ifis
Institut fir Informationssysteme
Technische Universitat Braunschweig

Relational Database Systems 2
3. Indexing and Access Paths

Christoph Lofi

Benjamin Kohncke

Institut far Informationssysteme
TechnischdJniversitatBraunschweig
http://www.ifis.cs.ttbs.de

A Hard disks

I Slow random access Primary
i Fastsequential transfer § %
i Unreliable & failure prone pa— |

Ter'gi.a ry Optical}Eisks, Tape

Relational Database Systems €hristoph Lofi Benjamin Kéhncke Institut fir Informationssysteme 2

@ 3 Indexing and Access Paths

3.1 Introduction to access paths
3.2 Files and blocks

3.3 Indexing
I Singldevel indexes
I Multi-level indexes
I Hash indexes

3.4 Physical Tuning

. -

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 3

3.1 Introduction to Access Paths

A Databases persistently store data

A Major problem: efficiency of data access
I Obviously depends on the hardware used

A But also depends to a large degree
I On the allocation of data on the disks
I On intelligent buffer management
I On creating access paths and indexing data

A Physical tuning of the database is a main task of
database administrators

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 4

@ 3.1 Introduction to Access Paths

A For persistent storage databases are mapped into a
number offiles

I Located in specially protected parts of the file system
(tablespace=tc.)

I Actually maintained by the operating system

A Each file is partitioned into fixed lengttocks (pages)
Smallest unit transferred from/to storage
Block size is specified on DB creation

Is a multiple of the OS block size

A block usually contains several data records

SKS 10.5 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 5

3.1 Sectors and Blocks

A HarddiskSectors are abstracted by the file syste
to blocks

A DBMS abstracts FS blocksBBMS blocks

DISK
FS-Block 1 DBMS Block :
m FS Block 2 DBMS Block :
FS Block 3 DBMS Block -
\ ES Block 4 DBMS Block -
/ | FS Block DBMS Block !
FS Block 6 DBMS Block |

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 6

3.1 Buffer Management

A For data access always complete blocks (page:s
are transferred from disk into the main memory

i The part used for holding copies of blocks is referre:
to asDB buffer and managed by tHauffer
manager

I Optimized (pre)fetching of blocks greatly improves
performance

A If a data record is requested by the DB
I If the block isbuffered , return main memory address

| Elseallocate space in the buffeietch the block
from disk, and return main memory address

SKS 10.5 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 7

@ 3.1 Buffer Management

A Once new blocks are fetched, generally currentl
buffered blocks have to be evicted

I If blocks have been modified, theyust be written
back to disk (which is not always possible)

I Writing of blocks depends on the recovery
strategy:
ABlocks that cannot yet be written are callpthned blocks

ABefore checkpoints there might befarced output of
blocks

A Severabuffer replacement
strategies canbe applied

SKS 10.5 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 8

@ 3.1 Replacement Strategies

A Leastrecentlyused (LRU) : t he 6ol d

replaced

I Usually used in OS buffer management
I Simple, yet effective strategy

I Does not use semantics of the data

A Toss immediate : After the DB has finished to process
a block, the block is immediately replaced

I Example: blockested loop join between tables R, S
A Take one block from R and compare against all blocks in S
A The block from R can be thrown out, but no block from S

SKS 10.5 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 9

3.1 Replacement Strategies

A Expected Reuse: statistics about query frequencies
assess how useful a buffered block is

I The block with least expected usefulness is evicted

I Example: index blocks are more often
addressed than data blocks

X

A In any case, whatever the strategy: \
Once a block has been modified and has not yet been
written to disk,it cannot be evicted !

I Note: recovery subsystem has to agree before writing a bloc|
to disk

SKS 10.5 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 10

@ 3.2 Blocks (Pages)

A Overhead & Payload (e.g., ORACLE data

blocks)

I Header contains general block information like

bl ock address,

.. . . Database Block
| Table directory contains

tables that have rows

In the block il

I Row directory contains t
iInformation about the
actual rows in the block
(1 Ds, address

I Row data is actual data

type

of segm

. Common end Yearieble Header
. Table Directory

|:| Row Directory
|:| Free Space
. Row Data

Datenbanksystem@ ¢ ChristophLofi¢ Institut fiir Informationssysteme TUBraunschweig 11

3.2 Extents and Segments

A An Extent is a logical collection
of blocks (usually adjacent)

I Fixed size, once more data space
needed for rows a new extent Is
allocated

I Remember: reading adjacent
blocks improves access time

A Segments are collections of
logically connected extents

I For instance tables, index segmen
or rollback segments

Sagmant
112Kk

5
~ 2BKhL
.

Extent |

Extent -
B Kb

N

Kb
Kb

Kbt

v [2KR

2Kb

2Kb

2Kb

, | 2K

2Kk

2Kk

2Kk

|
.| 2K,

2Kb

2Kk

2Hb

| ke

2Kb

2Kb

2Kb

» | 2,

Kb

2Kk

2Kb

Il
L | 2K,

2Kb

2Kk

2K

| 2Ke

2Kb

2Kb

2KE!

2Kk

Kb

2Kk

2Kb

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig

Data Blocks

12

@ 3.2 Tablespaces

A A tablespace is the logical storage space needk
for the data In a table

I A grouping of multiple files allocated on disk
AExample: Datal.ora, system.ora, test.dbf

I Good practice to have ong&ablespacdor tables, and a
different one for indexes

ORACLE

CREATE TABLESPACEuser_ data
DATAFI LE 6udata. or alb
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AU;O

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 13

3.2 File Organization

A Records of different relations should be stored i
individual files

I Storing related records in the same block minimizes
disk accesses

A Multitable clustering file organization may
store records of different tables in the same blo

I Good e.g. for some often occurring joins

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 14

3.2 File Organization

A Files reserve space in the file system
I File size can be specified or change dynamically
I Default values strongly differ (e.g., DB2 allocates NI&)

Files related to table
ccontent_type_lecturé

content_Field_lecturers. frm 9 KB
content_Field_lecturers, MYD 1kEB
content_Field_lecturers,My1 ZKEB
cantent_graup, frm R
conktent_group, MYD 2 kKB
content_group, MYI Z KB
content_group_Ffields. Frm 9 KB
cantent_group_fields, MyD 1kB
content_group_fields, MYT 3KB
content_node_Field, Frm 9 KB
content_nade_field, MYD S KB
content_node_fisld, MYT ZKB

FRM File
MYD File
MYI File
FRM File
YD File
MYI File
FRM File
YD File
MYI File
FRM File
MYD File
Y1 File

™,

My

Schema file

content_node_field_instance, Frm AKE FRM File
':Dntent_nnde_ﬁeld_ins':a”W
content_node_field_instance, MYT ZKE MYIFie

\ content_type_lecture,Frm ke _FrMEL———Data file with data blocks

content_type_lecture, MYD .
cnntent_type_lecture.M\"I €
EDI‘ItEI‘It_t':.-'pE!J:Ir'DF"E.Fr’m

7 KB

J KB

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig

MYD File

ke B Index file with index blocks

FRIM Fil=

15

@ 3.2 File Organization

A Organization of records in the file

i Heap 0 a record can be placed anywhere in the file
where there Is space

I Sequential d store records in sequential order, base
on the value of the search key of each record

I Hashing 0 a hash function is computed on some
attribute of each record. The result specifies in whict
block of the file the record should be placed

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 16

@ 3.2 File Organization

A Data records have to be written in a file such that the
entire record can be accessed with minimal disk acces
I Fixedlengthrecords (easyto implemenyj
I Variable length records (storage space efficient)

TYPE deposit = RECORD
name : CHAR(22);
accNo : CHAR(10);
balance : REAL,;
END

i If each char is 1 byte and a real
8 bytes, a record takes 40 bytes

— T
—

Name | AccNo | Balance

Burg 864442 654,55
1 Myers 967531 56,45

2 Smith 145288 457,75

N~ R

SKS 10.6 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 17

@ 3.2 File Organization

A Fixed length records

i40 bytes for the first reco

I Problem: if the block size is not a multiple of 40, records ma
cross boundaries

I Problem: deleting a record can be either done by marking it

as deleted, or by replacing it with some other record of the fil

A Keeping deleted items? &iing slov! Q
A Move up all other items? Efficiency!

A Fill space with next inserted item?

Changes sequence! Burg 864442 654,55
A Pointer lists? Wastes space ineach | * Myers 967531 56:45
record! 2\ Smith 145288 /4@

SKS 10.6 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 18

@ 3.2 File Organization

A Variable length records

I Necessary for multtable files or records that allow variable
length attributes

I Problem: How to know when a record ends?

A Introduced e rodr e c or d 8 & starelrezdrdsength at
beginning of the record. But what if a record is updated?

A Slotted page structure: header contains number of entries, end of
free space and pointers to location/size of entries. Records are
moved to use
up space. no Block Header Records
fragmentation! Pize [¢Entries

Location

End of Free Space

SKS 10.6 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 19

3.2 File Organization

A Typical database records like in our banking example
easilly fit into one block : ﬁ\@ =
I Name, account numbe ‘&St

I Usually multiple records per block

A Unspanned record organization
fills blocks only with
complete records

A Spanned organization uses
pointers to divide records

i record 1 || record 2][record 3

I+1!| record 4|| record 5

i record 1 || record 2][record 3 || 4 RJ

5 2
i+1|| 4 record 5

EN 4.4 Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 20

3.2 Non -Standard Blocks

A Necessary for large objectisinary large objects
(blobs) anccharacter large objects (clobs

A Large objects are not interpreted in databases
I Text documents, images, audio and video data
I Need to be stored in a contiguous sequence of bytes

I If an object is bigger than a block, contiguous pages
of the buffer pool have to be allocated for storage

I Sometimes preferable to
disallow direct access, but
only allow access through
file-systemlike API to allow
for fragmentation

@ 3.3 Indexing

A Indexes help to locate records in a DB file

I Creation of indexes is part of the physical tuning task of
database administrators

I Indexesoften influence the actual
location of storage for a record

A Example: sequential storage,
storage via a hash function

A If the location is determined by
the index

I Not all attributes can
be directly indexed (but seconda
access paths may be used)

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig 22

3.3 Basic Concepts

A When items have to be found quickly, indexing
mechanisms are used to
speed up access

I Alphabetical author
catalog in libraries

I Lexicographic ordering
P é

Datenbanksystem@ ¢ ChristophLofi¢ Institut fir Informationssysteme TUBraunschweig

23

