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ÅFor conflict-free data access, there are two types 

of locks enforced by the DBMS

ïRead locks can be shared by several transactions

ïWrite locks are exclusive locks

ÅCompatibility of locks

ïRemember: serializability 

conflicts always include at 

least one write operation 
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10.1 Lock Modes

Lock 
requested

read 
lock

write 
lock

Lock 
held

read 
lock

yes no

write 
lock

no no



t1

t2

writeLock2(y) write2(y) waitForLock2(X)

waitForLock1(y)
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10.1 Deadlocks 

readLock1(x) read1(x)

ÅLocking protocols also introduce new 

problems

ÅImagine following schedule within a 2PL

scheduler

ïr1(x) w2(y)w2(x) w1(y)

ÅResults into following situation: DEADLOCK
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10.1 Deadlocks 

t1

t2

readLock1(x)

readLock2(x)

read1(x)

read2(x)

waitForUpgrade1(x)

waitForUpgrade2(X)

ÅA deadlock happens when transactions mutually

wait to obtain locks from each other

ÅOther scenario

ïDeadlock by Lock Conversation in 2PL

ïr1(x) r2(x) w1(x) w2(x)



ÅWhy do deadlocks happen? Four criteria

ïMutual exclusion (locking)

ÅResources can not be shared

ÅRequests are delayed until resource is released

ïHold -and-wait

ÅThread holds one resource while waits for another

ïNo preemption

ÅResources are only released voluntarily after completion

ïCircular wait

ÅCircular dependencies exist in òwaits-foró graph

ïAll conditions need to be fulfilled for a deadlock to 
happen
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10.1 Deadlocks



ÅHow to deal with deadlocks

ïIgnore

ÅEasiest, but may stop the system

ïDeadlock Detection

ÅAllow deadlocks, detect them, and then resolve them

ïDeadlock Prevention

ÅPrevent that deadlocks can happen

ÅEnsure that at least one of the 4 criteria is not fulfilled

ïDeadlock Avoidance

ÅPrevent that deadlocks can happen

ÅUse additional information about the request to dynamically 
prevent unsafe situations
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10.1 Deadlocks



ÅSolution 1 : Ignoring deadlocks

ïSo called òOstrich Algorithmó 

ïReasonable when deadlocks

occur only rarely and are 

expensive to prevent or resolve

ÅCommonly used within threads in operating 

systems (i.e. Windows, Unix, é)

ïNot a good idea for critical database systemsé.
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10.1 Ignore Deadlocks



ÅSolution 2 : Deadlock Detection and Resolution
ïIf deadlocks occur, they need to be detected and 

resolved

ÅDetection technique: Waiting -For Graphs (WFG)
ïEvery time a transaction waits for another, denote this fact 

in a waiting graph
ÅVertices : transactions

ÅEdges: òwaiting foró-relation

ïA deadlock occurs if there is a cycle within the waiting 
graph
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10.1 Deadlock Detection

t1 t2

waits-for

waits-for



ÅCycle Detection is within O(n2)

ïe.g. FloydðWarshall algorithm (which is O(n3))

ÅWhen to test for cycles?

ïContinuously : Check immediately 

whenever a transaction has to wait

ÅMight be more expensive

ÅSmaller freedom in choosing deadlock resolution

ïPeriodic : Check periodically within a given time cycle

ÅDetermining the correct time interval is critical for 

approaches performance
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10.1 Deadlock Detection



ÅResolving a deadlock usually involves aborting at 

least one transaction

ïWhich one?
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10.1 Deadlock Resolving

t1
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t2t4

t3

t6

t5
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ÅVictim Selection

ïLast blocked : Abort the last transaction which 

created a cycle

ïRandom : Just abort any random transaction

ïYoungest : Abort the transaction which started most 

recently

ÅAims for minimizing wasted work

ïMinimum locks : Abort transaction with fewest locks

ÅAims for minimizing wasted work
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10.1 Deadlock Resolving



ïMinimum work : Abort transaction which did the 

least amount of work (CPU, I/O, etc)

ÅAims for minimizing wasted work

ïMost cycles : Abort transaction breaking the largest 

number of cycles

ïMost edges: Abort the transaction with most edges
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10.1 Deadlock Resolving



ÅResolving deadlocks by eliminating a transaction 
poses a new danger

ïLivelocks (Starvation)

ïImagine two persons in a narrow floor sidestepping each 
other foreveré

ÅLivelock within transactions

ïA single transaction is chosen repeatedly as deadlock 
resolution victim andthus will never finish

ïResolve by ensuring that the same transaction is not 
always the victim

ÅIntroduce priorities

ÅIncrease priority of victim transactions
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10.1 Livelocks 



ÅLivelockscan also occur isolated from deadlocks

ïTransaction t1 and t2 wait for a lock on x

ÅLock is freed and granted to t2

ït3 enters and also waits for a lock on x 

ÅLock is freed and granted to t3

ït4 enters and waits for a lock on x

Åé

ït1 starves and never finishes
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10.1 Livelocks 



ÅSolution 3 : Deadlock Prevention

ïThere are several techniques for deadlock prevention

ÅWait and die

ïTransaction can only be blocked by younger transactions

ÅWound and wait

ïTransactions can only be blocked by older ones and can kill 

conflicting younger transactions

ÅImmediate restart

ïRestart a conflicting transaction immediately to avoid conflict
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10.1 Deadlock Prevention



ÅRunning Priority

ïIf there is a new conflict with an already waiting transaction, abort 

the waiting transaction and transfer locks to the new one

ïBlocked transaction may not hinder running transactions

ÅTimeouts

ïUse timers to abort transactions which are probably involved in a 

deadlock
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10.1 Deadlock Prevention



ÅWait -and-Die

ïUse timestamps per transaction
Åmonotonically increasing number

Åunique

Åpriority of a transaction is the inverse of its timestamp:

Åolder transaction ᵼhigher priority

ÅScenario: t i requests a lock on which t j has a conflicting 
lock

ïIf ts(t i) < ts(t j) // true when t i is older
Åthen t i waits 

Åelse abort t i //  t i dies 

ÅTerms wound, wait, and die are used from t iõsviewpoint

ÅTransactions can only be blocked by younger ones
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10.1 Deadlock Prevention



ÅWound -and-Die

ÅScenario: t i requests a lock on which t j has a 

conflicting lock

ïIf ts(t i) < ts(t j) // true when t i is older

Åthen abort t j // ót i wounds t jó

Åelse t i waits

ÅTransactions can only be blocked by older ones

ÅYounger ones can be killed
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10.1 Deadlock Prevention



ÅTimeouts

ïEach transaction starts a timer as soon as they are 

blocked

ïWhen the timer times out , the system assumes a 

deadlock and terminates the transaction

ÅAssumption may very well be wrong

ïEasy to implement and check

ïTime-out threshold crucial for effective performance

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 20

10.1 Deadlock Prevention



ÅSolution 4 : Deadlock Avoidance

ïDeadlock avoidance usually involves simulation and 

trajectories

ÅSystems tries to avoid òunsafe statesó

ÅIf potential of a unsafe state is detected, the schedule is 

changed

ÅExample: DijkstraôsBankerõs Algorithm

ïCheck liquidity constraints before schedulingé 

ïUsually to expensive and rarely used
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10.1 Deadlock Avoidance



ÅBankerõs Algorithm in short

ïSafe State :

ÅThere is no deadlock

ÅThere is a scheduling order in which every 

process can complete even if they request 

all their locks immediately
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10.1 Deadlock Avoidance

Receive transaction

Is transaction 
safe ?

Reject transaction
Schedule 

transaction

no yes

safe state safe state



ÅTwo -phase locking is a common locking protocol

ï2PL means that for each transaction all necessary locks 
are acquired before the first lock is released

ïDisadvantage :

ÅImagine along-running 
transaction requiring many 
short-lived locksé 

ÅToo many locks are held 
unnecessarily

ïOne Solution :

ÅAltruistic Locking

ÅTransactions willingly return locks if they do not need them 
anymore
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10.2 Altruistic Locking

#locks

commit point

lock point

lock 
phase

unlock 
phase



ÅProblem Example with 2PL:

ït1 : w(a)w(b)w(c)w(d)w(e)w(f)w(g)

ÅLong-running transaction

ït2:                          w(a)w(b)

ït3:                          w(c)w(e)

ït4:                          w(f)w(g)  

ït2ðt4 enter when t1 currently accesses d

ïIn the following we will abbreviate (read/write) locking 

and unlocking operations by (r/w)l(x)  and (r/w)u(x)
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10.2 Altruistic Locking



10.2 Altruistic Locking

Åt2 and t3 cannot be executed until the end of t1

ÅOnly t4 can be executed in parallel 
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t1

t2

lock(a) waitFor(f)l(b) l(c) l(d)

waitFor (a)

t3

waitFor (c)

t4

l(f) l(g)

NOW Future
ul(g) ul(f)

l(e) l(f)

Χ



ÅIdea: Allow short transactions needing only a 

subset of items of a long-running transaction 

obtaining locks

ïTransactions inform the scheduler when they do not 

need a lock anymore and may donate it 

ïA donated item may be locked by another transaction

ïOtherwise, 2PL does not change

ÅDonating does not count as unlocking,

thus additional locks may be acquired

ÅSpecial rules apply to donated items
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10.2 Altruistic Locking



ÅTerminology:

ïBeing in the wake

ÅAn operation is in the wake of a transaction 
t i when it uses an item donated by t i

ÅA transaction t j is in the wake of a transaction t i when one 
of itõs operations is in the wake of t i

ÅA transaction t j is completelyin the wake of a transaction t i

when allitõs operations are in the wake of t i

ïBeing indebted

ÅA transaction t j is indebted to t i if it obtains a donated lock 
of t i and there is either a conflict between those two or a 
third transaction on that item
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10.2 Altruistic Locking



ÅRollback Policies

ïWhen a transaction has to roll back, all transactions in 

its wake also have to roll back

ÅSo called cascading roll -backs

ïCascading roll-backs may be very expensive for large 

transactions

Relational Database Systems 2 ςWolf-Tilo BalkeςInstitut für Informationssysteme 28WV 4.3.6

10.2 Altruistic Locking



ÅAll transactions may be executed in parallel
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10.2 Altruistic Locking

t1

t2

l(a) wf(e)l(b) l(c) l(d)

t3

t4

l(f) l(g)

NOW Future

ul(g) ul(f)

l(e) l(f)

Χ

d(a) d(b)

l(a)

d(c)

l(c)

l(b)

l(e) ul(e) ul(c)

ul(b) ul(a)

l(g)



ÅRules:

1. Transactions may not hold conflicting locks 

simultaneously unless the respective data items 

were donated

2. When a transaction donates a lock on a data item, it 

may not access that item again

3. The transaction originally putting the lock remains 

responsible for unlocking

4. If a transaction t j is indebted to t i, it must remain 

completely in wake of t i until the unlocking phase
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10.2 Altruistic Locking
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10.2 Altruistic Locking

ÅWhat happens if rule 4 is violated?

ïrl1(a) r1(a) d1(a)wl3(a) w3(a) wu3(a)rl2(a) r2(a) wl2(b)

ru2(a) w2(b) wu 2(b) rl1(b) r1(b) ru1(a) ru1(b)

ïPlan not conflict serializable!

ïPotential lost updates after 

ÅCorrectly: Green stays in the wake of red

ïrl1(a) r1(a) d1(a)wl3(a) w3(a) wu3(a) rl2(a) r2(a)

rl1(b) r1(b) ru1(a) ru1(b) wl2(b) ru2(a) w2(b) wu2(b) 



ÅAL is not the same than unlocking directly after 

an item is not used anymore

ïStay-In-Wake rule ensures consistency

Å2PL schedules are a proper subset of AL 

schedules

ÅAL schedules are a proper

subset of conflict 

serializable schedules
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10.2 Altruistic Locking

Altruistic Locking

Conflict Serializable

2PL



ÅNow, how to implement locking in a relational 
database? 

ïUsually data operations are triggered 
by SQL commands

ïExample: SELECT name, position 
FROM TABLE employee 
WHERE salary < 25000

ÅSemantic entities have to be locked for reading
ïeither the entire tablespaceof ôemployeeõ 

ïor only those records addressed by the WHERE condition

ÅBasically all SQL statements can be transformed into read/ 
write statements, but what happens to INSERT/DELETE ?
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10.3 Relational Databases



ÅIf only individual records are locked the phantom 
problem may occur
ïTransaction 1: (fire and hire)
DELETE FROM employee WHERE position = ôManagerõ 
INSERT INTO employee VALUES (ôSmithõ, ôManagerõ, 50000)

ïTransaction 2: (find the manager)
SELECT FROM employee WHERE position = ôManagerõ

ÅLocking
ïLocks on the entire tablespace yield correct results, but 

heavily restrict concurrency

ïOtherwise transaction 1 might lock a single tuple (the old 
manager), delete it, return the lock, then insert a new manager

ïIf transaction 2 is interleaved with transaction 1, it might not 
read any manager?! 
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10.3 Relational Databases



ÅLocking semantic entities from SQL statements leads 

to predicate -oriented concurrency control

ïBasic idea:  Do not lock the entire table space, but lock a 

subset of the database referring to a descriptive

predicate independently of the current table contents

ÅLocking of intensional entities instead of extensional entities

ïUsually the predicates needed for locking are given by the 

WHERE condition of a query, update, delete statement

Å(conjunctions of) attribute  ʃvalue, with ʃ ᶰ ȟ ȟ ȟ ȟ 

Åe.g.,  é WHERE position = ôManagerõ AND salary < 25000
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10.3 Predicate Locking



ÅThe conditions on predicates define a 

hyperplane in the vectorspace

ÅFor a set of conditions C and attributes A1,é,An

H(C) := { x ᶰ dom (A 1) ³ȣ³dom (A n) | x satisfies C }

ÅEach elemental predicate induces a separating hyperplane

ÅAll predicatehyperplanes describea (potentionallyopen) 

subspace/ simplex

ïLock also includes records that 

are currently not in the relation

ÅSolves the phantom problem
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10.3 Predicate Locking

A1

A2

A3

C

DB



ÅEvery update or retrieval operation of a 

transaction comes with 

ïA (set of) predicate condition(s) 

specifying which records to lock

ïA lock mode stating whether the 

lock is shared or exclusive

ÅTwo lock requests are compatible , if 

ïBoth request a shared lock mode 

ïOr the intersection of their two respective 

hyperplanesis empty
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10.3 Predicate Locking 



ÅWhen a new lock request arrives the scheduler 

performs a compatibility test

ïHowever, the testing is far more expensive as in the 

case of discrete (individually named) items

ÅActually the test is again an NP-complete problem 

ïPredicate locking is currently not supported by 

commercial systems
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10.3 Predicate Locking



ÅTransactions can also be serialized without 
locking

ïTimestamp ordering

ïSerialization graph testing

ïOptimistic protocols

ÅNon-Locking schedulers tend to abort 
transactions often and are thus less efficient

ïRarely used in commercial applications

ïHowever, very suitable for distributed systems due 
to difficulty in distributed lock handling
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10.4 Non -Locking Schedulers



ÅTimestamp ordering

ïEach transaction is annotated with a unique and 

monotonically increasing time -stamp

ïEvery operation of the transaction inherits the time-

stamp

ïConflicting operations are ordered by their 

timestamps

ÅRule: For two conflicting operations pi(x)and qj(x)

ïpi(x) is executed before qj(x) iff ts(ti)<ts(tj)

Åsmaller timestamp ᵾ older transaction
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10.4 Timestamp Ordering



ÅOperations are directly submitted to the data 
manager in their natural order unless they are 
too late

ïpi(x) is too late if there had already been a qj(x) 
ts(ti)<ts(tj)

ÅIf an operation pi(x) is too late , the 
whole transaction ti is aborted

ïPessimistic approach ðworks only well
if there are few conflicts

ïPerformance rapidly decreases with number of 
latecomers
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10.4 Timestamp Ordering



ÅTo detect latecomers, two timestamps are needed 

for each data item x

ïmax -read-scheduled(x) : Latest timestamp of 

already executed read operation on that item

ïmax -write -scheduled(x) : Latest timestamp of 

already executed write operation on that item

ÅWhen a pi(x) arrives, its timestamp is compared 

to the respective max-schedule timestamp

ïIf ts(t i)<max-scheduled, pi is too late and the 

transaction is aborted
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10.4 Timestamp Ordering



ÅExample: old transactions with conflicts are 

aborted
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10.4 Timestamp Ordering

t1

t2

t3

read1(x)

write2(x)

read1(z)

write2(y)
abort

abort

read3(y) write3(z)
commit



ÅSerialization Graph Testing

ïIdea: Dynamically maintain Conflict Graphs (i.e. 

wait-for-graph) and check it for cycles

ïExtend graph proactively before actually performing 

any operations

ÅIf extension would result to a cycle, deny the responsible 

transaction

ÅOtherwise , accept transaction and execute 

transaction in its natural order

ÅImplements a deadlock avoidance scheme
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10.4 Serialization Graphs



ÅSerialization graph testing is nice and simple from 

a theoretical point of view

ïHowever, impractical in real applications

ïSpace is in O(#transaction2)

ÅAlso including inactive transaction as long as they are part 

of conflict graph

ïContinuous cycle detection computationally very 

expensive 

ÅNeeds to be performed very often
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10.4 Serialization Graphs



ÅAssumption up to now: Transactional 

Environment

ïConflicts occur often

ïCoping with conflicts is important

ïIt is important to immediately detect and resolve 

conflicts

üPessimistic approach
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10.4 Optimistic Protocols



ÅConsider an online -shop

ï99 % of all transactions just read product data and 
descriptions

ÅNo conflict potential

ïOnly very rarely , some prices are updated

ÅConflict potential

ÅAssumption: òProbably no conflict will happen 
anywayó

ïOptimistic Approach

ïA full-fledged locking protocol like 2PL would be a 
wasteé

ïOnly when an accident happens, actions are taken
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10.4 Optimistic Protocols



ÅBasic Idea: Three phases

1. Read Phase: Just execute the transaction without any 

additional checks. 

ÅUse a private isolated copy of the data for write operations

ÅAll reads can be done directly on the DB or the private copy

2. Validate Phase : When a transaction is ready to 

commit, validate if execution was correct regarding 

conflict serialization

Å If not, abort transaction and delete copy

3. Write Phase : Write the private copy back into the DB
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10.4 Optimistic Protocols

Read Validate Write


