Relational Database Systems 2
8. Join Order Optimization

Silke Eckstein
Andreas Kupfer
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
8 Join Order Optimization

8.1 Basic join order optimization
8.2 Join cost and size estimations
8.3 Left-deep join trees
8.4 Dynamic programming
8.5 Greedy strategy
8.6 Randomized algorithms
8.1 Introduction

• Joins are **commutative** and **associative**
 - \(R \Join S \equiv S \Join R \)
 - \(R \Join (S \Join T) \equiv (S \Join R) \Join T \)
• This allows to evaluate individual joins in any order
 - Results in **join trees**
 - Different join trees may show very different evaluation performance
 - Join trees have different **shapes**
 - Within a shape, there are different relation **assignments** possible
• Example: \(R \Join S \Join T \Join U \)
8.1 Shapes of Join Trees

- Number of possible join trees grows rapidly with number of join relations
 - For n relations, there are $T(n)$ different tree shapes

 - $T(1) = 1$
 - $T(n) = \sum_{i=1}^{n-1} T(i) T(n - i)$

 - “Any number of $1 \leq i \leq n-1$ relations may be in the left subtree and ordered in $T(i)$ shapes while the remaining $n-i$ relations form the right subtree and can be arranged in $T(n-i)$ shapes.”
This number sequence is called **Catalan Numbers**

- Named after Belgian mathematician Eugène Charles Catalan (1814–1894)
- Can be rewritten as

\[T(n) = C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!} \]
8.1 Shapes of Join Trees

– **Example:** Shapes for \(n=4 \)

- Example: The first Catalan Numbers:
 - 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020
 - Grows quite quickly….
8.1 Sequence of Relations

- For each shape, the relations can be assigned in \(n! \) ways to the tree nodes
 - Example: Left-deep tree shape for \(n=3 \)

- There are \(T(n) \)*\(n! \) different join trees for \(n \) relations!

<table>
<thead>
<tr>
<th>(n)</th>
<th>(T(n))*(n!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>1,680</td>
</tr>
<tr>
<td>6</td>
<td>30,240</td>
</tr>
<tr>
<td>9</td>
<td>518E6</td>
</tr>
<tr>
<td>12</td>
<td>28E12</td>
</tr>
<tr>
<td>15</td>
<td>3.49E18</td>
</tr>
</tbody>
</table>
8.1 Basic Join Order Optimization

• Finding the “most efficient” join tree and join implementation is a challenging problem
 – Number of possible join trees grows extremely with number of join relations
 • Problem was shown to be NP-hard in the general case
 • $O(n!)$, with n as number of join relations
 • Estimating cost of all trees is not feasible for larger joins
 – Some join implementations are asymmetric
 • Performance varies greatly depending on relation order
• Query optimizer has to find a good plan in sensible time
8.1 Basic Join Order Optimization

- Naming convention
 - Left: **Build Relation**
 - Right: **Probe Relation**

- Desirable Join Cases
 - Attention: Role (inner/outer relation) of build and probe depends on chosen algorithm
 - **Block Nested Loop Join**
 - Build relation is in **inner loop**, probe relation is in **outer loop**
 - Build relation **significantly** smaller than probe
 - **“Single Pass Join”**
 - Best case
 - **Nested Loop Join** where build relation fits completely into main memory
 - **Index Join**
 - Build relation is in **outer loop**, probe relation is in **inner loop**
 - Index on probe relation
 - Build relation small
8.1 Basic Join Order Optimization

- Optimizer has 3 choices
 - Consider all possible join trees
 - Usually not possible
 - Consider a subset of all trees
 - i.e. restrict to trees of certain shapes
 - Use heuristics to pick a certain shape
For optimizing joins, **metrics** are necessary

- **Estimated Join Result Size**
 - “What is the expected size of the result set?”
 - Needed by the query optimizer for global query optimization
 - May be used within the cost metric
 - Is **the same** for all different join orders

- **Estimated Join Cost**
 - Represents the actual costs for performing the join
 - May consider CPU, I/O, buffer statistics, etc. and varies with join algorithm implementation
8.2 Join Metrics – Size

• **Size Estimation:**
 – A join selects tuples fulfilling a join condition from a Cartesian product: \(R \bowtie_c S \equiv \sigma_c (R \times S) \)

 • \(|R \bowtie_c S| \leq |R \times S| \)
 • \(|R \bowtie_c S| \leq |R| \times |S| \)
 • \(|R \bowtie_c S| = rf_\sigma \times |R| \times |S| \)
 – \(rf_\sigma \) the reduction factor of the selection with the join condition wrt. the Cartesian product (fraction of remaining tuples after selection)

 – **We need to estimate the reduction factor of the selection!**
8.2 Join Metrics – Size

• Remember lecture 6.4: reduction factors for selections
 – Simplified: Two useful cases for joins
 – \(\text{rel}_1.\text{col}_1 = \text{rel}_2.\text{col}_2 \) (natural join, equijoin) shows a reduction factor: \(\frac{1}{\max(\#dV(\text{rel}_1, \text{col}_1), \#dV(\text{rel}_2, \text{col}_2))} \)
 • Assuming that every tuple in the smaller relation has a match in the larger relation
 • \(\#dV(R, A) \) is number of distinct values of attribute A in relation R
 – \(\text{rel}_1.\text{col}_1 \ \theta \ \text{rel}_2.\text{col}_2, \ \theta \in \{\leq, <, =, >, \geq, \neq\} \) (theta join) shows a reduction factor of about 0.5
 • Assuming that each value in \(\text{rel}_1 \) is joined with about half the values in \(\text{rel}_2 \)
8.2 Join Metrics – Size

• **Observations**: \(R \bowtie S \) on common attribute \(A \)

 – **Natural join**: \(R.A = S.A \)

 – **Join size depends heavily on the relation of values of \(A \) in \(R \) and \(S \)**

 • \(R \) and \(S \) may have **disjoint** \(A \) values

 – \(\text{rf}_\sigma = 0 \Rightarrow |R \bowtie S| = 0 \)

 • \(A \) might be **key** of \(S \) and **foreign key** of \(R \)

 – Each tuple of \(R \) joins with exactly one tuple of \(S \)

 – \(\Rightarrow |R \bowtie S| = |R| \)

 • **Most tuples of \(R \) and \(S \) could have equal values for \(A \)**

 – \(\text{rf}_\sigma \approx 1 \Rightarrow |R \bowtie S| \approx |R|^*|S| \)
8.2 Join Metrics – Size

• Idealized case with keys and foreign keys
 – Usually, tuples of one relation match a tuple in the other
 • Attribute A is key of S and foreign key of R
 $\Rightarrow r_f = 1 / \#dV(R, A)$
 • Attribute A is key of R and foreign key of S
 $\Rightarrow r_f = 1 / \#dV(S, A)$
 • You don’t know which relation contains key and which foreign key
 $\Rightarrow r_f = 1 / \max(\#dV(R, A), \#dV(S, A))$
 $|R \bowtie S| = |R| \cdot |S| / \max(\#dV(R, A), \#dV(S, A))$
8.2 Join Metrics – Size

• Join Result Sizes
 – For a single equality join condition on A:
 • $| R \bowtie S | = |R|^*|S| / \max(#dV(R, A), #dV(S, A))$
 – For multiple equality join conditions on A_1, \ldots, A_n:
 • Multiply reduction factors
 • $| R \bowtie S | = |R|^*|S| / \Pi_i (\max(#dV(R, A_i), #dV(S, A_i)))$
 – For multiple join relations R_1, \ldots, R_n
 • Cascade formula for two relations
 • i.e. $| R_1 \bowtie \ldots \bowtie R_n | = \cdots | R_1 \bowtie R_2 | \bowtie \ldots \bowtie R_n |$
 • Order of relations does not matter for total size estimation
8.2 Join Metrics – Size

- Estimation accuracy can be improved using more sophisticated statistics
 - Histograms
 - Dynamic sampling
 - Simulating common queries
 - Incorporating previous query results

- Are more complex statistics worth it?
 - Keeping statistics is expensive in databases with high change rate
 - Which statistics to create?
 - Adapting statistics to queries?
8.2 Join Cost Metrics – Execution

Execution Cost Estimation:

- For selecting a good join tree, we have to minimize the actual costs for computing the result.
- Easiest cost metric: **size of intermediate results**
 - Creating intermediate results is costly (writing to disk), costs increase with size of relations.
 - Final result is *not* an intermediate result.
- **Example:**
 - Costs \((R \bowtie S) = 0\)
 - Costs \(((R \bowtie S) \bowtie T) = |R \bowtie S|\)
- Metric does not consider real I/O, memory and CPU costs.
- Metric ignores actual join algorithm implementation.
8.2 Join Cost Metrics – Access Costs

- **Cost metric: block accesses**
 - Block accesses are the major performance bottlenecks
 - Depends on the used join implementation
 - **Costs for writing the result**
 - \(\text{Costs}_{\text{Result}}(R \bowtie S) = \frac{|R \bowtie S|}{\text{blockingFactor}_{\text{Result}}}\)
 - Use size estimation for \(|R \bowtie S|\)
 - **Block Nested Loop**
 - \(\text{Costs}_{\text{BNL}}(R \bowtie S) = b_R + (b_R * b_S) + \text{Costs}_{\text{Result}}(R \bowtie S)\)
 - \(b_R\) is number of blocks in \(R\)
 - \(b_S\) is number of blocks in \(S\)
8.2 Join Cost Metrics – Access Costs

- **Block Access Costs:** **Index Loop Join**
 \[\text{Costs}_{\text{IXL}}(R \bowtie S) = b_R + (|R| \times C_{ix}) + \text{Costs}_{\text{Result}}(R \bowtie S) \]

- **Costs depend on index retrieval cost** \(C_{ix} \)
 - **IndexAccessCosts** vary on the type of index
 - Assume 0 for in-memory index
 - Increasing costs per index level for disk residing indexes
8.2 Join Cost Metrics – Access Costs

• Retrieval costs for some different indexes

 • With \(S_\sigma \), the selection cardinality of \(S \): Estimated number of records in \(S \) fulfilling the join condition for a given records from \(R \); see lecture 6.4

 – **Cluster index**

 • \(C_{ix} = \text{indexAccessCost} + (S_\sigma / \text{blockingFactor}_{Index}) \)

 – **Secondary Index:**

 • \(C_{ix} = \text{indexAccessCost} + S_\sigma \)

 – **Hash Index:**

 • \(C_{ix} \geq 1 \); Average costs for retrieving a record, depending of hash size and key collision
8.2 Join Cost Metrics – Access Costs

• Block access costs: **Sort-Merge-Join**
 – Assume that relations are already sorted on the join attribute:
 \[\text{Costs}_{SMJ} (R \bowtie S) = b_R + b_S + \text{Costs}_{\text{Result}} (R \bowtie S) \]
 • Very efficient when already sorted
 • If not, additional costs for sorting have to be considered
A simple heuristic for reducing the search space size is using **left-deep join trees**

- Introduced by System R optimizer
- Considers **only one tree shape**: left-deep tree
 - In left-deep trees, all right children are leafs
8.3 Left-deep Join Trees

- Left-deep join trees cooperate well with most join algorithms as they aim for decreasing the build relation
 - Usually, left-deep join tree yield good performance
 - Optimized buffer usage

- Left-deep plans allow output of each operator to be pipelined into the next operator
 - No need to store results in a temporary relation
 - Careful: not for sort-merge joins
8.3 Left-deep Join Trees

• The number of possible left-deep join trees is **significantly smaller** than the number of all join trees

<table>
<thead>
<tr>
<th>n</th>
<th>All join trees</th>
<th>Left-deep trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>30,240</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td>518E6</td>
<td>362,880</td>
</tr>
<tr>
<td>12</td>
<td>28E12</td>
<td>479E6</td>
</tr>
</tbody>
</table>

• But...
 – **Still** a considerable amount (impractical for >15 joins)
 – Parallel execution of joins is **not possible**!
8.4 Finding the Best Tree

• Exploring all possible join orders is not possible
 – Employ techniques for reducing search space which still deliver **best solution**
 • Dynamic Programming
 • Branch and Bound
 – Employ **approximate techniques** that deliver a sufficiently good solution
 • Greedy Strategies
 • Randomized Strategies
 • Genetic Algorithms
8.4 Dynamic Programming

- **Dynamic programming** techniques are frequently used to explore the search space more efficiently
 - Break the problem into smaller subproblems
 - Solve these subproblems optimally recursively and remember the best solutions
- **Memorization**
 - Use these optimal solutions to construct an optimal solution for the original problem
8.4 Dynamic Programming

• For finding a join plan, DP is often implemented with a **cost table**
 – Table stores lowest costs for joins of subsets of all relations
 • Only good sub-solutions are remembered
 • Use an adequate cost function for joins
 – In the following we assume intermediate result size as costs
 – Storing the table uses up buffer space!
8.4 Dynamic Programming

– The table contains columns for

 • The **relation subset** described by the row
 • The **estimated size** of the join result
 • The estimated **lowest costs** for performing the join
 – i.e. estimated intermediate result size, estimated IO cost, estimated CPU cost, etc.
 • The **expression** (i.e. tree shape and assignment) which produced the lowest cost

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{R,S,T,U}</td>
<td>2,500</td>
<td>25,750</td>
<td>(U⋈(S⋈T))⋈R</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

• Table is build **inductively** on the subsets of relations

• **Claim:**
 – Table always contains **join expressions with lowest costs** for given **relation subsets**
8.4 Dynamic Programming

• **Basics:**
 - For each *single relation subset* \(\{R_a\} \), table contains one row with size of \(R_a \), with size \(|R_a| \), costs 0 and expression \(R_a \)
 - For each *relation subset of size two* \(\{R_a, R_b\} \), table contains one row
 - Estimated size as described in previous section
 - Costs 0 (⇒ no temp files!)
 - Either expression \((R_a \bowtie R_b)\) or \((R_b \bowtie R_a)\); use heuristic to choose which expression is better: usually, order smaller relation to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>({R_1})</td>
<td>2000</td>
<td>0</td>
<td>(R_a)</td>
</tr>
<tr>
<td>({R_2})</td>
<td>1000</td>
<td>0</td>
<td>(R_b)</td>
</tr>
<tr>
<td>({R_1, R_2})</td>
<td>500</td>
<td>0</td>
<td>(R_b \bowtie R_a)</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

• Induction:
 – For each relation subset of size n $Rs=\{R_a, R_b, \ldots, R_z\}$, create a table row
 – Find two subsets $Rs_1 \cup Rs_2 = Rs$ within the table such that $\text{Cost}(Rs_1 \bowtie Rs_2)$ are minimal
 • For deep-left trees, only subsets with $|Rs_1|=n-1$ and $|Rs_2|=1$ need to be considered
8.4 Dynamic Programming

- **Fill row with**
 - Rs as subset identifier
 - Estimated size $|Rs_1 \bowtie Rs_2|$
 - Estimated costs $\text{Cost}(Rs_1 \bowtie Rs_2)$
 - Concatenation of the expressions of Rs_1 and Rs_2

 - For deep-left join trees, always place expression of Rs_1 to the left
 - Otherwise, place expression with smaller result size to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>${R_1}$</td>
<td>2000</td>
<td>0</td>
<td>R_1</td>
</tr>
<tr>
<td>${R_2}$</td>
<td>1000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_3}$</td>
<td>3000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_1, R_2}$</td>
<td>500</td>
<td>0</td>
<td>$R_2 \bowtie R_1$</td>
</tr>
<tr>
<td>${R_1, R_3}$</td>
<td>1200</td>
<td>0</td>
<td>$R_1 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_2, R_3}$</td>
<td>1800</td>
<td>0</td>
<td>$R_2 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_1, R_2, R_3}$</td>
<td>200</td>
<td>500</td>
<td>$(R_2 \bowtie R_1) \bowtie R_3$</td>
</tr>
</tbody>
</table>

Here:

$Rs_1 = \{R_1, R_2\}$

$Rs_2 = \{R_3\}$
8.4 Dynamic Programming

- Find optimal join order restricted to left-deep join trees
- 4 Relations
 - \(R \) with attributes \(a \) and \(b \)
 - \(S \) with attributes \(b \) and \(c \)
 - \(T \) with attributes \(c \) and \(d \)
 - \(U \) with attributes \(d \) and \(a \)
 - Each relation has size of 1000
 - Following Table: \(#dV(\text{Relation, attribute})\)
 - Number of distinct values for attributes and relations

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Start with subsets of size one
 - Use intermediate result set size as cost metric
- Fill table with subsets of size two
 - Still no costs because of intermediate result cost metric
 - Heuristic: Smaller relation to the left side of join

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

• Fill table with subsets of size three
 – Use previous table entries and combine a subset result of size two with a result of size one
 • Always select pairs smallest size
 • Single relation to the right side due to left-deep join tree restriction
 – For \{R, S, T\} consider:
 • \((R \bowtie S) \bowtie T\) : Costs 5,000
 • \((R \bowtie T) \bowtie S\) : Costs 1,000,000
 • \((S \bowtie T) \bowtie R\) : Costs 2,000

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Subset} & \text{Size} & \text{Costs} & \text{Expression} \\
\hline
\{R\} & 1,000 & 0 & R \\
\{S\} & 1,000 & 0 & S \\
\{T\} & 1,000 & 0 & T \\
\{U\} & 1,000 & 0 & U \\
\{R, S\} & 5,000 & 0 & R \bowtie S \\
\{R, T\} & 1 M & 0 & R \bowtie T \\
\{R, U\} & 10,000 & 0 & R \bowtie U \\
\{S, T\} & 2,000 & 0 & S \bowtie T \\
\{S, U\} & 1 M & 0 & S \bowtie U \\
\{T, U\} & 1,000 & 0 & T \bowtie U \\
\{R, S, T\} & 10,000 & 2,000 & (S \bowtie T) \bowtie R \\
\{R, S, U\} & 50,000 & 5,000 & (R \bowtie S) \bowtie U \\
\{R, T, U\} & 10,000 & 1,000 & (T \bowtie U) \bowtie R \\
\{S, T, U\} & 2,000 & 1,000 & (T \bowtie U) \bowtie S \\
\hline
\end{array}
\]
8.4 Dynamic Programming

• Subsets of size four
 – Subsets of size four can be found by combining a triple and a single relation
 • Again, single to the right
 – For \{R, S, T, U\} consider:
 • \((S \bowtie T) \bowtie R \bowtie U : 12,000\)
 • \(((R \bowtie S) \bowtie U) \bowtie T : 55,000\)
 • \(((T \bowtie U) \bowtie R) \bowtie S : 11,000\)
 • \(((T \bowtie U) \bowtie S) \bowtie R : 3,000\)

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
<tr>
<td>{R, S, T}</td>
<td>10,000</td>
<td>2,000</td>
<td>(S \bowtie T) \bowtie R</td>
</tr>
<tr>
<td>{R, S, U}</td>
<td>50,000</td>
<td>5,000</td>
<td>(R \bowtie S) \bowtie U</td>
</tr>
<tr>
<td>{R, T, U}</td>
<td>10,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie R</td>
</tr>
<tr>
<td>{S, T, U}</td>
<td>2,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie S</td>
</tr>
<tr>
<td>{R, S, T, U}</td>
<td>100</td>
<td>3,000</td>
<td>((T \bowtie U) \bowtie S) \bowtie R</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Adapting DP to arbitrary join orders
 - Previously, a larger relation set of size n was computed by finding the optimal solution for size $n-1$ and joining another relation
 - The new relation is always placed to the right side of the join to form a deep-left tree, e.g., $((T\bowtie U)\bowtie S)\bowtie R$
 - Significantly reduced search space per step
If any shape of join tree is possible, for computing an solution for subset of size n, all combinations of smaller subsets have to be considered

- e.g., for $n=5$ consider
 - All subsets of size 4 with all valid subsets of size 1
 - All subsets of size 3 with all valid subsets of size 2
 - All subsets of size 2 with all valid subsets of size 3
 - All subsets of size 1 with all valid subsets of size 4
8.4 Dynamic Programming

- Based on the previous example:
 - For \{R, S, T, U\} consider:
 - Triple with Single
 - \{S, T, R\} \bowtie \{U\}
 - \{R, S, U\} \bowtie \{T\}
 - \{T, U, R\} \bowtie \{S\}
 - \{T, U, S\} \bowtie \{R\}
 - Pair with Pair
 - \{T, U\} \bowtie \{R, S\}
 - \{R, T\} \bowtie \{S, U\}
 - \{S, T\} \bowtie \{R, U\}
 - Single with Triple
 - \{U\} \bowtie \{S, T, R\}
 - \{T\} \bowtie \{R, S, U\}
 - \{S\} \bowtie \{T, U, R\}
 - \{R\} \bowtie \{T, U, S\}
 - Optimal solution for join order is not a deep-left tree, but \(R \bowtie ((T \bowtie U) \bowtie S)\)
 - Same intermediate result costs, but lower estimated execution costs as \textit{build} and \textit{probe} relations are ordered better (smaller to the left)
Summary Dynamic Programming

- Guarantees “best” join order
- Search effort still *exponential*, but strongly limited compared to exhaustive search
 - Complexity $O(2^n)$
 - Useful up to 10-15 joins only
- Additional *space consumption* for storing the cost table
8.5 Greedy Strategy

• For larger joins dynamic programming will be too expensive...
 – Remember: $O(2^n)$

• Idea: Use a Heuristic Greedy Algorithm
 – Constructs only left-deep join trees in very short time
 – Result not necessarily optimal
8.5 Greedy Strategy

• **Algorithm**

 – **Start** with tree containing a join pair with cheapest costs

 • Smaller relation to the left

 – **While** not all relations on tree

 • Join current tree with relation promising cheapest join costs by attaching new relation to the right side of the tree
8.5 Greedy Strategy

- Find “good” join order restricted to left-deep join trees
- 4 Relations
 - \(R \) with attributes \(a \) and \(b \)
 - \(S \) with attributes \(b \) and \(c \)
 - \(T \) with attributes \(c \) and \(d \)
 - \(U \) with attributes \(d \) and \(a \)
 - Each relation has size of 1000
 - Following Table: \#dV(\text{Relation, attribute})
 - Number of distinct values for attributes and values

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.5 Greedy Strategy

- Start with $T \bowtie U$ promising the smallest result
 - Cost 1000
- Consider $(T \bowtie U) \bowtie R$ and $(T \bowtie U) \bowtie S$
 - $(T \bowtie U) \bowtie S$ better with costs 2000
- Join in R
 - Result $((T \bowtie U) \bowtie S) \bowtie R$ with costs 3000

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
• The algorithms so far have some drawbacks:
 – DP algorithms are optimal, but very heavy weight
 • Especially memory consumption is high
 – Greedy heuristics are still only heuristics
 • Will probably not find the optimal solution
 – Both find a solution only after the complete search
• Sometimes a light-weight algorithm is needed
 – Low memory consumption
 – Can stop when time runs out and still has an result
 – Usually finds a good solution
8.6 Motivation

• Solutions to the join order problems can be seen as **points in a solution space**
 – Connect these point by a set of edges **transforming** the solutions into each other
 – Edges are called **moves**

• Randomized algorithms perform a **random walk** through the solution space along the edges
 – Random walk moves into the direction of better solutions
 – The walk can be stopped at any time, or if a (local) minimum is reached
8.6 Typical Moves

- If the search is restricted to **left-deep plans only**, the solutions are simple sequences of the relations \(R_1, \ldots, R_n \)
- Sequences can be transformed into each other by **two different moves**
 - **Swap**: exchange the positions of two arbitrary positions in the sequence
 - **3Cycle**: cyclic rotations of three arbitrary positions in the sequence
If also bushy trees are considered four moves can be applied:

- **Commutativity**

- **Associativity**
8.6 Typical Moves

– Left Join Exchange

Right Join
8.6 Randomized Algorithms

• Typical algorithms are
 – Iterative Improvement
 – Simulated Annealing

• Each of these algorithms can return some result at all times, but can improve them with more time
 – i.e. optimize until a good enough solution is reached and stop
 – Either stop after a certain time span, or once a local minimum is detected
The set of solutions will not contain only a single global cost minimum reachable via all paths

- But local minima are often sufficient
- Remember: The optimizer does not need the optimal plan, but has to avoid crappy ones

Simple hill climbing would

- Start at some random point
- Determine the neighboring node with smallest costs
- Carry out the respective move
- Until no smaller neighbor can be found
But finding the minimum cost of all possible neighbors is expensive

Iterative improvement

- Starts at some random point
- Randomly applies a move
- Checks whether the new solution is less costly
- If so start over with the new solution
- Otherwise apply a different move, until a certain number of moves has been tried (i.e. the solution is considered a local minimum)
Iterative improvement performs a random walk through the solution space immediately taking every possible improvement

- Quite efficient procedure
- Constant improvement during the walk
- No possibility to leave local minima, even if there is a global minimum near
 - Local minima may still have high cost
8.6 Simulated Annealing

- **Simulated annealing** is a refinement of iterative improvement
 - Moves do **not always** have to result in lower costs
 - Simulated annealing does not get caught in local minima so easily
8.6 Simulated Annealing

• The algorithm simulates the natural annealing process of crystals
 – simply stated: first heating and then slowly cooling a liquid will result in crystallization
 – One large crystal is of lower energy than several smaller ones combined
 – The system eventually reaches a state of minimum energy
 • The slower the cool down, the lower the final energy
8.6 Simulated Annealing

- Basic algorithm with cost function c
 - Start with a random tree and a high temperature
 - Apply a random move
 - Proceed with the new solution, if it is less expensive
 - **Proceed with the new solution anyway with a probability of**

 $$\frac{e^{-\frac{(c(newsolution) - c(oldsolution))}{temperature}}}{e}$$

 - Reduce temperature and apply new random move until an equilibrium is reached or the temperature is at freezing point
8.6 Simulated Annealing

• It is very hard to determine the best parameters
 – Starting temperature, temperature reduction, stopping condition, etc.

• Often a two-phase version is used
 – Do iterative improvements for several random solutions
 – Use the least expensive result solution for a simulated annealing process
 • Since the initial solution is already better, the process can start with a lower temperature
If the solution space cannot be enumerated, randomized algorithms are generally most appropriate:

- If good solutions are of primary importance use simulated annealing.
- If short optimization times are of primary importance use iterative improvement.
- Results for both are far better than in the heuristic case.
8.6 Randomized Trees

• Problem: **How to generate a random join tree?**

• Generating a Random Join Tree has two phases
 – Generate a random tree shape
 – Generate a random relation assignment to the shape
• **Easiest Case**: Generate a Random Deep-Left Tree for n relations

 – Deep-Left Tree has only one shape
 – Relations can be assigned in any order (permutation) to the shape
 – Need to find a random permutation of the n relations
8.6 Randomized Trees

• Generating a real random permutation efficiently is tricky
 – We use a technique named Ranking/Unranking

Let S be a set with n elements.
• a bijective mapping $f : S \to [0, n[$ is called ranking
• a bijective mapping $f : [0, n[\to S$ is called unranking

– Consider S as being the set of all permutations of relations
– Given an unranking function, we can generate random elements in S by generating a random number in $[0, n[$ and unranking this number.
 • Challenge: making unranking fast.
8.6 Randomized Trees

• An efficient **unranking** for permutations
 – Unranking between integers \([0, n!]\) and permutations
 • Based on factoradic numbers
 – Array **elements** contains relations \([R_1, R_2, R_3, \ldots, R_n]\)
 – Algorithm returns the \(k\)'s permutation of \(s\)

```
function permutation(k, elements)
    for j = 2 to length(elements) {
        k := k / (j-1); // integer division
        swap elements[(k mod j)+ 1] with elements[j]; }
    return elements; }
```
Loop iterates over all elements of the array but the first

The red code fragments will generate a unique corresponding sequence of \(n \) integers

- First is in \(\{0, 1\} \), second in \(\{0, 1, 2\} \), third in \(\{0, 1, 2, 3\} \), …
- Sequence depends on \(k \)

The green fragments swaps the current element with one of the previous elements based on the sequence

Result: Uniformly distributed random permutations of the element array

```plaintext
function permutation(k, elements) {
    for j = 2 to length(elements) {
        k := k / (j-1);
        swap elements[(k mod j)+ 1] with elements[j];
    }
    return elements;
}
```
More Difficult Case: Generate arbitrarily shaped Random Trees for n relations

- Generate a random shape
 - To be done..
- Assign a random permutation of relations to the shape
 - Learned already
8.6 Randomized Trees

• **How to generate a random tree shape?**
 – Generating random trees is tricky

• **Usually, not the tree itself is generated but an equivalent code word**
 – Example: **Dyck words** *(words of balanced number of characters, usually parenthesis)*
 • e.g. (), (()), ((())), (()(()())), …
 • There is an **bijection** between all Dyck words and all binary trees
8.6 Randomized Trees

- **Encoding Binary Tree with Dyck Words**
 - Traverse the tree in Pre-Order
 - Pre-Order
 - Visit node
 - Traverse left subtree
 - Traverse right subtree
 - Skip last leaf node
 - For each encountered **inner node**, write a ‘(‘,
 - For each encountered **outer node** write a ‘)’
 - For binary Dyck Representation, replace ‘(‘ with ‘1’ and ‘)’ with ‘0’
 - so called Zaks sequence

\[((/))()] = 11010010
8.6 Randomized Trees

- Dyck words can be mapped to a triangle grid
 - Start at \((0,0)\); end at \((2n,0)\)
 - For each digit move one hop to the right, move up for 1 and down for 0

- Number of paths described by Catalan Numbers

\[
C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}
\]

\(((())())()) = 11010010
8.6 Randomized Trees

- **Unranking Binary Trees**
 - We try to create an unranking function for binary trees
 - Translates an integer number to a tree
 - i.e. generate a Zaks/Dyck sequence word from an integer
 - A tree with $n+1$ leaves has n inner nodes
 - For each relation in the join tree, one leaf is needed
 - We need Dyck words of the length $2n$ for $n-1$ relations
 - In the following: sketch of the canonical version
8.6 Randomized Trees

- **For unranking, we work on a triangle grid**
 - Number of possible paths from (0,0) to any position in the grid
 - $p(i, j) = \left(\frac{j+1}{i+1} \right)^{i+1} \left(\frac{1}{2(i+j)+1} \right)$
 - so called *Ballot number*
 - Number of possible paths from any position to (2n,0)
 - $q(i, j) = p(2n-i, j)$

- **Algorithm Sketch** (without proofs and derivation...)
 - Work on a triangle grid
 - Generate random tree rank r from $[0, C(n)]$
 - Maximum number of possible trees (again) expressed by Catalan numbers
 - Start on (0,0)
While **number of paths** from current point to \((2n,0)\) exceeds rank \(r\) (i.e. \(q(i,j)>r\)), **or** baseline \((x,0)\) is reached, move a step **top-right**

- i.e. go from \((i,j)\) to \((i+1, j+1)\)
- Write an ‘(‘ or ‘1’ for each upward movement

Otherwise

- Write an ‘)’ or ‘0’, move to the **lower-right**
 - i.e. go from \((i,j)\) to \((i+1, j-1)\)
- **Subtract** number of paths of the overlaying coordinate (i.e. the one which we had reached if we had gone top-right) from the **rank** and **resume** moving top-right
 - i.e. if we just went from \((i,j)\) to \((i+1, j-1)\), subtract number of paths from \((i+1, j+1)\)

- **Stop** when \((2n,0)\) is reached
• Example: $n=4$ (join trees for 3 relations)
 – $C(4) = 14$
 – Generate random rank in $[0,14[$

• e.g. $r=9$

Result:
8.6 Randomized Trees

- Start at (0,0), rank r=9
- Number of Paths at (0,0): 14
 - q=14 > r=9 ⇒ Move up
- Reach (1,1)

Result:

```
(1, 1)
```
8.6 Randomized Trees

- Position \((1,1)\), rank \(r = 9\)
- Number of Paths at \((1,1)\): 14
 - \(q = 14 > r = 9 \Rightarrow \text{Move up}\)
- Reach \((2,2)\)

Result:

\((11)\)
8.6 Randomized Trees

- Position (2,2), rank \(r=9 \)
- Number of Paths at (2,2): 9
 - not \((q=9 > r=9) \) ⇒ Move down
 - Subtract \(q(3,3)=4 \) from rank \(r; r:=5 \)
- Reach (3,1)

Result:

\(((())\))

110
– Position (3,1), rank \(r = 5 \)
– Number of Paths at (3,1): 5
 • not \((q = 5 > r = 5) \Rightarrow \text{Move down}\)
 • Subtract \(q(4,2) = 3 \) from rank \(r; r := 2 \)
– Reach (4,0)

Result:

\((())\)

1100
8.6 Randomized Trees

- Position (4,0), rank $r=2$
- Number of Paths at (4,0): 2
 - not $(q=2 \geq r=2)$, but reached base line \Rightarrow Move up
- Reach (5,1)

Result:

```
(()(()
11001
```
8.6 Randomized Trees

- Position (5,1), rank $r=2$
- Number of Paths at (5,1): 2
 - not ($q=2 > r=2$) ⇒ Move down
 - Subtract $q(6,2)=1$ from rank $r; r:=1$
- Reach (6,0)

Result:

$()$$(())$
8.6 Randomized Trees

- Position (6,0), rank $r=1$
- Number of Paths at (6,0): 1
 - not $(q=2 \geq r=2)$ but reached base line \(\Rightarrow\) Move up
- Reach (7,1)

Result:

\[(()(()(\begin{array}{cccccccc}
& & & & & & & 1100101 \\
\end{array})\]

\[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}\]
- Position (7,1), rank $r=1$
- Number of Paths at (7,1): 1
 - not ($q=1 \geq r=1$) ⇒ Move down
 - Try to subtract $q(8,2)=\text{NaN}$ from rank r
- Reach (8,0)

Result:

```
(()())()
```

11001010
8.6 Randomized Trees

- **In General:**
 - **Red:** Number of possible paths \(q(i,j) \)
 - **Green:** Interval of remainder ranks choose the annotated path
8.6 Randomized Trees

- Example:
 \[R = 11 \]
• Canonical unranking performs badly
 – Generating and working with Catalan numbers is expensive
 • $C(5000)$ has already 2000 digits…
• We need algorithms which work in space/time complexity of $O(n)$
 – Generate Dyck words/Zaks sequences directly without Catalan numbers
 – There are already such wonderful algorithms
 • Arnold and Sleep Algorithm
 • Atkinson and Sack Algorithm
 • Martin and Orr Algorithm
 • Johnson and Zergling Algorithm
 • …