Supervised Classification

- Supervised classification: Learn by examples to assign labels to objects
- The learning algorithm takes a training set as input and returns the learned classification function

• Some classical approaches:
 - Naïve Bayes
 - Rocchio
 - K-nearest neighbor

Problem Definition

- Assumptions:
 - Binary classification: Let’s assume there are only two classes (e.g. spam/non-spam or relevant/non-relevant)
 - Vector representation: Any item to be classified can be represented as a \(d\)-dimensional real vector
- Task:
 - Find a linear classifier (i.e. a hyperplane) that divides the space \(\mathbb{R}^d\) into two parts

Example

- A two-dimensional example training set
- Task: Separate it by a straight line!

Any of these linear classifiers would be fine… Which one is best?
Idea: Measure the quality of a linear classifier by its margin!

Margin

- Margin = The width that the boundary could be increased without hitting a data point

Maximum Margin Classifiers

- A maximum margin classifier is the linear classifier with a maximum margin

Maximum Margin Classifiers (2)

- The maximum margin classifier is the simplest kind of support vector machine, called a linear SVM
 - Let’s assume for now that there always is such a classifier, i.e. the training set is linearly separable!

Maximum Margin Classifiers (3)

- Why maximum margin?
 - It’s intuitive to divide the two classes by a large margin
 - The largest margin guards best against small errors in choosing the “right” separator
 - This approach is robust since usually only a small fraction of all data points are support vectors
 - There are some theoretical arguments why this is a good thing
 - Empirically, it works very well
Finding MM Classifiers

• How to formalize this approach?
• Training data:
 – Let there be n training examples
 – The i-th training example is a pair \((y_i, z_i)\),
 where \(y_i\) is a d-dimensional real vector and \(z_i \in \{-1, 1\}\)
 – "-1" stands for the first class and
 "1" stands for the second class

\[
\begin{align*}
 -1, -1 & & (1, 2), -1 & & (1, 0), -1 & & (1, 2), -1 & & (4, 1), 1 & & (5, -1), 1 \\
 x_1 - x_2 - 2 & < 0 & x_1 - x_2 - 2 & > 0
\end{align*}
\]

Finding MM Classifiers (2)

• What's a valid linear separator?
• Any hyperplane can be defined by a real row vector \(w\) and a scalar \(b\)
 – The set of points located on the hyperplane is given by
 \[\{ x \in \mathbb{R}^d | w \cdot x + b = 0 \} \]
 – \(w\) is a normal vector of the hyperplane, i.e. \(w\) is perpendicular to it.
 – \(b\) represents a shift from the origin of the coordinate system

Finding MM Classifiers (3)

• Therefore, any valid separating hyperplane \((w, b)\) must satisfy the following constraints, for any \(i = 1, \ldots, n\):
 – If \(z_i = -1\), then \(w \cdot y_i + b < 0\)
 – If \(z_i = 1\), then \(w \cdot y_i + b > 0\)

\[
\begin{align*}
 -1, -1 & & (1, 2), -1 & & (1, 0), -1 & & (1, 2), -1 & & (4, 1), 1 & & (5, -1), 1 \\
 x_1 - x_2 - 2 & < 0 & x_1 - x_2 - 2 & > 0
\end{align*}
\]

Finding MM Classifiers (4)

• Furthermore, if \((w, b)\) is a valid separating hyperplane, then there are scalars \(r_+, r_- > 0\) such that
 \[w \cdot x + b + r_+ = 0 \quad \text{and} \quad w \cdot x + b - r_- = 0 \]
 are the hyperplanes that define the boundaries to the "-1" class and the "1" class, respectively
 – The support vectors are located on these hyperplanes!

Finding MM Classifiers (5)

• Let \((w, b)\) be a valid separating hyperplane with scalars \(r_+\) and \(r_-\) as defined above
• Observation 1:
 Define \(b' = b + (r_- - r_+) / 2\). Then, the hyperplane \(w \cdot x + b' = 0\) is a valid separating hyperplane with equal shift constants \(r' = (r_- - r_+) / 2\) to its bounding hyperplanes (the margin width is the same)

\[
\begin{align*}
 w \cdot x + b + r_+ & = 0 & w \cdot x + b - r_- & = 0 \\
 w \cdot x + b' + r' & = 0 & w \cdot x + b' - r' & = 0
\end{align*}
\]

Finding MM Classifiers (6)

• Now, divide \(w, b', \text{ and } r' \) by \(r'\)
 – This does not change any of the three hyperplanes…
• Observation 2:
 Define \(w'' = w / r'\) and \(b'' = b' / r'\).
 Then, the hyperplane \(w'' \cdot x + b'' = 0\) is a valid separating hyperplane with shift constant 1 to each of its bounding hyperplanes

\[
\begin{align*}
 w \cdot x + b' + r' & = 0 & w'' \cdot x + b'' + 1 & = 0 \\
 w \cdot x + b' - r' & = 0 & w'' \cdot x + b'' - 1 & = 0 \\
 w \cdot x + b & = 0 & w'' \cdot x + b'' & = 0
\end{align*}
\]
The problem then becomes: Maximize \(\frac{2}{||\mathbf{w}||} \) over all \(\mathbf{w} \in \mathbb{R}^d \) and \(b \in \mathbb{R} \)
subject to the following constraints:

- \((\mathbf{w}', b')\) is a valid separating hyperplane
- \((\mathbf{w}, b)\) and \((\mathbf{w}', b')\) have equal margin widths
- the bounding hyperplanes of \((\mathbf{w}', b')\) are shifted away by 1

Therefore, to find a maximum margin classifier, we can limit the search to all hyperplanes of this special type.

Further advantage:
It seems to be a good idea to use a linear classifier that lies equally spaced between its bounding hyperplanes.

Further advantage:

We arrive at the following optimization problem:

Maximize \(\frac{2}{||\mathbf{w}||} \) over all \(\mathbf{w} \in \mathbb{R}^d \) and \(b \in \mathbb{R} \)
subject to the constraints from the previous slide.

Further advantage:

Since any optimal solution satisfies them anyway.

Further advantage:

Note that due to the “maximize the margin” goal, the last two constraints are not needed anymore.

Further advantage:

Therefore, the margin width is \(\frac{2}{||\mathbf{w}||} \).

Further advantage:

Consequently, our goal is to maximize the margin width subject to the constraints from the previous slide.

Further advantage:

Finding MM Classifiers (7)

Finding MM Classifiers (8)

Finding MM Classifiers (9)

Finding MM Classifiers (10)

Finding MM Classifiers (11)

Finding MM Classifiers (12)
Finally, minimize $0.5 \|w\|^2$ over all $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ subject to the following constraints:
- For any $i = 1, \ldots, n$:
 $$z_i \cdot (w \cdot y + b) - 1 \geq 0$$

This is a so-called quadratic programming (QP) problem.
- There are many standard methods to find the solution...

This problem is called the dual optimization problem and has the same optimal solutions as the original problem (if one ignores α); but usually it is easier to solve.

Important property:
If $\alpha_i > 0$ in a solution of the above problem, then the corresponding data point y_i is a support vector.
- Consequence: Usually, most α_i are zero, which makes things easy.

The classification function then becomes:
$$f(x) = \text{sgn} \left(\sum_{i=1}^{n} \alpha_i z_i y_i^T x + b \right)$$

b can be computed as follows, using any i such that $\alpha_i > 0$:
$$b = z_i - \sum_{j=1}^{n} \alpha_j z_j y_j^T y_i$$

Note that f can be directly expressed in terms of the support vectors.
Furthermore, computing f basically depends on scalar products of vectors ($y_i^T \cdot x$), which is a key feature in advanced applications of SVMs.

So-called soft margins can be used to handle such cases.
- We allow the classifier to make some mistakes on the training data.
- Each misclassification gets assigned an error, the total classification error then is to be minimized.
We arrive at a new optimization problem

\[
\begin{aligned}
\text{Minimize} & \quad 0.5 \|w\|^2 + C \cdot (\beta_1 + \cdots + \beta_n) \\
\text{subject to} & \quad w \in \mathbb{R}^d, \quad b \in \mathbb{R}, \quad \beta \in \mathbb{R}^n
\end{aligned}
\]

over all \((w, b, \beta)\) satisfying \(w \in \mathbb{R}^d, b \in \mathbb{R}, \beta \in \mathbb{R}^n\) subject to the following constraints:

- For any \(i = 1, \ldots, n\):
 \[\beta_i \geq 0\]
 \[z_i \cdot (w \cdot y + b) - 1 \geq -\beta_i\]

If the \(i\)-th data point gets misclassified by \(\beta_i\), the price we pay for it is \(C \cdot \beta_i\).

\(C\) is a positive constant that regulates how expensive errors should be.

With soft margins, we can drop the assumption of linear separability

The corresponding dual problem is:

\[
\begin{aligned}
\text{Maximize} & \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i y_j (\langle w_i, w_j \rangle + b_i b_j)
\end{aligned}
\]

subject to \(C \geq \alpha_i \geq 0\), for any \(i\), and \(\alpha_1 z_1 + \cdots + \alpha_n z_n = 0\)

Note that only an upper bound on \(\alpha\) is added here.

- Still, it is possible to find solutions efficiently.

At the beginning, we also assumed that there are only two classes in the training set.

How to handle more than that?

Some ideas:

- One-versus-all classifiers:
 - Build an SVM for any class that occurs in the training set.
 - To classify new items, choose the greatest margin’s class.

- One-versus-one classifiers:
 - Build an SVM for any pair of classes in the training set.
 - To classify new items, choose the class selected by most SVMs.

- Multiclass SVMs:
 - (complicated, will not be covered in this course)

Now we are able to handle linearly separable data sets (perhaps with a few exceptions or some noise).

But what to do with this (one-dimensional) data set?

Obviously, it is not linearly separable, and the reason for that is not noise.

What we want to do:

Transform the data set into some higher-dimensional space and do a linear classification there...

Lecture 9: Support Vector Machines

1. Linear SVMs
2. Nonlinear SVMs
3. Support Vector Machines in IR
4. Overfitting

Nonlinear SVMs

Solution:
Transform the data set into some higher-dimensional space and do a linear classification there...
But…

When working in high-dimensional spaces, computing the transformation and solving the corresponding optimization problem will be **horribly difficult**.

What can we do about it?

Observation: There are no problems at all if we are able to compute scalar products in the high-dimensional space efficiently…

$$
\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j h(x_i)^T h(x_j)
$$

$$
f(x) = \text{sgn} \left(\sum_{i=1}^{n} \alpha_i y_i h(x_i)^T h(x) + b \right)
$$

The key technique here is called the **“kernel trick”**

Let $h: \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ be some function that maps our original d-dimensional data into some d'-dimensional space.

Typically $d' \gg d$ holds.

To deal with our optimization problem and be able to do classification afterwards, we must be able to quickly compute the following expressions:

$$
f(x) = \text{sgn} \left(\sum_{i=1}^{n} \alpha_i y_i h(x_i)^T h(x) + b \right)
$$

$$
b = z_i - \sum_{i=1}^{n} y_i \alpha_i h(x_i)^T h(x_i)
$$

Note that we only need to compute **scalar products** in the high-dimensional space.

If h is some special type of mapping (e.g. polynomial or Gaussian), there are computationally simple **kernel functions** available, which correspond to the result of scalar products in h’s range.

A polynomial transformation of degree 2:

$$
h(x_1, x_2) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1x_2)^T
$$

A demo of nonlinear SVMs:

http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

Another demo:

- Statistical Pattern Recognition Toolbox
 http://cmp.felk.cvut.cz/cmp/software/stpportool

Lecture 9: Support Vector Machines

1. Linear SVMs
2. Nonlinear SVMs
3. Support Vector Machines in IR
4. Overfitting
Text Classification

- An important application of SVMs in information retrieval is text classification.
- Typically, this means automatically assigning topics to new documents based on a training collection of manually processed documents.
 - But there are also many other applications, e.g., spam detection.
- In SVMs, document representations known from the vector space model can be used.
 - Plus additional features, e.g., document length.
- Although the dimensionality is very high, this usually is not a big problem since most document vectors are very sparse.

Learning to Rank

- A very recent application of SVM in information retrieval is called “Learning to Rank.”
- Here, a special type of SVMs is used: Ranking SVMs.
- The training set consists of n pairs of documents (y_i, y'_i).
- Each such pair expresses that document y_i is preferred to y'_i with respect to some fixed query shared by all training pairs.
- Example training set for query “Viagra”:
 - Wikipedia’s entry “Viagra” is preferred to some spam page.
 - Wikipedia’s entry “Viagra” is preferred to the manufacturer’s official page.
 - The manufacturer’s official page is preferred to some spam page.

Learning to Rank (2)

- The task in Learning to Rank: Find a ranking function that assigns a numerical score $s(d)$ to each document d based on its vector representation such that $s(d) > s(d')$ if and only if document d is preferred to document d'.
- A straightforward approach are linear ranking functions, i.e., $s(d) = w \cdot d$, for some row vector w.
- This reminds us of SVMs.

Learning to Rank (3)

- An SVM formulation of our task is...
 - Minimize $0.5 \|w\|^2$ over all $w \in \mathbb{R}^d$ subject to the following constraints:
 - For any $i = 1, \ldots, n$:
 - $w \cdot y_i \geq w \cdot y'_i + 1$
 - Enforces a standard margin of 1 between each pair of scores.
 - The constraint is equivalent to $w \cdot (y_i - y'_i) - 1 \geq 0$, which looks familiar.
 - Of course, we could also use a soft margin or nonlinear scoring functions here.

Learning to Rank (4)

- Where to get the preference pairs from?
 - Idea from Joachims (2002): Users tend to linearly read a search engine’s result lists down from its beginning.
 - If users click the r-th result but do not click the $(r-1)$-th, then document r likely to be preferred to document $r-1$.

Text Classification (2)

- SVMs have been successfully applied in text classification on small and medium-sized document collections.
- Some results by Joachims (1998) from experiments on the Reuters-21578 data set (F-measure with $\alpha = 0.5$):
 - Categories | NB | Rocchio | Ave. Ters | kNN | C = 0.5 | C = 1.0 | kNN | $\alpha = 0.5$
 - euro | 96.4 | 96.1 | 96.3 | 95.8 | 95.5 | 96.0 | 95.6 | 98.1
 - eng | 96.7 | 92.1 | 95.3 | 95.4 | 95.8 | 95.0 | 95.6 | 96.7
 - money:fx | 79.6 | 76.7 | 75.4 | 75.4 | 76.0 | 75.3 | 76.5 | 76.4
 - sports | 69.9 | 75.9 | 74.6 | 76.3 | 76.1 | 74.9 | 76.5 | 76.2
 - trade | 77.2 | 76.2 | 75.7 | 76.2 | 76.2 | 75.7 | 76.5 | 76.4
 - health | 68.9 | 63.1 | 65.0 | 70.6 | 67.4 | 66.5 | 65.5 | 65.8
 - stock | 63.4 | 79.4 | 65.5 | 73.9 | 84.8 | 86.6 | 85.4 | 87.2
 - euro | 65.2 | 62.2 | 67.7 | 71.4 | 87.9 | 87.9 | 86.9 | 86.9
 - micro | 72.3 | 70.9 | 78.4 | 82.6 | 86.7 | 87.5 | 86.4 | 86.4

Information Retrieval and Web Search Engines — Wolf-Tilo Balke and Joachim Selke — Technische Universität Braunschweig
Learning to Rank (5)

- Then:
 1. Compute an initial result list using some retrieval algorithm
 2. Collect user clicks
 3. Learn a ranking function
 4. Incorporate the ranking function into the retrieval process, i.e. re-rank the result list

- Of course, one could use the ranking information already in computing the initial result list
 - ... if user feedback on similar queries is available
 - ... if feedback from different users on the same query is available

Applications:

Handwritten Digits

- Particularly popular: Recognition of handwritten digits

Results

- Taken from Decoste/Schölkopf:

<table>
<thead>
<tr>
<th>Digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV</td>
<td>5</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>1.22%</td>
</tr>
<tr>
<td>USV</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>0.88%</td>
</tr>
<tr>
<td>SV12</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>8.06%</td>
</tr>
</tbody>
</table>

Lecture 9: Support Vector Machines

1. Linear SVMs
2. Nonlinear SVMs
3. Support Vector Machines in IR
4. Overfitting
One problem in using SVMs remains: if we use a mapping to a high-dimensional space that is "complicated enough," we could find a perfect linear separation in the transformed space, for any training set. So, what type of SVM is the "right" one? Example: How to separate this data set into two parts?

A perfect classification for the training set could generalize badly on new data. Fitting a classifier too strongly to the specific properties of the training set is called overfitting. What can we do to avoid it? Cross-validation:
- Randomly split the available data into two parts (training set + test set)
- Use the first part for learning the classifier and the second part for checking the classifier's performance
- Choose a classifier that maximizes performance on the test set.

Regularization:
- If you know how a "good" classifier roughly should look like (e.g., polynomial of low degree) you could introduce a penalty value into the optimization problem
- Assign a large penalty if the type of classifier is far away from what you expect, and a small penalty otherwise
- Choose the classifier that minimizes the overall optimization goal (original goal + penalty)
- An example of regularization is the soft margin technique since classifiers with large margins and few errors are preferred.

Usually, there is a tradeoff in choosing the "right" type of classifier:
- Ignoring specific characteristics of the training set leads to a systematic bias in classification
- Accounting for all individual properties of the training set leads to a large variance over classifiers when the training set is randomly chosen from some large "true" data set

What you want is small bias and small variance.
- Typically, you cannot have both!

Next Lecture
- Introduction to Web retrieval