
Christoph Lofi

Benjamin Köhncke

Institut für Informationssysteme

TechnischeUniversitätBraunschweig

http://www.ifis.cs.tu-bs.de

Relational Database Systems 2
3. Indexing and Access Paths

ÅEach DBMS uses several types of storage

ïStorage hierarchy

ïPredominant storage type is the hard disk

ÅHard disks

ïSlow random access

ïFast sequential transfer

ïUnreliable & failure prone

Relational Database Systems 2 ςChristoph Lofi - Benjamin Köhncke ςInstitut für Informationssysteme 2

2 Storage

3.1 Introduction to access paths

3.2 Files and blocks

3.3 Indexing

ïSingle-level indexes

ïMulti-level indexes

ïHash indexes

3.4 Physical Tuning

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 3

3 Indexing and Access Paths

ÅDatabases persistently store data

ÅMajor problem: efficiency of data access

ïObviously depends on the hardware used

ÅBut also depends to a large degree

ïOn the allocation of data on the disks

ïOn intelligent buffer management

ïOn creating access paths and indexing data

ÅPhysical tuning of the database is a main task of

database administrators

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 4

3.1 Introduction to Access Paths

ÅFor persistent storage databases are mapped into a

number of files

ïLocated in specially protected parts of the file system

(tablespaces, etc.)

ïActually maintained by the operating system

ÅEach file is partitioned into fixed length blocks (pages)

ïSmallest unit transferred from/to storage

ïBlock size is specified on DB creation

ïIs a multiple of the OS block size

ïA block usually contains several data records

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 5SKS 10.5

3.1 Introduction to Access Paths

ÅHarddiskSectors are abstracted by the file system
to blocks

ÅDBMS abstracts FS blocks to DBMS blocks

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 6

3.1 Sectors and Blocks

DISK

FS Block 1 DBMS Block 1

DBMS Block 2

DBMS Block 5

DBMS Block 3

DBMS Block 4

DBMS Block 6

FS Block 2

FS Block 3

FS Block 4

FS Block 5

FS Block 6

ÅFor data access always complete blocks (pages)
are transferred from disk into the main memory

ïThe part used for holding copies of blocks is referred
to as DB buffer and managed by the buffer
manager

ïOptimized (pre-)fetching of blocks greatly improves
performance

ÅIf a data record is requested by the DB

ïIf the block is buffered , return main memory address

ïElse allocate space in the buffer, fetch the block
from disk, and return main memory address

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 7SKS 10.5

3.1 Buffer Management

ÅOnce new blocks are fetched, generally currently
buffered blocks have to be evicted

ïIf blocks have been modified, they must be written
back to disk (which is not always possible)

ïWriting of blocks depends on the recovery
strategy:

ÅBlocks that cannot yet be written are called pinned blocks

ÅBefore checkpoints there might be a forced output of
blocks

ÅSeveral buffer replacement
strategies can be applied

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 8SKS 10.5

3.1 Buffer Management

ÅLeast recently used (LRU): the ôoldestõ block is

replaced

ïUsually used in OS buffer management

ïSimple, yet effective strategy

ïDoes not use semantics of the data

ÅToss immediate : After the DB has finished to process

a block, the block is immediately replaced

ïExample: block-nested loop join between tables R, S

ÅTake one block from R and compare against all blocks in S

ÅThe block from R can be thrown out, but no block from S

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 9SKS 10.5

3.1 Replacement Strategies

ÅExpected Reuse : statistics about query frequencies

assess how useful a buffered block is

ïThe block with least expected usefulness is evicted

ïExample: index blocks are more often

addressed than data blocks

ÅIn any case, whatever the strategy:

Once a block has been modified and has not yet been

written to disk, it cannot be evicted !

ïNote: recovery subsystem has to agree before writing a block

to disk

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 10SKS 10.5

3.1 Replacement Strategies

ÅOverhead & Payload (e.g., ORACLE data

blocks)

ïHeader contains general block information like

block address, type of segment (data, index,é)

ïTable directory contains

tables that have rows

in the block

ïRow directory contains

information about the

actual rows in the block

(IDs, addresses,é)

ïRow data is actual data

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 11

3.2 Blocks (Pages)

ÅAn Extent is a logical collection

of blocks (usually adjacent)

ïFixed size, once more data space is

needed for rows a new extent is

allocated

ïRemember: reading adjacent

blocks improves access time

ÅSegments are collections of

logically connected extents

ïFor instance tables, index segments,

or rollback segments

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 12

3.2 Extents and Segments

ÅA tablespace is the logical storage space needed

for the data in a table

ïA grouping of multiple files allocated on disk

ÅExample: Data1.ora, system.ora, test.dbf

ïGood practice to have one tablespacefor tables, and a

different one for indexes

CREATE TABLESPACE user_data

DATAFILE óudata.oraô SIZE 10M

EXTENT MANAGEMENT LOCAL

SEGMENT SPACE MANAGEMENT AUTO

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 13

3.2 Tablespaces

ÅRecords of different relations should be stored in

individual files

ïStoring related records in the same block minimizes

disk accesses

ÅMultitable clustering file organization may

store records of different tables in the same block

ïGood e.g. for some often occurring joins

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 14

3.2 File Organization

ÅFiles reserve space in the file system

ïFile size can be specified or change dynamically

ïDefault values strongly differ (e.g., DB2 allocates 100 MB)

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 15

3.2 File Organization

Schema file

Index file with index blocks

Files related to table
άcontent_type_lectureέ

Data file with data blocks

ÅOrganization of records in the file

ïHeap ða record can be placed anywhere in the file

where there is space

ïSequential ðstore records in sequential order, based

on the value of the search key of each record

ïHashing ða hash function is computed on some

attribute of each record. The result specifies in which

block of the file the record should be placed

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 16

3.2 File Organization

ÅData records have to be written in a file such that the

entire record can be accessed with minimal disk accesses

ïFixed lengthrecords(easy to implement)

ïVariable length records (storage space efficient)

TYPE deposit = RECORD

name : CHAR(22);

accNo : CHAR(10);

balance : REAL;

END

ïIf each char is 1 byte and a real

8 bytes, a record takes 40 bytes

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 17SKS 10.6

3.2 File Organization

record Name AccNo Balance

0 Burg 864442 654,55

1 Myers 967531 56,45

2 Smith 145288 457,75

ÅFixed length records

ï40 bytes for the first record, 40 bytes for the second,é

ïProblem: if the block size is not a multiple of 40, records may

cross boundaries

ïProblem: deleting a record can be either done by marking it

as deleted, or by replacing it with some other record of the file

ÅKeeping deleted items? Reading slow!

ÅMove up all other items? Efficiency!

ÅFill space with next inserted item?

Changes sequence!

ÅPointer lists? Wastes space in each

record!

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 18SKS 10.6

3.2 File Organization

record Name AccNo Balance

0 Burg 864442 654,55

1 Myers 967531 56,45

2 Smith 145288 457,75

ÅVariable length records

ïNecessary for multi-table files or records that allow variable

length attributes

ï Problem: How to know when a record ends?

ÅIntroduce ôend-of-recordõ symbols or store record length at

beginning of the record. But what if a record is updated?

ÅSlotted page structure: header contains number of entries, end of

free space and pointers to location/size of entries. Records are

moved to use

up space: no

fragmentation!

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 19SKS 10.6

3.2 File Organization

ÅTypical database records like in our banking example

easily fit into one block

ïName, account number, balance,é

ïUsually multiple records per block

ÅUnspanned record organization

fills blocks only with

complete records

ÅSpanned organization uses

pointers to divide records

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 20EN 4.4

3.2 File Organization

i

i+1

record 1 record 2 record 3

record 4 record 5

i

i+1

record 1 record 2 record 3 4

record 54

p

ÅNecessary for large objects: binary large objects

(blobs) and character large objects (clobs)

ÅLarge objects are not interpreted in databases

ïText documents, images, audio and video data

ïNeed to be stored in a contiguous sequence of bytes

ïIf an object is bigger than a block, contiguous pages

of the buffer pool have to be allocated for storage

ïSometimes preferable to

disallow direct access, but

only allow access through

file-system-like API to allow

for fragmentation

21

3.2 Non -Standard Blocks

ÅIndexes help to locate records in a DB file

ïCreation of indexes is part of the physical tuning task of

database administrators

ïIndexes often influence the actual

location of storage for a record

ÅExample: sequential storage,

storage via a hash function

ÅIf the location is determined by

the index

ïNot all attributes can

be directly indexed (but secondary

access paths may be used)

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 22

3.3 Indexing

ÅWhen items have to be found quickly, indexing

mechanisms are used to

speed up access

ïAlphabetical author

catalog in libraries

ïLexicographic ordering

ïé

Datenbanksysteme2 ςChristophLofiςInstitut für InformationssystemeςTU Braunschweig 23

3.3 Basic Concepts

