
Jan-Christoph Kalo

Janus Wawrzinek

Institut für Informationssysteme

TechnischeUniversitätBraunschweig

http://www.ifis.cs.tu-bs.de

Relational Database Systems 2
10. Transaction Processing 2

10 Transaction Processing

10.1 Locking schedulers

10.2 Altruistic locking

10.3 Predicate-oriented locking

10.4 Non-locking schedulers

10.5 Implementation details

10.6 Isolation levels

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 2

ÅFor conflict-free data access, there are two types

of locks enforced by the DBMS

ïRead locks can be shared by several transactions

ïWrite locks are exclusive locks

ÅCompatibility of locks

ïRemember: serializability

conflicts always include at

least one write operation

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 3

10.1 Lock Modes

Lock
requested

read
lock

write
lock

Lock
held

read
lock

yes no

write
lock

no no

t1

t2

writeLock2(y) write2(y) waitForLock2(X)

waitForLock1(y)

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 4WV 4.3.3

10.1 Deadlocks

readLock1(x) read1(x)

ÅLocking protocols also introduce new

problems

ÅImagine following schedule within a 2PL

scheduler

ïr1(x) w2(y)w2(x) w1(y)

ÅResults into following situation: DEADLOCK

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 5WV 4.3.3

10.1 Deadlocks

t1

t2

readLock1(x)

readLock2(x)

read1(x)

read2(x)

waitForUpgrade1(x)

waitForUpgrade2(X)

ÅA deadlock happens when transactions mutually

wait to obtain locks from each other

ÅOther scenario

ïDeadlock by Lock Conversation in 2PL

ïr1(x) r2(x) w1(x) w2(x)

ÅWhy do deadlocks happen? Four criteria

ïMutual exclusion (locking)

ÅResources can not be shared

ÅRequests are delayed until resource is released

ïHold -and-wait

ÅThread holds one resource while waits for another

ïNo preemption

ÅResources are only released voluntarily after completion

ïCircular wait

ÅCircular dependencies exist in òwaits-foró graph

ïAll conditions need to be fulfilled for a deadlock to
happen

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 6

10.1 Deadlocks

ÅHow to deal with deadlocks

ïIgnore

ÅEasiest, but may stop the system

ïDeadlock Detection

ÅAllow deadlocks, detect them, and then resolve them

ïDeadlock Prevention

ÅPrevent that deadlocks can happen

ÅEnsure that at least one of the 4 criteria is not fulfilled

ïDeadlock Avoidance

ÅPrevent that deadlocks can happen

ÅUse additional information about the request to dynamically
prevent unsafe situations

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 7

10.1 Deadlocks

ÅSolution 1 : Ignoring deadlocks

ïSo called òOstrich Algorithmó

ïReasonable when deadlocks

occur only rarely and are

expensive to prevent or resolve

ÅCommonly used within threads in operating

systems (i.e. Windows, Unix, é)

ïNot a good idea for critical database systemsé.

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 8WV 4.3.3

10.1 Ignore Deadlocks

ÅSolution 2 : Deadlock Detection and Resolution
ïIf deadlocks occur, they need to be detected and

resolved

ÅDetection technique: Waiting -For Graphs (WFG)
ïEvery time a transaction waits for another, denote this fact

in a waiting graph
ÅVertices : transactions

ÅEdges: òwaiting foró-relation

ïA deadlock occurs if there is a cycle within the waiting
graph

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 9WV 4.3.3

10.1 Deadlock Detection

t1 t2

waits-for

waits-for

ÅCycle Detection is within O(n2)

ïe.g. FloydðWarshall algorithm (which is O(n3))

ÅWhen to test for cycles?

ïContinuously : Check immediately

whenever a transaction has to wait

ÅMight be more expensive

ÅSmaller freedom in choosing deadlock resolution

ïPeriodic : Check periodically within a given time cycle

ÅDetermining the correct time interval is critical for

approaches performance

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 10WV 4.3.3

10.1 Deadlock Detection

ÅResolving a deadlock usually involves aborting at

least one transaction

ïWhich one?

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 11WV 4.3.3

10.1 Deadlock Resolving

t1

t2t4

t3

t6

t5 t1

t2t4

t3

t6

t5 t1

t2t4

t3

t6

t5

abort t2 abort t1

ÅVictim Selection

ïLast blocked : Abort the last transaction which

created a cycle

ïRandom : Just abort any random transaction

ïYoungest : Abort the transaction which started most

recently

ÅAims for minimizing wasted work

ïMinimum locks : Abort transaction with fewest locks

ÅAims for minimizing wasted work

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 12WV 4.3.3

10.1 Deadlock Resolving

ïMinimum work : Abort transaction which did the

least amount of work (CPU, I/O, etc)

ÅAims for minimizing wasted work

ïMost cycles : Abort transaction breaking the largest

number of cycles

ïMost edges: Abort the transaction with most edges

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 13WV 4.3.3

10.1 Deadlock Resolving

ÅResolving deadlocks by eliminating a transaction
poses a new danger

ïLivelocks (Starvation)

ïImagine two persons in a narrow floor sidestepping each
other foreveré

ÅLivelock within transactions

ïA single transaction is chosen repeatedly as deadlock
resolution victim andthus will never finish

ïResolve by ensuring that the same transaction is not
always the victim

ÅIntroduce priorities

ÅIncrease priority of victim transactions

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 14

10.1 Livelocks

ÅLivelockscan also occur isolated from deadlocks

ïTransaction t1 and t2 wait for a lock on x

ÅLock is freed and granted to t2

ït3 enters and also waits for a lock on x

ÅLock is freed and granted to t3

ït4 enters and waits for a lock on x

Åé

ït1 starves and never finishes

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 15

10.1 Livelocks

ÅSolution 3 : Deadlock Prevention

ïThere are several techniques for deadlock prevention

ÅWait and die

ïTransaction can only be blocked by younger transactions

ÅWound and wait

ïTransactions can only be blocked by older ones and can kill

conflicting younger transactions

ÅImmediate restart

ïRestart a conflicting transaction immediately to avoid conflict

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 16

10.1 Deadlock Prevention

ÅRunning Priority

ïIf there is a new conflict with an already waiting transaction, abort

the waiting transaction and transfer locks to the new one

ïBlocked transaction may not hinder running transactions

ÅTimeouts

ïUse timers to abort transactions which are probably involved in a

deadlock

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 17

10.1 Deadlock Prevention

ÅWait -and-Die

ïUse timestamps per transaction
Åmonotonically increasing number

Åunique

Åpriority of a transaction is the inverse of its timestamp:

Åolder transaction ᵼhigher priority

ÅScenario: t i requests a lock on which t j has a conflicting
lock

ïIf ts(t i) < ts(t j) // true when t i is older
Åthen t i waits

Åelse abort t i // t i dies

ÅTerms wound, wait, and die are used from t iõsviewpoint

ÅTransactions can only be blocked by younger ones

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 18

10.1 Deadlock Prevention

ÅWound -and-Die

ÅScenario: t i requests a lock on which t j has a

conflicting lock

ïIf ts(t i) < ts(t j) // true when t i is older

Åthen abort t j // ót i wounds t jó

Åelse t i waits

ÅTransactions can only be blocked by older ones

ÅYounger ones can be killed

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 19

10.1 Deadlock Prevention

ÅTimeouts

ïEach transaction starts a timer as soon as they are

blocked

ïWhen the timer times out , the system assumes a

deadlock and terminates the transaction

ÅAssumption may very well be wrong

ïEasy to implement and check

ïTime-out threshold crucial for effective performance

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 20

10.1 Deadlock Prevention

ÅSolution 4 : Deadlock Avoidance

ïDeadlock avoidance usually involves simulation and

trajectories

ÅSystems tries to avoid òunsafe statesó

ÅIf potential of a unsafe state is detected, the schedule is

changed

ÅExample: DijkstraôsBankerõs Algorithm

ïCheck liquidity constraints before schedulingé

ïUsually to expensive and rarely used

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 21

10.1 Deadlock Avoidance

ÅBankerõs Algorithm in short

ïSafe State :

ÅThere is no deadlock

ÅThere is a scheduling order in which every

process can complete even if they request

all their locks immediately

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 22

10.1 Deadlock Avoidance

Receive transaction

Is transaction
safe ?

Reject transaction
Schedule

transaction

no yes

safe state safe state

ÅTwo -phase locking is a common locking protocol

ï2PL means that for each transaction all necessary locks
are acquired before the first lock is released

ïDisadvantage :

ÅImagine along-running
transaction requiring many
short-lived locksé

ÅToo many locks are held
unnecessarily

ïOne Solution :

ÅAltruistic Locking

ÅTransactions willingly return locks if they do not need them
anymore

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 23WV 4.3.6

10.2 Altruistic Locking

#locks

commit point

lock point

lock
phase

unlock
phase

ÅProblem Example with 2PL:

ït1 : w(a)w(b)w(c)w(d)w(e)w(f)w(g)

ÅLong-running transaction

ït2: w(a)w(b)

ït3: w(c)w(e)

ït4: w(f)w(g)

ït2ðt4 enter when t1 currently accesses d

ïIn the following we will abbreviate (read/write) locking

and unlocking operations by (r/w)l(x) and (r/w)u(x)

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 24WV 4.3.6

10.2 Altruistic Locking

10.2 Altruistic Locking

Åt2 and t3 cannot be executed until the end of t1

ÅOnly t4 can be executed in parallel

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 25WV 4.3.6

t1

t2

lock(a) waitFor(f)l(b) l(c) l(d)

waitFor (a)

t3

waitFor (c)

t4

l(f) l(g)

NOW Future
ul(g) ul(f)

l(e) l(f)

Χ

ÅIdea: Allow short transactions needing only a

subset of items of a long-running transaction

obtaining locks

ïTransactions inform the scheduler when they do not

need a lock anymore and may donate it

ïA donated item may be locked by another transaction

ïOtherwise, 2PL does not change

ÅDonating does not count as unlocking,

thus additional locks may be acquired

ÅSpecial rules apply to donated items

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 26WV 4.3.6

10.2 Altruistic Locking

ÅTerminology:

ïBeing in the wake

ÅAn operation is in the wake of a transaction
t i when it uses an item donated by t i

ÅA transaction t j is in the wake of a transaction t i when one
of itõs operations is in the wake of t i

ÅA transaction t j is completelyin the wake of a transaction t i

when allitõs operations are in the wake of t i

ïBeing indebted

ÅA transaction t j is indebted to t i if it obtains a donated lock
of t i and there is either a conflict between those two or a
third transaction on that item

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 27WV 4.3.6

10.2 Altruistic Locking

ÅRollback Policies

ïWhen a transaction has to roll back, all transactions in

its wake also have to roll back

ÅSo called cascading roll -backs

ïCascading roll-backs may be very expensive for large

transactions

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 28WV 4.3.6

10.2 Altruistic Locking

ÅAll transactions may be executed in parallel

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 29WV 4.3.6

10.2 Altruistic Locking

t1

t2

l(a) wf(e)l(b) l(c) l(d)

t3

t4

l(f) l(g)

NOW Future

ul(g) ul(f)

l(e) l(f)

Χ

d(a) d(b)

l(a)

d(c)

l(c)

l(b)

l(e) ul(e) ul(c)

ul(b) ul(a)

l(g)

ÅRules:

1. Transactions may not hold conflicting locks

simultaneously unless the respective data items

were donated

2. When a transaction donates a lock on a data item, it

may not access that item again

3. The transaction originally putting the lock remains

responsible for unlocking

4. If a transaction t j is indebted to t i, it must remain

completely in wake of t i until the unlocking phase

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 30WV 4.3.6

10.2 Altruistic Locking

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 31

10.2 Altruistic Locking

ÅWhat happens if rule 4 is violated?

ïrl1(a) r1(a) d1(a)wl3(a) w3(a) wu3(a)rl2(a) r2(a) wl2(b)

ru2(a) w2(b) wu 2(b) rl1(b) r1(b) ru1(a) ru1(b)

ïPlan not conflict serializable!

ïPotential lost updates after

ÅCorrectly: Green stays in the wake of red

ïrl1(a) r1(a) d1(a)wl3(a) w3(a) wu3(a) rl2(a) r2(a)

rl1(b) r1(b) ru1(a) ru1(b) wl2(b) ru2(a) w2(b) wu2(b)

ÅAL is not the same than unlocking directly after

an item is not used anymore

ïStay-In-Wake rule ensures consistency

Å2PL schedules are a proper subset of AL

schedules

ÅAL schedules are a proper

subset of conflict

serializable schedules

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 32WV 4.3.6

10.2 Altruistic Locking

Altruistic Locking

Conflict Serializable

2PL

ÅNow, how to implement locking in a relational
database?

ïUsually data operations are triggered
by SQL commands

ïExample: SELECT name, position
FROM TABLE employee
WHERE salary < 25000

ÅSemantic entities have to be locked for reading
ïeither the entire tablespaceof ôemployeeõ

ïor only those records addressed by the WHERE condition

ÅBasically all SQL statements can be transformed into read/
write statements, but what happens to INSERT/DELETE ?

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 33

10.3 Relational Databases

ÅIf only individual records are locked the phantom
problem may occur
ïTransaction 1: (fire and hire)
DELETE FROM employee WHERE position = ôManagerõ
INSERT INTO employee VALUES (ôSmithõ, ôManagerõ, 50000)

ïTransaction 2: (find the manager)
SELECT FROM employee WHERE position = ôManagerõ

ÅLocking
ïLocks on the entire tablespace yield correct results, but

heavily restrict concurrency

ïOtherwise transaction 1 might lock a single tuple (the old
manager), delete it, return the lock, then insert a new manager

ïIf transaction 2 is interleaved with transaction 1, it might not
read any manager?!

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 34

10.3 Relational Databases

ÅLocking semantic entities from SQL statements leads

to predicate -oriented concurrency control

ïBasic idea: Do not lock the entire table space, but lock a

subset of the database referring to a descriptive

predicate independently of the current table contents

ÅLocking of intensional entities instead of extensional entities

ïUsually the predicates needed for locking are given by the

WHERE condition of a query, update, delete statement

Å(conjunctions of) attribute ʃvalue, with ʃ ᶰ ȟ ȟ ȟ ȟ

Åe.g., é WHERE position = ôManagerõ AND salary < 25000

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 35

10.3 Predicate Locking

ÅThe conditions on predicates define a

hyperplane in the vectorspace

ÅFor a set of conditions C and attributes A1,é,An

H(C) := { x ᶰ dom (A 1) ³ȣ³dom (A n) | x satisfies C }

ÅEach elemental predicate induces a separating hyperplane

ÅAll predicatehyperplanes describea (potentionallyopen)

subspace/ simplex

ïLock also includes records that

are currently not in the relation

ÅSolves the phantom problem

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 36

10.3 Predicate Locking

A1

A2

A3

C

DB

ÅEvery update or retrieval operation of a

transaction comes with

ïA (set of) predicate condition(s)

specifying which records to lock

ïA lock mode stating whether the

lock is shared or exclusive

ÅTwo lock requests are compatible , if

ïBoth request a shared lock mode

ïOr the intersection of their two respective

hyperplanesis empty

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 37

10.3 Predicate Locking

ÅWhen a new lock request arrives the scheduler

performs a compatibility test

ïHowever, the testing is far more expensive as in the

case of discrete (individually named) items

ÅActually the test is again an NP-complete problem

ïPredicate locking is currently not supported by

commercial systems

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 38

10.3 Predicate Locking

ÅTransactions can also be serialized without
locking

ïTimestamp ordering

ïSerialization graph testing

ïOptimistic protocols

ÅNon-Locking schedulers tend to abort
transactions often and are thus less efficient

ïRarely used in commercial applications

ïHowever, very suitable for distributed systems due
to difficulty in distributed lock handling

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 39

10.4 Non -Locking Schedulers

ÅTimestamp ordering

ïEach transaction is annotated with a unique and

monotonically increasing time -stamp

ïEvery operation of the transaction inherits the time-

stamp

ïConflicting operations are ordered by their

timestamps

ÅRule: For two conflicting operations pi(x)and qj(x)

ïpi(x) is executed before qj(x) iff ts(ti)<ts(tj)

Åsmaller timestamp ᵾ older transaction

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 40

10.4 Timestamp Ordering

ÅOperations are directly submitted to the data
manager in their natural order unless they are
too late

ïpi(x) is too late if there had already been a qj(x)
ts(ti)<ts(tj)

ÅIf an operation pi(x) is too late , the
whole transaction ti is aborted

ïPessimistic approach ðworks only well
if there are few conflicts

ïPerformance rapidly decreases with number of
latecomers

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 41

10.4 Timestamp Ordering

ÅTo detect latecomers, two timestamps are needed

for each data item x

ïmax -read-scheduled(x) : Latest timestamp of

already executed read operation on that item

ïmax -write -scheduled(x) : Latest timestamp of

already executed write operation on that item

ÅWhen a pi(x) arrives, its timestamp is compared

to the respective max-schedule timestamp

ïIf ts(t i)<max-scheduled, pi is too late and the

transaction is aborted

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 42

10.4 Timestamp Ordering

ÅExample: old transactions with conflicts are

aborted

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 43

10.4 Timestamp Ordering

t1

t2

t3

read1(x)

write2(x)

read1(z)

write2(y)
abort

abort

read3(y) write3(z)
commit

ÅSerialization Graph Testing

ïIdea: Dynamically maintain Conflict Graphs (i.e.

wait-for-graph) and check it for cycles

ïExtend graph proactively before actually performing

any operations

ÅIf extension would result to a cycle, deny the responsible

transaction

ÅOtherwise , accept transaction and execute

transaction in its natural order

ÅImplements a deadlock avoidance scheme

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 44

10.4 Serialization Graphs

ÅSerialization graph testing is nice and simple from

a theoretical point of view

ïHowever, impractical in real applications

ïSpace is in O(#transaction2)

ÅAlso including inactive transaction as long as they are part

of conflict graph

ïContinuous cycle detection computationally very

expensive

ÅNeeds to be performed very often

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 45

10.4 Serialization Graphs

ÅAssumption up to now: Transactional

Environment

ïConflicts occur often

ïCoping with conflicts is important

ïIt is important to immediately detect and resolve

conflicts

üPessimistic approach

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 46

10.4 Optimistic Protocols

ÅConsider an online -shop

ï99 % of all transactions just read product data and
descriptions

ÅNo conflict potential

ïOnly very rarely , some prices are updated

ÅConflict potential

ÅAssumption: òProbably no conflict will happen
anywayó

ïOptimistic Approach

ïA full-fledged locking protocol like 2PL would be a
wasteé

ïOnly when an accident happens, actions are taken

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 47

10.4 Optimistic Protocols

ÅBasic Idea: Three phases

1. Read Phase: Just execute the transaction without any

additional checks.

ÅUse a private isolated copy of the data for write operations

ÅAll reads can be done directly on the DB or the private copy

2. Validate Phase : When a transaction is ready to

commit, validate if execution was correct regarding

conflict serialization

Å If not, abort transaction and delete copy

3. Write Phase : Write the private copy back into the DB

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 48

10.4 Optimistic Protocols

Read Validate Write

