>
</tr>
<tr>
<td>3099</td>
<td>Last tuple finished selection</td>
</tr>
<tr>
<td>3100</td>
<td>All tuples in Final</td>
</tr>
</tbody>
</table>
3.3 Response Time Models

- Consider following example:
 - Joining two table subsets
 - Non-pipelined BNL join
 - Both pipelines work in parallel
 - Costs:
 - 1,000 tuples are scanned in each pipeline, selectivity 0.1
 - Joining 100 \(\bowtie \) 100 tuples: 10,000 TU (1 TU per tuple combination)
 - **Response time** (non-pipelined BNL)
 - The first tuple can arrive at the end of any pipeline after 4 TU
 - Stored in intermediate result
 - All tuples have arrived at the end of the pipelines after 3,100 TU
 - Final result will be available after 13,100 TU
 - No benefit from pipelining wrt. response time
 - First tuple arrives at \(3100 \ll t \ll 13100 \)
3.3 Response Time Models

• The suboptimal result of the previous example is due to the unpipelined join
 – Most traditional join algorithms are unsuitable for pipelining
 • Pipelining is not usually necessary feature in a strict single thread environment
 – Join is fed by two input pipelines
 – Only one pipeline can be executed at a time
 – Thus, at least one intermediate result has to be created
 – Join may be performed single / semi-pipelined
 • In parallel / distributed DBs, fully pipelined joins are beneficial
3.3 Response Time Models

• **Single-Pipelined-Hash-Join**
 – One of the “classic” join algorithms
 – **Base idea** \[A \bowtie B\]
 • One input relation is read from an intermediate result (B), the other is pipelined though the join operation (A)
 • All tuples of B are stored in a hash table
 – **Hash function** is used on the join attribute
 – i.e. all tuples showing the same value for the join attribute are in one bucket
 » Careful: hash collisions! Tuple with different joint attribute value might end up in the same bucket!
 • Every incoming tuple a (via pipeline) of A is hashed by join attributed
 • **Compare** a to each tuple in the respective B bucket
 – Return those tuples which show matching join attributes
3.3 Response Time Models

- **Double-Pipelined-Hash-Join**
 - Dynamically build a hashtable for \(A\) and \(B\) each
 - **Memory intensive!**
 - Process tuples **on arrival**
 - Cache tuples if necessary
 - Balance between \(A\) and \(B\) tuples for better performance
 - Rely on **statistics** for a good \(A:B\) ratio
 - If a new \(A\) tuple \(a\) arrives
 - Insert \(a\) into the \(A\)-table
 - Check in the \(B\) table if there are join partners for \(a\)
 - If yes, return all matching \(AB\) tuples
 - If a new \(B\) tuple arrives, process it analogously
3.3 Response Time Models

- **B(31,B2) arrives**
- **Insert into B Hash**
- **Find matching A tuples**
 - **Find A3**
 - **Assume that A3 matches B2...**
- **Put AB(A3, B2) into output feed**
3.3 Response Time Models

• In pipelines, tuples just “flow” through the operations
 – No problem with that in one processing unit…
 – But how do tuples flow to other nodes?

• Sending each tuple individually may be very ineffective
 – Communication costs:
 • Setting up transfer & opening communication channel
 • Composing message
 • Transmitting message: header information & payload
 – Most protocols impose a minimum message size & larger headers
 – Tuplesize ≪ Minimal Message Size
 • Receiving & decoding message
 • Closing channel
3.3 Response Time Models

• Idea: Minimize Communication Overhead by **Tuple Blocking**
 – Do not send single tuples, but larger blocks containing multiple tuples
 • “Burst-Transmission”
 • Pipeline-Iterators have to be able to cache packets
 • Block size should be at least the packet size of the underlying network protocol
 – Often, larger packets are more beneficial
 – ….more cost factors for the model
• **Additional constraints and cost factors** compared to “classic” query optimization
 – Network *costs*, network *model*, shipping policies
 – **Fragmentation & allocation** schemes
 – Different optimization goals
 • *Response time vs. resource consumption*

• **Basic techniques** try to **prune** unnecessary accesses
 – Generic query reductions
• This lecture only covers very basic techniques
 – In general, distributed query processing is a very complex problem
 – Many and new optimization algorithms are researched
 • Adaptive and learning optimization
 • Eddies for dynamic join processing
 • Fully dynamic optimization
 • …

• Recommended literature
• **Distributed Transaction Management**

 – Transaction Synchronization

 – Distributed Two-Phase Commits

 – Byzantine Agreements