10.1 Expert Systems

• **Expert Systems** have been the main application of A.I. in the early 80ties

• **Idea:** Create a system which can draw conclusions and thus support people in difficult decisions
 – Simulate a human expert
 – Extract knowledge of experts and just cheaply copy it to all places you might need it

10.1 Expert Systems

• **Expert Systems** were supposed to be especially useful in
 – **Medical diagnosis**
 • …used to be a failure
 • Currently, has its come-back in specialized areas
 – **Production and machine failure diagnosis**
 • Works quite well
 – **Financial services**
 • Widely used

10.1 Expert Systems

• Usually, three user groups are involved when maintaining and using an expert system
 – **End Users:** The group that actually uses the system for problem solving assistance
 * e.g. young and/or general doctors, field users deploying complex machinery,…
 – **Domain Experts:** Are those experts whose knowledge is to be “extracted”
 * e.g. highly-skilled specialist doctors, engineers of complex machinery,…
 – **Knowledge Engineers:** Assist the domain experts in representing knowledge in a formally usable form, e.g. representing it as rules

10.1 Expert Systems

• **Common architecture** of an expert system
 – **User Interface:** Usually based on a question-response dialog
 – **Inference Engine:** Tries to deduce an answer based on the knowledge base and the problem data
 – **Explanation System:** Explains to the user why a certain answer was given or question asked
 – **Knowledge Base:** Set of rules and base facts
 – **Problem Data:** Facts provided for a specific problem via user interface
10.1 Expert Systems

- **Building** an expert system has several steps
 - Building up the knowledgebase needs the extraction of knowledge in the form of rules and beliefs from domain experts
 - For complex domains it is almost impossible
 - Deciding for a suitable reasoning technique
 - This part is usually well-understood
 - Designing an explanation facility
 - Automatically generating sensible explanations or even arguments for derived facts is a major problem
 - Often only the proof tree is returned…

10.2 MYCIN

- **MYCIN**
 - Developed 1970 at Stanford University, USA
 - Medical expert system for treating infections
 - Diagnosis of infection types and recommended antibiotics (antibiotics names usually end with ~mycin)
 - Around 600 rules (also supporting uncertainty)
 - MYCIN was treated as a success by the project team…
 - … but was never used in practice
 - Too clumsy
 - Technological constraints

10.2 MYCIN

- **DESIGN CONSIDERATIONS**
 - Uncertain reasoning is necessary
 - There is no complete and doubt-free data in medicine
 - However, most known approaches for uncertain reasoning had some severe drawbacks
 - No real distinction between doubt, lack of knowledge and absence of belief
 - As seen in last lecture: You very often end up with confidence intervals of \([0, 1]\), i.e. deductions are useless
 - A lot of additional facts or rules are necessary to reliably use uncertain reasoning

10.2 MYCIN

- **MYCIN** pioneered the idea of **certainty factors**
 - For uncertain deduction
 - Certainty factors: the relative change of belief in some hypothesis facing a given observation
 - MYCIN is a heuristic system
 - Rules provided by experts are heuristic rules (i.e. are usually correct, but not always)
 - Also, there are additional heuristics involved by making certain assumptions (like the underlying model or independence of observations)

10.2 MYCIN

- **MYCIN** example rule

 If the organism 1) stains grampos 2) has coccus shape 3) grows in chains then there is a suggestive evidence of 0.7 that it is streptococcus

 - I.e. the expert stating this rule would strongly strengthen his/her belief in streptococcus when given the observations 1-3
10.2 MYCIN

- The certainty factor model is further based on measures of belief and disbelief
 - Certainty factor can be computed by combining belief and disbelief measures
 - Both are treated individually, i.e. increasing belief does not decrease disbelief automatically

- Examples:
 - MB(canFly(x)|isBird(x)) = 0.8
 • “Knowing that x is a bird, my belief that x can fly increases strongly by 0.8”
 - MD(canFly(x)|isBiggerThan(x, 2.00m)) = 0.9
 • “Knowing that x is bigger than 2.00m, my disbelief that x can fly increases strongly by 0.9”
 - MD(canFly(x)|isBird(x)) = 0.1
 • “Knowing that x is a bird, my disbelief that x can fly increases by 0.1”
 - Could be a chicken, or penguin, or whatever

10.2 Certainty Factors

- A positive certainty factor means that after learning a fact, my belief into something increases
 - The fact “confirms” the hypotheses
 - For negative certainty, the disbelief increases
- If only certainty factors are used for knowledge modeling, one can extract the according belief and disbelief values directly
 - This approach is used in MYCIN

\[
MB(\cdot) = \begin{cases}
0 & \text{if } CF(\cdot) < 0 \\
CF(\cdot) & \text{otherwise}
\end{cases} \\
MD(\cdot) = \begin{cases}
-CF(\cdot) & \text{if } CF(\cdot) < 0 \\
0 & \text{otherwise}
\end{cases}
\]
10.2 Certainty Factors

• Also note that $\text{CF}(h|E) + \text{CF}(\neg h|E) \leq 1$
 – They are not probabilities! i.e. known equality $P(h|E) + P(\neg h|E) = 1$ does not hold for certainty factors

• This actually means
 – If some evidence supports a hypothesis, this does not mean that the negation is supported in the inverse manner
 – E.g., no reliable statements regarding the negation

10.2 Certainty Factors

How are belief factors and certainty factors related to probability?

– We will need a formalization in order to derive valid rules for combination and chaining of rules

– For understanding and modeling knowledge and rules, the informal definition is usually used
 • i.e. the quantified change of belief when a given fact/observation is discovered
 • Assumption: The formal model matches the intended semantics of the informal definition

10.2 Certainty Factors

• Definitions for measure of disbelief and certainty factor are analogously
 – Assumption: These statistical notation does represent a fuzzy concept of human increase of belief

\[
\begin{align*}
\text{MB}(h|E) &= \begin{cases}
\max(P(h|E), P(h)) - P(h) & \text{if } P(h) \neq 1 \\
1 - P(h) & \text{otherwise}
\end{cases} \\
\text{MD}(h|E) &= \begin{cases}
P(h) - \min(P(h|E), P(h)) & \text{if } P(h) \neq 0 \\
1 & \text{otherwise}
\end{cases} \\
\text{CF}(h|E) &= \begin{cases}
\frac{P(h|E) - P(h)}{1 - P(h)} & \text{if } P(h|E) \geq P(h), P(h) \neq 1 \\
\frac{P(h|E) - P(h)}{P(h)} & \text{if } P(h|E) \geq P(h), P(h) \neq 0
\end{cases}
\end{align*}
\]

10.2 Certainty Factors

• These definitions heavily rely on various a priori probabilities and conditional probabilities
 – Those are usually not known and/or cannot be determined
 – A user-provided certainty factor (based on informal definitions) thus proxies for all those probabilities
 • “Given observation E, my belief into h decreases by 0.3” thus implicitly contains information on $P(h|E)$, $P(h)$ and their relation

10.2 Certainty Factors

• So finally, the simplest form of rules using certainty factors is
 – IF a THEN h WITH CF(h|a)
 – Thus, we can have confirming rules (positive CF) or disconfirming rules (negative CF)

– Based on this rule type, some simple operations may be defined
 • Chaining
 • Parallel Combination
10.2 Certainty Factors

• Cognitive user load using different models
 – Strict reasoning:
 “If there are black dots on teeth, then this is caries.”
 • Easy, but too restrictive and thus often leads to wrong rules
 – Probabilistic reasoning:
 “If there are black dots on teeth, then this is caries with a probability of 0.82.”
 • Absolute statement on probabilistic frequencies
 • Loss of statistical evaluation necessary to determine all needed a-priori and conditional probabilities
 – Certainty factors:
 “If there are black dots on teeth, then this is a strong positive (0.8) evidence for caries.”
 • Relative statement on strength of evidence
 • No absolute statistics necessary

• Parallel combination
 – Combining multiple rules for the same hypothesis
 • IF e THEN h WITH $CF(h|e)$
 • IF a THEN h WITH $CF(h|a)$
 – Parallel combination should be undefined when both certainty factors are opposing with maximal certainty

• Example:
 – If there is are black dots on teeth, my belief in caries increases moderately (0.5).
 – If the x-ray shows no damage to the adamantine, then my belief in caries decreases strongly (-0.9).
 • $CF(\text{caries|dots}) = 0.5$, $CF(\text{caries|noDamage}) = -0.9$
 • $MB(\text{caries|dots}) = 0.5$, $MD(\text{caries|dots}) = 0$
 • $MB(\text{caries|noDamage}) = 0.5$, $MD(\text{caries|noDamage}) = 0.9$
 • $MB(\text{caries|dots}), MD(\text{caries|dots}) = 0.5 + 0 - 0.5*0 = 0.5$
 • $MD(\text{caries|noDamage}) = 0 + 0.9 - 0*0.9 = 0.9$
 • $CF(\text{caries|dots}), MD(\text{caries|dots}) = 0.4$

10.2 Certainty Factors

• Rule chaining
 – Chain rules consecutively, e.g.
 • IF e THEN h WITH $CF(h|e)$
 • IF a THEN h WITH $CF(h|a)$
 • $MB(\text{h|e}) = MB(h|e) - MD(h|e)$ can be computed from it’s components as follows
 • $MB(h|e) = MB(h|a) * max(0, CF(a|e))$
 • $MD(h|e) = MD(h|a) * max(0, CF(a|e))$
 • Thus, chaining is essentially a simple multiplication

• The combined certainty factor can be computed independently by determining the belief and disbelief values

$MB(h|e_1,e_2) = \begin{cases} 0 & \text{if } MD(h|e_1,e_2) = 1 \\ MB(h|e_1) + MB(h|e_2) - MB(h|e_1)*MB(h|e_2) & \text{otherwise} \end{cases}$

$MD(h|e_1,e_2) = \begin{cases} 0 & \text{if } MB(h|e_1,e_2) = 1 \\ MD(h|e_1) + MD(h|e_2) - MD(h|e_1)*MD(h|e_2) & \text{otherwise} \end{cases}$

– If the gum is red, my belief in periodontitis increases moderately (0.5).
– If there are loose teeth, my belief in periodontitis increases slightly (0.3).
 • $CF(\text{periodontitis|redGum}) = 0.5$
 • $CF(\text{periodontitis|looseTeeth}) = 0.3$
 • $CF(\text{periodontitis|redGum, looseTeeth}) = ?$
 • $MB(\text{periodontitis|redGum}) = 0.5$
 • $MD(\text{periodontitis|looseTeeth}) = 0.3$
 • $MD(\text{periodontitis|redGum, looseTeeth}) = 0$
 • $MB(\text{periodontitis|redGum, looseTeeth}) = 0.5 + 0.3 - 0.5*0.3 = 0.65$
 • $MD(\text{periodontitis|redGum, looseTeeth}) = 0 + 0 - 0*0 = 0$
 • $CF(\text{periodontitis|redGum, looseTeeth}) = 0.65$
10.2 MYCIN

• How did the actual MYCIN system work?
 – Only confirming or disaffirming rules with certainty factors
 – For each patient, a predefined set of standard facts has to be provided
 • Like age, general, general condition, common facts on the sample, etc.
 • These are used to rule out all completely unrealistic conclusions

10.2 MYCIN

• After that, the systems switches to a backward-chaining approach
 – Most promising rules are selected, and the system tries to prove each of them
 • Discard all rules with known false premises
 • Prefer rules with high certainty factors
 – Missing information is requested from the user in a dialog-style interaction

The first significant organism from this blood culture will be called:

9) Enter the identity of ORGANISM-1. UNKNOWN
10) Is ORGANISM-1 a rod or coccus (etc.)? ROD
11) The gram stain of ORGANISM-1: GRAMNEG

10.2 MYCIN

• Finally, the system will present all possible deductions to the user along with their certainty factors
 – After that, the user may query why the system deduced those facts (system explains the answers)
 – Mainly using the proof trees of each successful rule

** Did you use RULE 163 to find out anything about ORGANISM-1?
RULE163 was tried in the context of ORGANISM-1, but it failed because it is not true that the patient has had a genito-urinary tract manipulative procedure (clause 3).

** Why didn't you consider streptococcus as a possibility?
The following rule could have been used to determine that the identity of ORGANISM-1 was streptococcus: RULE033. But clause 2 ("the morphology of the organism is coccus") was already known to be false for ORGANISM-1, so the rule was never tried.

10.3 Fuzzy Reasoning

• Vagueness is in the nature of most expert decisions
 – Symptom for cavities: a person has discolored teeth. Not at all, slightly, very,…!?
 – The vagueness cannot only be modeled by an agent’s belief in a statement, but also directly
 – Fuzzy set theory (Lotfi Zadeh, 1965)
 – Expresses the degree of possibility (as opposed to probability)
 – Captures the idea of linguistic variables
10.3 Fuzzy Reasoning

- **Crisp set membership degrees** (1 or 0) are often insufficient for expressing vague concepts
 - Consider the set of discolored teeth in cavities diagnosis
 - Teeth with brown spots are discolored (1)
 - White teeth are not discolored (0)
 - What about yellowish teeth? Depends on the degree of stain! ([0,1])

- **A fuzzy set** is defined by membership function \(\mu \) mapping the universe \(\Omega \) to the unit interval \([0,1]\)
 - The normal set operations with the characteristic membership function can be easily extended for fuzzy sets
 - \((\mu_1 \cap \mu_2)(\omega) := \min\{\mu_1(\omega), \mu_2(\omega)\} \)
 - \((\mu_1 \cup \mu_2)(\omega) := \max\{\mu_1(\omega), \mu_2(\omega)\} \)
 - The complement of \(\mu(\omega) \) := 1 - \(\mu(\omega) \)
 - Some characteristics of Boolean algebra are preserved, others not
 - E.g., distributivity holds, but DeMorgan’s laws not...

10.3 Fuzzy Reasoning

- **How can this be applied for reasoning?**
 - We have fuzzy facts and can deduce new (fuzzy) facts from them
 - Back to our toothache example...
 - Fact: Tom has yellow stained teeth.
 - Rule: If a person has very discolored teeth, it is cavities.
 - Obviously we need to relate the degree of staining with the premise of our rule
 - Usually the degree is (linguistically) discretized
 - Different degrees of staining have different possibilities of relating to cavities

10.3 Fuzzy Reasoning

- **A possibility distribution** assigns the possibility of a characteristic to some measurable property
 - Somebody has 'discolored' teeth

- **An important feature is the ability to define hedges**
 - Provide operations to maintain close ties to natural language, and allow for the mathematical generation of fuzzy statements
 - The initial definition of hedges is a subjective process
 - A simple example may transform the statement 'teeth are stained,' to 'teeth are very stained.'
 - The hedge 'very' is usually defined as \(\mu_{\text{very}}(\omega) := (\mu(\omega))^2 \)
 - Thus, if \(\mu_{\text{stained}}(\text{Tom}) = 0.8 \), then \(\mu_{\text{very stained}}(\text{Tom}) = 0.64 \)
 - Other common hedges are 'more or less', typically \(\text{SQRT}(\mu(\omega)) \), 'somewhat' 'rather' 'sort of' ...

Knowledge-Based Systems and Deductive Databases - Tilo Balke - 15.06.2009
10.3 Fuzzy Reasoning

- Still, possibility distributions have to be linked to determining the truth of conclusions.
 - Idea is a conditional possibility distribution.
 - possibility(yellow stains | teeth are very discolored) = truth(teeth are very discolored | yellow stains).
 - The first part uses the fuzzy membership function describing the classes of all stains that are considered as discolored.

10.3 Fuzzy Reasoning

- Now let’s turn to the problem of reasoning.
 - Consider the general case with fuzzy sets A, A’ over \(\Omega_1 \) and B over \(\Omega_2 \).
 - Fact: X is A.
 - Rule: if X is A, then Y is B.
 - Depending on the connection between A and A’ the inference will result in the conclusion Y is B’ with a fuzzy set B’ over \(\Omega_2 \).
 - How can this be calculated?
 - Encode each piece of information by possibility measures corresponding to suitable fuzzy sets.

10.3 Fuzzy Reasoning

- If knowledge from two or more facts with respective possibility distributions has to be combined…
 - Then first the facts have to be aggregated (using min, max, …).
 - Secondly, the aggregated possibility distribution has to be established (corresponding e.g., to the conjunction of the facts).

10.3 Fuzzy Reasoning

- The actual inference process applying rules in fuzzy expert systems has usually four steps.
 - Fuzzification
 - Inference
 - Composition
 - Defuzzification

 - Called Mamdani-style fuzzy inference introduced by Ebrahim Mamdani of London University, 1975.

10.3 Fuzzy Reasoning

- Fuzzification
 - Membership functions defined on the input variables are applied to their actual values, to determine the degree of truth for each rule premise.

- Inference
 - The truth value for the premise of each rule is computed, and applied to the conclusion part of each rule.
 - Either cut the consequent membership function at the level of the antecedent truth value (clipping).
 - Or adjust the consequent membership function by multiplying all its membership degrees by the antecedent truth value (scaling).
 - This results in one fuzzy subset to be assigned to each output variable for each rule.

10.3 Fuzzy Reasoning

- Composition (or aggregation)
 - Unification of the outputs of all rules.
 - All of the fuzzy subsets assigned to each output variable are combined together to form a single fuzzy subset for each output variable.

- Defuzzification
 - It may be useful to just examine the fuzzy subsets that are the result of the composition process.
 - More often, this fuzzy value needs to be converted to a single crisp value (called defuzzification).
10.3 Fuzzy Reasoning

- **Example:** 'Tom’s teeth have yellow stains'
 - **Fuzzification:** to what degree are they 'slightly discolored', 'discolored', 'very discolored',…?
 - **Inference:** apply all inputs to the fuzzy rules and calculate the degrees of the conclusion
 - If teeth are slightly discolored, then cavities is unlikely
 - If teeth are very discolored, then cavities is almost sure
 - This leads to a possibility distribution for a diagnosis of cavities

10.4 Case-Based Reasoning

- **Case-based reasoning** (CBR) is a methodology for solving problems by utilizing previous experiences
 - It is not really a formal reasoning process, but relies on heuristics to arrive at conclusions
 - Similar to case-based law systems using precedents
 - Or case analysis in medical treatments
 - Or repairing a car

10.4 Case-Based Reasoning

- **Examples**
 - **Cooking banana pancakes** is like cooking normal pancakes… just throw in some bananas…
 - **Biomimicry**: imitate nature to utilize natural effects for complex engineering tasks
 - E.g., how to cool houses in Africa without air-conditioning?
 - Idea: the same way termites build hives

10.4 Case-Based Reasoning

- **General operation**
 - Present the system with a problem
 - Search a case base for most similar problems
 - Return their solutions

10.4 Case-Based Reasoning

- **Cases are records** of previous experiences
 - **Problem** specification
 - Relevant attributes of the **environment**
 - **Applied solution**
 - **Benefit/success** of the solution
 - Representation needs to reflect all **features** necessary for retrieval
10.4 Case-Based Reasoning

- **4-phase model** proposed by Agnar Aamodt and Enric Plaza in 1994

10.4 Case-Based Reasoning

- **Retrieve**
 - Given a target problem, retrieve cases from memory that are relevant to solving it

- **Reuse**
 - Map the solution from the previous case to the target problem

- **Revise**
 - Test the new solution in the real world (or a simulation) and, if necessary, revise

- **Retain**
 - Store successfully adapted experiences as a new case in memory

10.4 Case-Based Reasoning

- **Case retrieval** is the process of finding closest cases, i.e., most similar cases, to the current case
 - *(Indexed)* features of cases in the case base are compared to the features of the current case
 - **Syntactical** approaches vs. **semantic** approaches
 - The hardest part of the CBR process is defining a suitable **similarity measure**
 - Nearest neighbor retrieval, hierarchical browsing, knowledge-guided approaches, validated retrieval, ...
 - Often a semi-automatic process

10.4 Case-Based Reasoning

- **Case adaptation** translates the retrieved solution into a solution appropriate for the current problem
 - Applied in the reuse phase (basic adaptation) and in the revise phase (learning from failure)
 - Often a manual process needing deeper domain understanding
 - The **degree of success** (and thus the value for the case base) has to be measured

10.4 Case-Based Reasoning

- **Case base maintenance** is part of the retain phase
 - The larger the case base, the more of the **problem space** is covered, but too many cases will degrade system **performance**
 - Maintenance strategies are quite similar to **caching strategies**
 - Is a case really necessary for the case base?
 - How successful was its solution?
 - Are there already similar cases?
 - How often is a specific case used?

10.4 Case-Based Reasoning

- **Comparison to rule-based systems**
 - **Rule bases...**
 - Abstract knowledge in a set of production rules of the "If...Then..."-type
 - Have to be acquired before the system can be used
 - Applicable to a large set of general domains
 - Provide proofs for derived statements
 - **Case bases...**
 - Only state specific characteristics of previous cases plus solutions
 - Are built up while the system is used
 - Applicable only for specific kinds of domains
 - Provide arguments for derived statements
10.4 Case-Based Reasoning

- **When to use case-based reasoning?**
 - Does the domain have an underlying *model*?
 - Random factors cannot be captured…
 - Are there *exceptions* and novel cases?
 - Without them rules might be easier…
 - Do cases recur?
 - If not, there is no point in building a case base…
 - Is there *significant* benefit in adapting past solutions?
 - The reasoning process might be more expensive than actually solving the problem…

10 Next Lecture

- **The Semantic Web**
 - Visions and benefits
 - Basic constructs
- **Representing information**