5 Shape-based Features

5.1 Shape Representation

- Shape based image similarity allows for different interpretations:
 - Images with similar shaped objects
 - Images with similar dominant shapes
- Both are reasonable ideas and a “meaningful” definition is highly dependent on the particular application

5.1.1 Contour-based Comparison

- By comparing the contours we can determine which images contain similarly shaped objects
- The outline is usually viewed as closed contour
- This is more or less provided through segmentation
- The semantics of the objects here is better described than e.g., global edge images
5.1 Contour-based Comparison

- Shape matching requires **complex similarity measures**
- Requirements for the comparative measure:
 - Invariant regarding **shifts** (translation invariance)
 - Invariant regarding **scaling**
 - Invariant regarding **rotations** (rotational invariance)

5.1 Low Level Features

- Simple indicators of forms, which are characterized by their contour:
 - Number of vertices
 - Area
 - Enclosed area (holes are not included)
 - Eccentricity
 - ...

5.1 Chain Codes

- **Chain codes** (also known as Freeman codes)
 - Are very simple pixel-based descriptions of a form (Freeman, 1961)
- The contour is traversed either clockwise/inverse
- Changes of the edges direction are logged
- Each pixel receives a code depending on its predecessor

- Visual impression of the two images is different, but the emerging forms are identical

- These numbers only give an **absolute sense** of the shape
 - Scale invariance is not provided
 - The shape is not reconstructable
 - The similarity of shapes due to such numbers (e.g., shape area) is doubtful
 - In shape description, low level features are **only helpful** in combination with other features

- **Direction codes**

```
3 2 1
4 X 0
5 6 7
```

- Translation invariance is clear in this way
- E.g.:

```
... x 1 0 1 2 3 ...
```

(Chain Code of the image)
5.1 Chain Codes

• For scale invariance:
 – Remove equal consecutive numbers (works poorly with complex shapes)

- Rectangles have the same code as squares

 000066666444444222222222222222222 → 0642
 000000666664444442222222222222222 → 0642

• Reduced Chain code

 3 2 1
 0 X 0
 1 2 3

 • Opposite directions receive the same encoding

5.1 Chain Codes

• Reduced Difference Chain Code (RDC) (Freeman, 1961)
 – Each two consecutive points are summarized by their difference
 – Advantage: compression
 – Example: rotational invariance

- Works only with rotations by multiples of 45°

- Sequence of numbers in the code is not unique
5.1 Chain Codes

- Alternative coding describes this behavior with edges (Shape numbers) (Bribiesca / Guzman, 1978)

- convex corner edge concave corner
 - Code 1
 - Code 2
 - Code 3

- Matching of two chain codes by comparing the two generated strings
 \[A = (a_1, a_2, \ldots, a_m) \] and \[B = (b_1, b_2, \ldots, b_n) \]

- Often is edit distance used for comparison:
 - Levenstein-distance
 - Advanced Levenstein-distance
 - ...

5.1 Chain Codes

- Shape numbers
 - Generate all cyclic permutations of the chain code
 - Sort the list of these permutations lexicographically
 - Select as encoding of the shape first permutation of this list

- Weighted Levenstein distance
 - Idea: string A can be converted through a sequence of
 - Substitutions of single characters \((a \rightarrow b)\),
 - Insertions \((\epsilon \rightarrow a)\) and
 - Deletions \((a \rightarrow \epsilon)\) into string B
 - Each of these operations have associated costs (natural numbers)
 - Find a sequence of operations, which converts A to B, with minimal cost
 - These costs are the distance between A and B

5.1 Chain Codes

- Advantages:
 - Relatively easy to calculate

- Disadvantages:
 - Scaling and rotation invariance are not always given
 - Much information is reduced or lost
5.2 Area-based Retrieval

- Representation
 - Area based description doesn’t only use the contour, but also the interior of a shape
 - Representations are divided into
 - Information-preserving representations (Image transformations, etc.)
 - Non-information-preserving representations (Low-Level Features, descriptive moments, ...)

5.2 Representation

- Transformation
 - Hough, Walsh, Wavelet transforms
- Structural representation
 - Primitive shapes which cover an area (rectangles, circles, ...)
- Geometric representation
 - Shape area, number of holes, compactness, symmetry, moments, moment invariants, ...

5.2 Low Level Features

- Shape area
 - Number of set pixels
- Roundness
 - Perimeter²/surface area (minimum) for circles
- Euler number
 - Difference:
 - Number of connected components
 - Number of holes in the components

5.2 Structural Representation

- How well can shapes be covered with a minimal number of primitive shapes?

5.2 Structural Representation

- Primitive shapes are e.g., Superquadratics (Barr, 1981)
 - Distortion of circles (spheres), e.g., ellipsoids, hyperboloids, etc.
 - Distortions are twists, bends, ...
- We aim at obtaining a minimal coverage
- What does minimal mean?
 - The encoding of each shape requires a certain length (depending on complexity)
 - If only primitive shapes are used, then, representation is susceptible to flaws
 - If more shapes are used...
 - Then the total length of the coding is higher
 - But the error is smaller
 - Therefore: Minimize a weighted sum consisting of length and coding errors
Shapes can also be described by their **skeleton** (Blum, 1973)

- **Central axis**: the number of centers of all circles with maximum area, inscribed in the shape

Symmetric boundary points

- Set of centers of all inscribed, bitangent circles (bitangent = 2 points of contact)
- Slightly more accurate than the central axis, but very sensitive to small changes in the shape

The shock set approach

- Also results in a skeleton
- Wave fronts start from the edges with the same speed. The skeleton is provided by the points where the wave fronts meet (like wildfire)

The graph of the skeleton is stored and used for comparison

- Skeletons are indeed calculated from boundary points, but also take into consideration shapes, e.g., holes

Example: (Sebastian and Kimia, 2005)

- The matching of different skeletons is usually done by using the editing distance with different editing costs
- Four basic editing operations:
 - **Splice** removes a skeleton branch
 - **Contract** represents n branches at a node with $n-1$ branches
 - **Merge** removes a node between exactly two skeleton branches
 - **Deform** deforms a branch
5.2 Skeleton

- Example: skeletons have the same topology after some splice operations

5.3 Moments

- A special type of shape features based on the image moments
- The intensity function $I(x, y)$ of the gray values of an image (after appropriate normalization) can be in addition interpreted as a probability distribution on the pixels of the image
 - If we take a random pixel of the image, considering this distribution, there is a high probability that the pixel is dark and a low probability that it is bright
- The statistical properties of I can be used as shape features

5.3 A little Stochastic

- Let f be a discrete probability distribution on a finite set A of real numbers
- Then:
 - $f(x) \geq 0$ for all $x \in A$
 - $\sum_{x \in A} f(x) = 1$
- If X is a random variable with distribution f, then $f(x)$ is the probability that X takes the value x

5.3 Uniqueness Theorem

- Each distribution function can be uniquely described by its moments
- **Uniqueness Theorem:**
 - f can uniquely be reconstructed from the sequence of moments m_0, m_1, m_2, \ldots
 - The only condition: all elements must exist, that is, be finite

5.3 A little Stochastic

- The i-th moment of X is
 $$m_i := \sum_{x \in A} x^i \cdot f(x)$$
- Already known from the stochastic:
 The first moment of X is the expected value

- The i-th central moment of X is
 $$\mu_i := \sum_{x \in A} (x - \bar{x})^i \cdot f(x)$$
 where \bar{x} denotes the expected value of X
- The second central moment of X is the variance
- The first central moment is always 0
- Important property: central moments are invariant to shifts
Now let f be a two-dimensional discrete distribution function, e.g.:
- \(f: A \times B \rightarrow [0, 1] \)
- \(f(x, y) \geq 0 \) for all \((x, y) \in A \times B \)
- \(\sum_{(x,y) \in A \times B} f(x, y) = 1 \)

Where \((X, Y) \) is a random vector with distribution \(f \)

The \((i, j)\)-th moment of \((X, Y) \)
- \(m_{i,j} := \sum_{(x,y) \in A \times B} x^i \cdot y^j \cdot f(x, y) \)

The \((i, j)\)-th central moment of \((X, Y) \) is
- \(\mu_{i,j} := \sum_{(x,y) \in A \times B} (x - m_{0,1})^i \cdot (y - m_{1,0})^j \cdot f(x, y) \)

Known: \(\mu_{1,1} \) is the covariance of \(X \) and \(Y \)

The uniqueness theorem applies also here, as before

Example: an image of width \(b \) and height \(h \) with pixel intensities \(I(x, y) \):

By normalizing \(I \), we obtain a two-dimensional discrete probability distribution \(f \):

\[
f(x,y) := \frac{I(x,y)}{\sum_{(u,v) \in A \times B} I(u,v)} \quad A := \{0, 1, \ldots, b - 1\} \quad B := \{0, 1, \ldots, h - 1\}
\]

Considering the uniqueness theorem, the moments of \(f \) (the image moments) represent a complete description of the image
- Therefore: use the (first \(k \)) image moments as shape features
- By using the central moments we have features that are invariant towards scaling and rotation!

From the central moments, we can calculate the normalized central moments:
- \(\eta_{i,j} := \frac{\mu_{i,j}}{\left(\sum_{(x,y) \in A \times B} I(x,y) \right)^{(i+j)/2}} \)

It can be shown that:
- The normalized central moments \(\eta_{i,j} \) are invariant towards scaling

Example (Scaling Invariant)
5.3 Linear Transformation

- We still lack the **rotational invariance**
- Rotations (and scaling) in the \mathbb{R}^2 can be described through **linear transformations**
 - These are functions $t: \mathbb{R}^2 \to \mathbb{R}$, described by a (2×2) matrix A, thus $t(x, y) = A \cdot (x, y)$
- Rotation with angle α (followed by scaling with factor s):

\[
A = s \cdot \begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\]

5.3 Moment Invariants

- We are looking for functions g, which transform the normalized central moments to **new characteristic values**, so that ...
- Rotations of the original shape do not change these metrics
- These metrics describe the form, regardless of their location and size
- Such functions are called **moment invariants** (Hu, 1962)

\[
g(\eta_0, \eta_1, \eta_2, \ldots) = g'(\eta'_0, \eta'_1, \eta'_2, \ldots)
\]

5.3 Algebraic Invariants

- Important property
 - If g_1 and g_2 (independent of one another) are relative invariants with weights w_1 and w_2, then
 \[
h(x) := \frac{g_1(x)^{w_2}}{g_2(x)^{w_1}}
\]
 is an absolute invariant
- Proof:
 \[
h(A \cdot x) = \frac{(g_1(A \cdot x))^{w_2}}{(g_2(A \cdot x))^{w_1}} = \frac{(det(A))^{w_1 \cdot w_2}}{(det(A))^{w_1 \cdot w_2}} \cdot h(x)
\]

5.3 Algebraic Invariants

- There are known methods in the **linear algebra** that can be used to find relative algebraic invariants for our special case
- A set of seven (absolute) moment invariants for moments of degree 2 and 3 is presented in (Hu, 1962)
 - $g_1(\cdot) = \eta_0 + \eta_2(\cdot)$
 - $g_2(\cdot) = (\eta_1 - \eta_0)_0^2 + 4 \eta_1^2$
 - $g_3(\cdot) = (\eta_1 - \eta_0)_0^2 + (\eta_2 - \eta_1)_0^2$
 - $g_4(\cdot) = (\eta_1 - \eta_0)_0^2 + (3 \eta_2 - 2 \eta_1)_0^2$
5.3 Algebraic Invariants

\[g_0 = (\eta_{0,0} - 3 \eta_{1,2}) (\eta_{0,0} + \eta_{1,2}) \]
\[\left[(\eta_{2,0} + \eta_{1,2})^2 - 3 (\eta_{2,1} + \eta_{0,0})^2 \right] \]
\[+ (3 \eta_{2,1} - \eta_{0,0}) (\eta_{1,2} + \eta_{0,0}) \]
\[3 (\eta_{2,0} + \eta_{1,2})^2 - (\eta_{2,1} + \eta_{0,0})^2 \]
\[g_1 = (\eta_{1,0} - \eta_{0,0}) (\eta_{0,0} + \eta_{1,2}) \]
\[(\eta_{2,0} + \eta_{1,2})^2 - (\eta_{2,1} + \eta_{0,0}) \]
\[+ 4 \eta_{1,0} (\eta_{3,0} + \eta_{1,2}) (\eta_{2,1} + \eta_{0,0}) \]
\[3 (\eta_{2,0} + \eta_{1,2})^2 - (\eta_{2,1} + \eta_{0,0})^2 \]
\[g_2 = (3 \eta_{1,1} - \eta_{0,0}) (\eta_{0,0} + \eta_{1,0}) \]
\[(\eta_{2,0} + \eta_{1,2})^2 - 3 (\eta_{2,1} - \eta_{0,0})^2 \]
\[+ (3 \eta_{1,2} - \eta_{0,0}) (\eta_{1,2} + \eta_{0,0}) \]
\[3 (\eta_{2,0} + \eta_{1,2})^2 - (\eta_{2,1} + \eta_{0,0})^2 \]

5.3 Example

- If we found suitable moment invariants, we can characterize shapes by the vector of related characteristic values
- The comparison of shapes is then performed by measuring the distance of real vectors
- How many moment invariants do we need?

5.3 Moment Invariants

- Separability:
 - Two different shapes in the database must differentiate in at least one element of the feature vector
 - This requirement determines how many different moment invariants are necessary

5.3 Separability Property

- The quality of the representation of shapes by moment invariants can be increased, by using other types of moments
- Examples:
 - Zernike moments
 - Tschebyschev moments
 - Fourier moments

5.3 Moment Invariants

- The calculation of feature vectors can be simplified if the contour of the shapes have a special form
- Examples:
 - Splines (based) on polynomial functions
 - Polygons
 - Curves in parametric representation

5.3 Moment Invariants
5.3 Moment Invariants

- **Example** (Hu, 1962):
 - The shapes of the characters in the alphabet are represented each with a two-dimensional vector

- Experiments: Retrieval System (STAR Mehtre and others, 1995)
 - Test collection: company logos
 - Moment invariants show an average retrieval efficiency of 85-88%
 - Combined feature vectors:
 - In combination with other features even 89-94% is obtained
 - “Retrieval Effectiveness” is here a mix of precision and recall

5.4 Whole Image Description

- No description of individual shapes, but of the overall impression created by the shapes in the picture
- Images are considered perceptually similar if shapes occur in similar correlations
- Simple queries:
 - Query by visual example
 - Query by sketch

5.4 Query by Visual Example

- Procedure (Hirata and Kato, 1992)
 - Pre-process the images in the database
 - Segment the images from the database and extract the edges (resulting in a binary image)
 - For each image from the database, save a normalized representation of the dominant shapes (Pictorial Index)
 - Users provide a rough drawing (binary)
 - Compare the drawing with the Pictorial Index

- Query by visual example
 - GazoPa shape similarity
 - Doesn’t work that great
5.4 Query by Visual Example

- **Image abstraction** for the pictorial index
 - Reduce the image size to, e.g., 64 x 64 pixels
 - Gradient calculation in four directions using the brightness values of each pixel
 - Calculate the edges:
 - All points with gradient greater than the average gradient plus standard deviation

- **Matching** can not simply compare at pixel level
 - White spots in the sketch may mean that **nothing should be there**, or **it's not important**, what is at the point
 - Sketches could be simplified, deformed and/or moved
 - Therefore, calculate the **local correlation** between the edge image and the sketch

- **Calculating the local correlation**:
 - Divide the edge image and the sketch in 8 x 8 blocks, and compare any two blocks at the same coordinates
 - Move the sketch-block over the edge image (original image), in the x and y directions (-4 to +4 pixels) and sum over the number of each matching pixel values
 - The maximum of these sums is the **local correlation**
 - The aim of this step is to compensate **local inaccuracies** in the drawing and the pictorial index

- **Calculation of the global correlation**
 - The global correlation is simply the sum of all local correlations
 - After calculating the global correlation for each image in the database, sort the database by correlation size
5.4 Query by Visual Example

- **Advantages**
 - Good retrieval results with respect to the overall visual impression
 - Imprecision in the sketch is adjusted in matching

- **Disadvantages**
 - The calculation of similarities is very expensive and can not be calculated in advance

Matlab example

- **Query image**

Extract edges

Result

This Lecture

- **Shape-based Features**
 - Chain Codes
 - Area-based Retrieval
 - Moment Invariants
 - Query by Example

Next lecture

- **Introduction to Audio Retrieval**
 - Basics of audio
 - Audio information in databases
 - Basics of audio retrieval