ifis
Institut fiir Informationssysteme
Technische Universitat Braunschweig

Relational Database Systems 2
10. Transaction Processing 2

JanChristoph Kalo
JanusWawrzinek

Institut fir Informationssysteme
TechnischdJniversitatBraunschwelg
http://www.ifis.cs.ttbs.de

@ 10 Transaction Processing

10.1 Locking schedulers

10.2 Altruistic locking

10.3 Predicat®riented locking
10.4 Nonlocking schedulers
10.5 Implementation detalil
10.6 Isolation levels

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 2

10.1 Lock Modes

A For conflictfree data access, there atwo types
of locks enforced by the DBMS

I Read locks can bghared by several transactions
I Write locks areexclusive locks

cp eg- Lock
A Compatibility of locks (\ i
I Remember: serializability . read write
conflicts always include at ; g | e
least one write operation Lock read yes no

held lock

write no no
lock

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme

10.1 Deadlocks

A Locking protocols also introduce new Q

problems 9 "
A Imagine following schedule within a 2PL4

scheduler
T r1(X) Wo(y)Wy(X) W, (Y)
A Results into following situatioBEADLOCK

readLock(x) read(X) waitForLock(y)
= () <
tl © : /\/ @

writeLock(y) write,(y) waitForLock(X)

&

WV 4.3.3 Relational Database Systemsg @/olf-Tilo Balke Institut fr Informationssysteme 4

@ 10.1 Deadlocks

A A deadlock happens when transactionatually
wait to obtain locks from each other

A Other scenario
I Deadlock byLock Conversation in 2PL

I [rl(x)lrz(X)IWKX)IWz(Xj

readLock(x) read,(x) waitForUpgradg(x)
@ VA
t, ® ' /J @
readLock(x) read,(x) waitForUpgradg(X)

t, ® @ﬁﬂ @

WV 4.3.3 Relational Database Systemg @/olf-Tilo Balke Institut fir Informationssysteme

@ 10.1 Deadlocks

A Why do deadlocks happen? Four criteria

I Mutual exclusion (locking)
A Resources can not be shared
A Requests are delayed until resource is released
I Hold -and-wait
A Thread holds one resource while waits for another
I No preemption
A Resources are only released voluntarily after completion
I Circular walit
ACircul ar dependdmaibte grapihst

I All conditions need to be fulfilled for a deadlock to
happen

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme

@ 10.1 Deadlocks

A How to deal with deadlocks
I Ignore
A Easiest, but may stop the system

I Deadlock Detection

A Allow deadlocks, detect them, and then resolve them
| Deadlock Prevention

A Prevent that deadlocks can happen

A Ensure that at least one of the 4 criteria is not fulfilled
I Deadlock Avoidance

A Prevent that deadlocks can happen

A Use additional information about the request to dynamically
prevent unsafe situations

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 7

@ 10.1 Ignore Deadlocks D@mluz

A Solution 1 : Ignoring deadlocks
irSo called 0Ostr§

I Reasonable when deadlocks
occur onlyrarely and are
expensive to prevent or resolve

A Commonly used within threads in operating
systems (1 .e. Wi ndows

INot a good 1 dea for cr.i

WV 4.3.3 Relational Database Systemg @/olf-Tilo Balke Institut fir Informationssysteme 8

@ 10.1 Deadlock Detection Demllli

A Solution 2 : Deadlock Detection and Resolution

| If deadlocks occur, they need to
resolved

0

tected and

A Detection techniqueWaiting -For Graphs (WFG)
I Every time a transaction waits for another, denote this fe

In a waiting graph
A Vertices : transactions

AEdgess o wai-telatiory f or O
I A deadlock occurs if there is@ycle within the waiting

graph

waits-for

@ ©

waits-for

WV 4.3.3 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 9

@ 10.1 Deadlock Detection Bemllli

A Cycle Detection is withirO(n2)

i e.qg. Floydwarshall a

A When to test for cyc
I Continuously : Chec

whenever a transaction has to wait
AMight be more expensive

gorithm (which i©(r¥))
es?

K Immediately

ASmaller freedom in choosing deadlock resolution
I Periodic : Check periodically within a given time cycl

A Determining the correct time interval is critical for
approaches performance

WV 4.3.3 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 10

10.1 Deadlock Resolving YEeInnr

- -
&g,%

A Resolving a deadlock usually involaberting at
least one transaction

I 'Which one?

o
W\ @
)
o

abortt, | abortt,
1

@ | ©® @

o

@ 10.1 Deadlock Resolving Demllﬁ

A Victim Selection

I Last blocked : Abort the last transaction which
created a cycle

I Random: Just abort any random transaction

I Youngest :Abort the transaction which started most
recently

AAims for minimizing wasted work

I Minimum locks :Abort transaction with fewest locks
A Aims for minimizing wasted work

WV 4.3.3 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 12

@ 10.1 Deadlock Resolving Deflill]:

I Minimum work :Abort transaction which did the
least amount of work (CPU, I/O, etc)
AAims for minimizing wasted work

I Most cycles:Abort transaction breaking the largest
number of cycles

I Most edges:Abort the transaction with most edges

WV 4.3.3 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 13

(7 10.1 Livelocks Detoyy

A Resolving deadlocks by eliminating a transaction
poses a new danger
I Livelocks (Starvation)
I Imagine two persons in a narrow floor sidestepping eac
ot her forevere

A Livelock within transactions

I A single transaction is choseapeatedly asdeadlock
resolution victim andthus will never finish

I Resolve by ensuring that the same transaction is not
always the victim

A Introduce priorities
A Increase priority of victim transactions

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 14

(7 10.1 Livelocks Detoyy

A Livelockscan also occur isolated from deadlocks

I Transaction 1 and t, wait for a lock on x
AlLock is freed and granted tg t

I t; enters and also waits for a lock on x
AlLock is freed and granted tq t —

I t, enters and waits for a lock on » W 7]

o e -7
h - "%%i ~5_ff:_-,:??1*
| t, starves and never finishes T iE]

W

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 15

@ 10.1 Deadlock Prevention Demllﬁ

A Solution 3 : Deadlock Prevention

I There are several technigues for deadlock preventic

AWait and die
I Transaction can only be blocked by younger transactions

AWound and wait

I Transactions can only be blocked by older ones and can Kill
conflicting younger transactions

Almmediate restart
I Restart a conflicting transaction immediately to avoid conflict

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 16

@ 10.1 Deadlock Prevention Demllﬁ

ARunning Priority

I If there is a new conflict with an already waiting transaction, abor
the waiting transaction and transfer locks to the new one

I Blocked transaction may not hinder running transactions
ATimeouts

I Use timers to abort transactions which are probably involved in a
deadlock

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 17

@ 10.1 Deadlock Prevention Deil)ll]:

A Wait -and-Die
I Use timestamps per transaction
A monotonically increasing number
A unique

A priority of a transaction is the inverse of its timestamp:
A older transactionr higher priority

A Scenariot; requests a lock on whict) has a contlicting

lock

1T ts(t;) < ts(t) /I true whent, is older
A then t waits
A else abort . /I t. dies

A Terms wound, wait, and die are used frdd sewpoint
A Transactions can only be blocked yyunger ones

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 18

Y =,

10.1 Deadlock Prevention &5

A Wound -and-Die

A Scenariot; requests a lock on which has a
conflicting lock

T If ts(t) < ts(t) // true whent, is older
Athen abortt, [It waindst 6
Aelse t waits

A Transactions can only be blocked tiger ones
A Younger ones can be killed

Relational Database Systemsg @/olf-Tilo Balke Institut fr Informationssysteme

@ 10.1 Deadlock Prevention Deflill]:

A Timeouts

| Each transaction startstaner as soon as they are
blocked

I When the timertimes out , the systenassumes a
deadlock and terminates the transaction

A Assumption may very well be wrong
I Easy to implement and check

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 20

@ 10.1 Deadlock Avoidance DEI

A Solution 4 : Deadlock Avoidance

I Deadlock avoidance usually involves simulation and
trajectories
ASy st ems t runsafsstatee6 avoi d 0
Alf potential of a unsafe state is detected, the schedule is

changed
AExampleDi k 8an&ésds Al gorithn
i Check |l i1 quidity constraints ©b

I Usually to expensive and rarely used

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 21

@ 10.1 Deadlock Avoidance

ABanker ds Al gorit

| Safe State:

AThere is no deadlock

AThere is a scheduling order in which ever .'
process can complete even if they requesi
all their locks immediately

|

safe state safe state
> Receive transaction<

g
i e N
E ——a
3

: : Schedule
Reject transaction :
transaction
T Is transaction T

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 22

@ 10.2 Altruistic Locking

A Two -phase locking is a common locking protocol

I 2PL means that for each transaction all necessary locks
are acquired before the first lock is released

I Disadvantage:

A Imagine dong-running #ookd lock point
transaction requiring many
short-l i ved | ockse
A Too many locks are held
unnecessarily lock | unloc
.. : phase phase
I One Solution : g
A Altruistic Locking commit point

A Transactions willingly return locks if they do not need them
anymore

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 23

@ 10.2 Altruistic Locking

A Problem Example with 2PL:
I t, tw@)w(b)w(c)w(d)w(e)w(f)w(g)

ALongrunning transaction

It w(@)w(b)
Ity w(c)w(e)
It w(f)w(g)
.

t, 0 t, enter when t currently accesses

I In the following we will abbreviate (read/write) lockir
and unlocking operations by (r/w)l(x) and (r/w)u(x)

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 24

@ 10.2 Altruistic Locking

lock@) I(b) I(c) I(d) | I(e) waitFor)I(f)
tl 1 | 1 A-@- | @
1 = X
t, ® -
waitFor @)
t; ® ———
waitFo
t, ® -@—@—-__
I(f) | 1(@) ul(g) ul(f)
NOW Future

At, and t, cannot be executed until the end of t
A Only t, can be executed in parallel

WV 4.3.6 Relational Database Systemg @/olf-Tilo Balke Institut fir Informationssysteme

@ 10.2 Altruistic Locking

A ldea: Allow short transactions needing only a
subset of items of along-running transaction
obtaining locks

I Transactions inform the scheduler when they do not
need a lock anymore and mdgpnate it

I A donated item may be locked by another transactic

I Otherwise, 2PL does not change ==

ADonating does not count as unlockln =
thus additional locks may be acquirec==

ASpeciaI rules apply to donated items §

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 26

@ 10.2 Altruistic Locking

A Terminology:

I Being in the wake

A An operation is in the wake of a transactidl
t; when it uses an item donated Iby

AA transaction t; IS in the wake of a transactianwhen one

o f itos operattons 1 s 1 n t
AA transaction tjis completely the wake of a transaction
whenalli t & s operationts are 1in

I Being indebted

AA transactiont; isindebted to t; if it obtains a donated lock
of t; and there is either @onflict between those two or a
third transaction on that item

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 27

@ 10.2 Altruistic Locking

A Rollback Policies

I When a transaction has to roll back, all transactions
Its wake also have to roll back

A So calleccascading roll -backs

I Cascading rolbacks may be very expensive for Iarge
transactions |

WV 4.3.6 Relational Database Systemg @/olf-Tilo Balke Institut fir Informationssysteme

@ 10.2 Altruistic Locking

(@) d(@) I(b) d(b) I(c) d(©)|I(d)| wi(e) I(e) I{f) I(g)

tl.@é ? 1@111
53 753 53 X

i

t2 @ m— e —
? t ? {

(@) | 1(b)} ul(b! ul(a)

—

t3 ¢ _?' | { T- 1
I©) | 1(e) ul(e) ul(c)
t, ® -@-@----

M) | 1@ uig) ul(h
NOW Future
A All transactions may be executed in parallel

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 29

@ 10.2 Altruistic Locking

A Rules:

1. Transactions may not holcdonflicting locks
simultaneously unless the respective data items
were donated

2. When a transaction donates a lock on a data item,
maynot access that itemagain

3. The transaction originally putting the lock remains
responsible forunlocking

4. It a transactiort; isindebted to t;, it must remain
completely inwake of t; until the unlocking phase

WV 4.3.6 Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 30

@ 10.2 Altruistic Locking

A What happens if rule 4 is violated?
i |rly(@) ry(a) di(@)wis(@) wy(@) wus(@)rl,(a) r(a) wl,(b)|

1) w(0) wu o(0) V) 1) ria))

I Plan not confliceerializable
i Potential lost updates afték

A Correctly: Green stays in the wake of red
i rly() r(a) di@)jwiy(a) wy(a) wi(a)rl,(a) r,(a)

ly(b) ry(b) ruy(@) ruy(b) wiy(b) ru(a) wi(b) wis(b)

ystemg ?Volf-Tilo Balke Institut fir Informationssysteme

10.2 Altruistic Locking

A AL is not the same than unlocking directly after
an item Is not used anymore

I Stay-In-Wake rule ensures consistency

A 2PL schedules are a proper subset of AL
schedules

A AL schedules are a prope
subset of conflict
serializable schedules

Altruistic Locking

-

Conflict Serializable

WV 4.3.6 Relational Database Systemg Wolf-Tilo Balke Institut fir Informationssysteme 32

10.3 Relational Databases

A Now, how to Implement locking in eelational
database?

I Usually data operations are triggered
by SQL commands

I Example: SELECT name, position
FROM TABLE employee
WHERE salary < 25000

ASemantic entities have to be locked for reading
I either the entiretablespace@é f O0empl| oyeed
I or only those records addressed by the WHERE condition

ABasically all SQL statements can be transformed into rea
write statements, but what happens INSERT/DELETE ?

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 33

@ 10.3 Relational Databases

A If only individual records are locked tpdantom .
SIERAH
problem may occur AF)
I Transaction 1: (fire and hire) | Nt
DELETE FROM employee WHE%%E 80
| NSERT I NTO employee VALUES "(C

I Transaction 2: (find the manager)
SELECT FROM empl oyee WHERE po:

A Locking

I Locks on theentire tablespace yield correct results, but
heavily restrict concurrency

I Otherwise transaction 1 might lock single tuple (the old
manager), delete Iit, return the lock, then insert a new managt

I If transaction 2 isnterleaved with transaction 1, it might not
read any manager?!

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 34

@ 10.3 Predicate Locking

A Locking semantic entities from SQL statements lee
to predicate -oriented concurrency control

I Basic idea: Do not lock the entire table space, but lock
subset of the database referring to adescriptive
predicate independently of the current table contents

A Locking ofintensional entities instead of extensional entities

I Usually the predicates needed for locking are given by t
WHERE condition of a query, update, delete statemen

A (conjunctions of) attribute[value, withf N h h
Ae. g. , ¢ WHERE position = 06M

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 35

@ 10.3 Predicate Locking

A The conditions on predicates define a
nyperplane in the vectorspace

A For a set of conditions C and attributesAé ,, A
H(C) :={ xN dom (A,) 383 dom (A) | x satisfies C}
AEach elemental predicate induces a separdtypgrplane

AAll predicatehyperplaneslescribea (p%t(gntlonallyopen)
subspace simplex

I Lock also includes records that .
are currently not in the relation™_®

A Solves the phantom problem 1

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 36

@ 10.3 Predicate Locking

A Everyupdate or retrieval operatlon of a
transaction comes with 1

I A (set of) predicate condition(s)
specifyingvhich records to lock

I A lock mode stating whether th " |

lock is shared or exclusive |

A Two lock requests areompatible |, if
I Both request ashared lock mode

I Or the intersection of their two respective
hyperplaness empty

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 37

@ 10.3 Predicate Locking

A When a new lock request arrives the scheduler
performs acompatibility test

I However, the testing i$ar more expensive as in the
case of discrete (individually named) items
AActually the test is again an Nf@mplete problem

I Predicate locking is currently not supported by
commercial systems

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 38

10.4 Non-Locking Schedulers

A Transactions can also be serialized W|thout
locking a

I Timestamp ordering
I Serialization graph testing
I Optimistic protocols
A Non-Locking schedulers tend tabort
transactions often and are thus less efficient
I Rarely used in commercial applications

I However, very suitabléor distributed systems due
to difficulty in distributed lock handling

Relational Database Systemg @/olf-Tilo Balke Institut fir Informationssysteme 39

@ 10.4 Timestamp Ordering

A Timestamp ordering

I Each transaction is annotated with a unique and
monotonically increasingme -stamp

I Every operation of the transaction inherits the time
stamp

I Conflicting operations are ordered by their
timestamps
A Rule: For two conflicting operationp(x) andg(x)

i p(x)is executed beforey(x)iff ts(f)<ts(f)

Asmaller timestamp older transaction

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 40

10.4 Timestamp Ordering

A Operations are directly submitted to the data
manager In their natural order unless they are
too late

I p(x)is too late if there had already beemgx)
ts(f)<ts(})
A If an operatiorp(x)istoo late , the
whole transactiort, is aborted

i Pessimistic approach o works only well
If there are few conflicts

I Performance rapidly decreases with number of
latecomers

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 41

10.4 Timestamp Ordering

A To detect latecomers, two timestamps are need
for each data item x

I max-read-scheduled(x) : Latest timestamp of
already executed read operation on that item

I max-write -scheduled(x) : Latest timestamp of
already executed write operation on that item

AWhen a p(x) arrives, its timestamp is compared
to the respective masschedule timestamp

I If ts(t)<maxscheduled, pstoo late and the
transaction Is aborted

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 42

@ 10.4 Timestamp Ordering

A Example: old transactions with conflicts are
aborted

read,(x) read,(z) abort

T\

t, ®)J

7

write,(X) write,(y) abort ,I
t, 4 ’_® 7
] /
b /
}, ¥
read(y) write,(2) cpmmit

5 = 79

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme

43

@ 10.4 Serialization Graphs

A Serialization Graph

esting

I Idea: Dynamically maintai@onflict Graphs (i.e.
walt-for-graph) anaheck it for cycles

I Extend graph proactively before actually performing

any operations

Alf extension would result to aycle,deny the responsible

transaction

AOtherwise ,accept transaction and execute
transaction in its natural order

Almplements aleadlock avoidance scheme

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme

@ 10.4 Serialization Graphs

A Serialization graph testing is nice and simple frc
atheoretical point of view
I However,impractical in real applications
I Space is iD(#transactiéh

AAlso including inactive transaction as long as they are pal
of conflict graph

I Continuous cycle detection computationally very
expensive

ANeeds to be performed very often

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 45

10.4 Optimistic Protocols

A Assumption up to now
Environment

I Conflicts occur often

ransactional

I Coping with conflicts is important
I Itis Important to immediately detect and resolve

conflicts
U Pessimistic approach

Relational Database Systemsg @/olf-Tilo Balke Institut fr Informationssysteme 46

@ 10.4 Optimistic Protocols

A Consider aronline -shop

I 99 % of all transactionsst read product data and
descriptions

A No conflict potential
I Only veryrarely , some prices areipdated
A Conflict potential
A Assumption: O Pr obabl y no
anywayo
I Optimistic Approach

I A full fledged locking protocol like 2PL would be |
wastee

I Only when an accident happens, actions are taken

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 47

@ 10.4 Optimistic Protocols

A Basic Ided hree phases

1. Read Phase: Justxecute the transaction without any
additional checks.
A Use a privatdsolated copy of the data forwrite operations
A All reads can be donalirectly on the DB or the private copy

2. Validate Phase :When a transaction is ready to
commit,validate if execution was correct regarding
conflict serialization

A If not, abort transaction and delete copy
3. Write Phase :Write the private copy back into the DB

{ Read I Validate I Write }

Relational Database Systemsg @/olf-Tilo Balke Institut fir Informationssysteme 48

