
Wolf -Tilo Balke

Christoph Lofi
Institut für Informationssysteme

Technische Universität Braunschweig

http://www.ifis.cs.tu-bs.de

Distributed Data Management

9.1 Basic Chord Durability

9.2 Laod Balancing

9.3 Power of Two Choices

9.4 Virtual Servers

9.5 LOCKSS & OceanStore

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 2

9.0 Durability

ÅRemember the Chord DHT

ïHash Function for hashing data and nodes alike

ïEach node is responsible for address arc between
itself and the previous node

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 3

9.0 Basic Chord

5

0

4

2 6

5

1

3

7

Chord
Ring

Identifier

Node

X Data Item w. id

successor(1) = 6

successor(6) = 7

successor(7) = 1

9ȄŀƳǇƭŜ ƪŜȅ ǎǇŀŎŜΥ лΧт

ïA new node takes over some responsibility from

an older nodes

Åi.e. key-value pairs are moved to the new node

ïEach node òknowsó some

other nodes

ÅFinger table with increasingly

distant nodes for ὕÌÏÇ ὲ routing

ïFinger distance based on address space

ÅSuccessor list of the next Ὧ nodes

in ring for supporting stabilization

ïIndependent from address space distance

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 4

9.0 Basic Chord

Responsible arc of 7

7

2

16

1

18

8

9

11

15

Fingers of 7
all pointing to 16

2-predecessors of 7

2-sucessors of 7
Data

ïStabilize function continuously fixes broken finger table
and successor list entries
ÅLinks to left / unreachable / failed nodes will be repaired

ÅDHT routing will be resilient to failures

ïBut: Basic Chord does not offer any data durability
ÅDirect Storage:
ïStored data and tuples are

lost when a node is fails!

ÅIndirect Storage
ïUses soft states to ensure timely

updates of indirect links

ïData is lost if data providing
node fails!

ÅThis lecture: How can we
introduce data durability to Chord?

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 5

9.0 Basic Chord

ÅMore issues with basic Chord

ïHash function evenly distributes keys

and nodes across the address space

ÅBasic idea of hashing: even load distribution to the buckets

ïBut: often, this will not result in a load balanced system

ÅUser queries are usually not evenly distributed

ïòHot topics ó and òLong Tailó; i.e. data everybody wants and data

nearly nobody wants

ÅAlso, even using a good hash function will not result in equal load

distribution for nodes

ïBalancing necessary

ÅAlso this lecture: Load Balancing for DHTs

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 6

9.0 Basic Chord

ÅFor archiving durability in Chord, replication is

needed

ïSimple Replication Strategies

ÅJust keep multiple copies

ÅCreate new copies if a copy is lost

ïLoad Balancing Replication

ÅKeep multiple copies

ÅKeep more copies of popular or high-in demand data

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 7

9.1 Basic Chord Durability

ÅMultiple Copies using Successor List

ïStore data at responsible node

ÅAdditionally, replicate data to the Ὧ next other nodes

ïAfter a node fails, stabilize will repair routing

ÅAfter routing is repaired, replicate to the next successor/s

until data is again replicated to Ὧ additional nodes

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 8

9.1 Basic Chord Durability

é

é

é

é

store

replicate

ÅAdvantages
ïAfter a node failure, its successor has the data already stored
ÅSystem function is not interrupted

ÅDisadvantages
ïNode stores Ὧ intervals
ÅMore data load

ÅData localization more fuzzy

ïAfter breakdown of a node
ÅFind new successor

ÅReplicate data to next successor
ïMessage overhead during repair

ïStabilize-function has to check every successor-list
ÅFind inconsistent links

ïMore message overhead

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 9

9.1 Basic Chord Durability

ÅMultiples nodes per interval
ïResponsibility of an address arc is fully shared by at least Ὧ

nodes

ïNew nodes arriving will be assigned to an arc
ÅNew node obtains a copy of all arc data

ÅResponsibility is only split if Ὧ is significantly exceeded
ïe.g. ςὯ
ïNew arc segment will have Ὧ responsible nodes

ÅNew link structure : links to other nodes in same interval
ïNew nodes are announced to all other nodes in interval

ÅAlso possible: pass new node on to the next interval if already full

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 10

9.1 Basic Chord Durability

é

é

é

é

9

10

1

2

3

4

5

6

7

8

ÅData Insertion
ïReplicate data to all other nodes in arc

ÅFailure
ïNo copy of data needed

ïData are already stored within same interval

ïIf arc is critically low, borrow nodes from neighbor arcs

ÅUse stabilization procedure to correct fingers
ïAs in original Chord

9.1 Basic Chord Durability

é

é

é

é

9

10

1

2

3

4

5

6

7

8

store

replicate

ÅAdvantages

ïFailure: usually, no additional copying of data needed

ïRebuild intervals with neighbors only if critical

ïRequests can be answered by Ὧ different nodes

ÅQuery load balancing possible

ÅDisadvantages

ïLess number of intervals as in

original Chord

ÅSolution: Virtual Servers

 Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 12

9.1 Basic Chord Durability

ÅLoad balancing goal:

ïQuery and/or storage load should be distributed

equally over all DHT nodes

ÅCommon assumption

ïDHTs are naturally load-balanced

ÅStorage load balancing due to good hash function

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 13

9.2 Load Balancing

ÅAssumption 1: uniform key distribution

ïKeys are generated uniformly by hash function

ÅAssumption 2: equal data distribution

ïUniform keys will result in uniform data

ïData is thus uniformly distributed

ÅAssumption 3: equal query distribution

ïUniform keys will result in uniform queries

ïEach node has thus a similar query load

ÅBut is this assumption justifiable?

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 14

9.2 Load Balancing

ÅAnalysis of distribution of
data using simulation

ÅExample

ïParameters

Å4,096 nodes

Å500,000 documents

ïOptimum

Å~122 documents per node

ïSome items are highly replicated due to popularity

Å¾ No optimal distribution in Chord without load
balancing

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 15

9.2 Load Balancing

Optimal distribution of
documents across nodes

ÅNumber of nodes without
storing any document
ïParameters
Å4,096 nodes

Å100,000 to 1,000,000
documents

ïSome nodes without any load

ÅWhy is the load unbalanced?

ÅWe need load balancing to keep the complexity
of DHT management low

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 16

9.2 Load Balancing

ÅDefinitions

ïDHT with ὔ nodes

ïOptimally Balanced:

ÅLoad of each node is around of the total load

ïA node is overloaded (or heavy)

ÅNode has a significantly higher load compared

to the optimal distribution of load

ïElse the node is light

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 17

9.2 Load Balancing

ÅLoad Balancing Algorithms
ïProblem
ÅSignificant difference in the load of nodes

ÅThere are several techniques to ensure an equal data
distribution
ïPower of Two Choices
Å(Byers et. al, 2003)

ïVirtual Servers
Å(Rao et. al, 2003)

ïThermal -Dissipation -based Approach
Å(Rieche et. al, 2004)

ïSimple Address -Space and Item Balancing
Å(Karger et. al, 2004)

ïé

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 18

9.2 Load Balancing

ÅAlgorithms

ïPower of Two Choices (Byers et. al, 2003)

ÅJohn Byers, Jeffrey Considine, and Michael Mitzen-macher:

òSimple Load Balancing for Distributed Hash Tablesò in

Second International Workshop on Peer-to-Peer Systems

(IPTPS), Berkeley, CA, USA, 2003

ïVirtual Servers (Rao et. al, 2003)

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 19

9.2 Load Balancing

ÅPower of Two Choices

ïOne hash function for nodes

ÅὬ

ïMultiple hash functions for data

ÅὬȟὬȟὬȟȣὬ

ïTwo options

ÅData is stored at one node only

ÅData is stored at one node &

other nodes store a pointer

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 20

9.3 Power of Two Choices

ÅInserting Data x
ïResults of all hash functions are calculated

ÅὬ ὼȟὬ ὼȟὬ ὼȟȣȟὬ ὼ

ïContact all Ὠ responsible nodes
ÅData is stored on the node with the lowest load

ïAlternative: other nodes store pointer

ïThe owner of the item has to insert the document periodically
ÅPrevent removal of data after a timeout (soft state)

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 21

9.3 Power of Two Choices

ÅRetrieving

ïWithout pointers

ÅResults of all hash functions are calculated

ÅRequest all of the possible nodes in parallel

ÅOne node will answer

ïWith pointers

ÅRequest only one of the possible nodes.

ÅNode can forward the request directly to the final node

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 22

9.3 Power of Two Choices

ÅAdvantages

ïSimple

ÅDisadvantages

ïMessage overhead for inserting data

ïWith pointers

ÅAdditional administration of pointers lead to even more

load

ïWithout pointers

ÅMessage overhead for every search

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 23

9.3 Power of Two Choices

ÅAlgorithms

ïPower of Two Choices (Byers et. al, 2003)

ïVirtual Servers (Rao et. al, 2003)

ÅAnanth Rao, Karthik Lakshminarayanan, Sonesh Surana,

Richard Karp, and Ion Stoica òLoad Balancing in

Structured P2P Systemsó in 2nd Int. Workkshop on Peer-

to-Peer Systems (IPTPS), Berkeley, CA, USA, 2003

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 24

9.4 Virtual Servers

Chord Ring

ÅVirtual Server

ïEach node is responsible for several intervals

Åi.e. acts as multiple nodes

ÅÌÏÇ ὲ virtual servers

Å"Virtual server"

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 25

9.4 Virtual Servers

ÅEach node is responsible for several intervals

ïLoad balancing is achieved by creating or
transferring virtual servers

ÅVirtual servers take over responsibility for an arc and obtain
copies of data

ÅIf a node is too heavy, it can transfer the virtual server to
another node

ïDifferent possibilities to change
servers

ÅOne-to-one

ÅOne-to-many

ÅMany-to-many

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 26

9.4 Virtual Servers

Chord Ring

ÅRules for transferring a virtual server

ïTransfer from heavy node to light node

ïThe transfer of an virtual server should not make the
receiving node not heavy

ÅReceiving node should have enough capacity

ïThe transferred virtual server is the lightest virtual
server that makes the heavy node light

ÅTransfer as much as needed, but not more

ïIf no single virtual server can make the node light, just
transfer the heaviest one

ÅIn a second iteration, another virtual server can be transferred to
another node

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 27

9.4 Virtual Servers

ÅScheme: One-to-One

ïLight node picks a random ID

ïContacts the node x responsible for it

ïAccepts load if x is heavy

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 28

9.4 Virtual Servers

L L

L

L

L H

H

H L

ÅScheme: One-to-Many
ïLight nodes report their load information to directories

ïHeavy node Ὄ request information on light nodes from
directory
ÅὌ contacts the light node which can accept the excess load directly

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 29

9.4 Virtual Servers

Light nodes

L1

L4

L2

L3

Heavy nodes

H3

H2

H1

Directories

D1

D2

L5

ÅMany-to -Many

ïHeavy and light nodes rendezvous with directory

ïDirectories periodically compute the transfer schedule
and report it back to the nodes

ÅNodes just follow directory plan

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 30

9.4 Virtual Servers

Heavy nodes

H3

H2

H1

Directories

D1

D2 L4

Light nodes

L1

L2

L3

L4

L5

ÅVirtual Servers

ïAdvantages

ÅEasy shifting of load

ïWhole Virtual Servers are shifted

ïDisadvantages

ÅIncreased administrative and messages overhead

ïMaintenance of all Finger-Tables

ÅMuch load is shifted

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 31

9.4 Virtual Servers

ÅSimulation

ïScenario
Å4,096 nodes

Å100,000 to 1,000,000 documents

ïChord

ÅM = 22 bits

ÅConsequently, 222 = 4,194,304 nodes and documents

ïHash function

ÅSha-1 (mod 2m)

Årandom

ïAnalysis

ÅUp to 25 runs per test

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 32

9.4 Virtual Servers

Distributed Data Management ð Wolf-Tilo Balke ð Christoph Lofi ð IfIS ð TU Braunschweig 33

9.4 Virtual Servers

Power of 2 Choices

+ Simple

+ Lower load

ð Nodes w/o load

Without load balancing

+ Simple

+ Original

ð Bad load balancing

Virtual servers

+ No nodes w/o load

ð Higher max. load than

Power of Two Choices

