Exercise 3.1

What does the Probabilistic Ranking Principle state?
Exercise 3.2

Both Probabilistic Indexing (PI) and Binary Independence Retrieval (BIR) try to estimate $\Pr(d \in R_q)$ using Bayes’ Theorem. What are the two different approaches used here? Do not use any formulas!
Exercise 3.3

Both PI and BIR make an independence assumption. Explain each assumption in your own words (do not use any formulas!) and discuss whether it is reasonable or not.
Exercise 3.4

What do Zipf's Law and Heaps' Law state? Use your own words. What are the consequences of these laws for information retrieval systems?
Exercise 3.5
What are the advantages and disadvantages of stemming?
Exercise 3.6

Why do we need inverted indexes in information retrieval?
Exercise 3.7

Hard disks are extremely cheap. Then, why waste CPU time by compressing and decompressing inverted indexes?
Exercise 3.8

LSI can be used to recognize synonyms, antonyms, and semantically related terms. Briefly explain how this works. Use your own words, no not use any formulas.
Exercise 3.9

LSI also has interesting applications in automated document translation. Can you imagine how this works?
The **oral exams** will be held at the following dates:

- Monday, August 15
- Monday, September 26
- Tuesday, September 27
- Wednesday, September 28
- Thursday, September 29
- Friday, September 30

Please make an **appointment** with our secretary Regine Dalkıran.
Lecture 6: Language Models and Evaluation

1. Language Models
2. Evaluation of IR Systems
Observation:
There are many different styles of writing, especially depending on topics
 – For example, political news articles use a completely different vocabulary than personal blog entries

There are models available to describe such “languages”

Idea in IR:
 – Equate “languages” and fine-grained(!) topics
 • Each topic corresponds to a specific language
 – Represent each document by its corresponding language model (different parameters)
 – Querying then becomes:
 To which document’s language model the query fits best?
How to describe “language” within a formal model?

- Well-known from theoretical computer science: **Formal grammars**
- A way to describe correct syntax
- Example:
 - `sentence → noun_phrase verb_phrase`
 - `verb_phrase → verb noun_phrase`
 - `verb → took`
 - `noun_phrase → the man`
 - `noun_phrase → the book`
• Why formal grammars will not help us:
 – Grammars capture syntactical correctness but not style
 – Natural language does not strictly obey grammar rules
 – The writing style or topic of a document largely depends on how typical words, phrases, or sentences look like
 – Formal grammars fail to capture statistical properties of text, they just describe the set of “correct” documents
• A different approach to modeling language are **statistical language models**:
 – Ignore syntactical rules and grammar
 – Focus on **statistical regularities** in the generation of language

• A **generative model** is used here:
 – Assumption:
 Every document is the result of a **random process**
 – Central quantity: \(\Pr(w_1, \ldots, w_n) \),
 the probability of generating a document containing the words
 \(w_1, \ldots, w_n \) (in this order)
A statistical language model consists of probability distributions:

- For any given \(n \), there is a probability distribution such that every document \(w_1, \ldots, w_n \) of length \(n \) (word count) gets assigned its probability of generation \(\Pr(w_1, \ldots, w_n) \).

Example:

- Assume that only the words “cat” and “dog” are generated.

<table>
<thead>
<tr>
<th>(n = 0):</th>
<th>(n = 1):</th>
<th>(n = 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc</td>
<td>(\Pr(\text{doc}))</td>
<td>doc</td>
</tr>
<tr>
<td>()</td>
<td>1</td>
<td>(cat)</td>
</tr>
<tr>
<td>(cat)</td>
<td>0.7</td>
<td>(cat, dog)</td>
</tr>
<tr>
<td>(dog)</td>
<td></td>
<td>(dog, dog)</td>
</tr>
</tbody>
</table>
• Usually, some **structure** is assumed

• **Unigram** model (assume independence, ignore context):

\[
Pr(w_1, \ldots, w_n) = Pr(w_1) \cdot Pr(w_2) \cdot \ldots \cdot Pr(w_n)
\]

• **Bigram** model (assume dependence on the previous word only):

\[
Pr(w_1, \ldots, w_n) \\
= Pr(w_1) \cdot Pr(w_2|w_1) \cdot Pr(w_3|w_2) \cdot \ldots \cdot Pr(w_n|w_{n-1})
\]

• **Trigram** model (assume dependence on the previous two words):

\[
Pr(w_1, \ldots, w_n) \\
= Pr(w_1) \cdot Pr(w_2|w_1) \cdot Pr(w_3|w_1, w_2) \cdot Pr(w_4|w_2, w_3) \cdot \ldots \cdot Pr(w_n|w_{n-2}, w_{n-1})
\]
Example of a three-word bigram model:

| word | Pr(word) | Pr(row | column) |
|------|----------|-------------|
| cat | 0.4 | 0 |
| dog | 0.5 | 0.2 |
| mouse| 0.1 | 0.8 |

Some randomly generated 6-word sentences:

- dog mouse cat mouse cat mouse
- dog dog dog mouse cat mouse
- dog mouse cat mouse cat mouse
- cat mouse cat dog mouse cat
- cat mouse cat mouse cat mouse
• **Observation:** Generative models can be used to…
 - *generate* documents, or
 - *recognize* documents

• **Document recognition:**
 - “Which document fits a given model best?”
 - Usually based on **probabilities of generation**
 - Popular applications: OCR, speech recognition, …
• How to apply language models in information retrieval?

• **Assumptions:**

 – For each document, there is a “true” (but unknown) statistical **document model**

 – Each document was generated from its corresponding model by a **random generation process**, i.e., it is a random **sample**

 – The **query** also is a **sample** or a description of an underlying language model describing the user’s information need
Typical application of language models in IR:

1. **Estimate a model** for each document
2. For each estimated model, compute the **probability of generating the query**
3. **Rank** documents by these probabilities
• **Open problems:**
 - How to *estimate* the “true” language models from the observations (= documents) we have?
 - Which *language model* should we use (unigram, bigram, …)?

• For **practical reasons**, unigram models are used in IR (sometimes bigram models)

• “Practical reasons” refers to:
 - Reduced *computational complexity*
 - Problem of *sparse data:*
 - Documents usually are short and its size and content are fixed
 - *Losses from data sparseness* (i.e., bad estimations) tend to outweigh any gains from richer models
• We will deal with **unigram** models only

• Now, how to **estimate** the “true” models?

• Straightforward approach:

 – **Given:** Document $d = (w_1, \ldots, w_n)$
 – Estimate $Pr(w_i)$ by $\frac{tf(d, w_i)}{n}$
 – This is the **maximum likelihood estimator (MLE)**

• **Example:**

 – $d = (\text{the, big, dog, jumps, over, the, small, dog})$
 – Estimate $Pr(\text{dog})$ by $2 / 8 = 0.25$
 – Estimate $Pr(\text{cat})$ by 0
• **Problem** of the MLE approach:
 Document size often is too small
 – Many terms would be missing in a doc, which implies a zero probability estimate
 – Probability of terms occurring once in the document normally is overestimated, because this occurrence was partly by chance

• **Solution**: Smoothing
 – Allocate some probability mass to missing terms
 – Pull all estimates in the direction of the collection mean
 – There are many ways to do this
• **Simple smoothing** (as used in TF-IDF):
 – Add some small number α (e.g. 1 or 0.5) to all observed counts
 – Renormalize to give a probability distribution

• **Example (use $\alpha = 1$):**
 – $d = (\text{the, big, dog, jumps, over, the, small, dog})$

<table>
<thead>
<tr>
<th>word</th>
<th>initial estimate</th>
<th>word</th>
<th>final estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>3 / 8</td>
<td>the</td>
<td>3 / 15</td>
</tr>
<tr>
<td>big</td>
<td>2 / 8</td>
<td>big</td>
<td>2 / 15</td>
</tr>
<tr>
<td>dog</td>
<td>3 / 8</td>
<td>dog</td>
<td>3 / 15</td>
</tr>
<tr>
<td>jumps</td>
<td>2 / 8</td>
<td>jumps</td>
<td>2 / 15</td>
</tr>
<tr>
<td>over</td>
<td>2 / 8</td>
<td>over</td>
<td>2 / 15</td>
</tr>
<tr>
<td>small</td>
<td>2 / 8</td>
<td>small</td>
<td>2 / 15</td>
</tr>
<tr>
<td>cat</td>
<td>1 / 8</td>
<td>cat</td>
<td>1 / 15</td>
</tr>
</tbody>
</table>

normalize (divide by 15/8)
Linear smoothing:

- Estimate $\Pr(w_i)$ by
 \[\lambda \frac{\text{tf}(d, w_i)}{n} + (1 - \lambda) \frac{\text{cf}(w_i)}{N} \]

- n: document size
- $\text{cf}(w_i)$: collection frequency of w_i,
 i.e., the number of occurrences of w_i in the whole collection
- N: collection size, i.e., number of words in the whole collection
- λ: some parameter between 0 and 1
Approach by Ponte and Croft (1998):
- Use corpus data to stabilize document model
- If a term is missing in the document:
 Estimate its probability by its corpus probability
 (i.e., use an MLE over the whole collection)
- If a term appears in the document:
 Smooth MLE using average MLE
 (over all documents containing the term)

There are many more advanced smoothing methods…
• How to compare a document model to the query?
 – Compute the query’s generation probability with respect to the model
 – Given: Query \(q = (q_1, \ldots, q_k) \)
 – The score of a document then is our estimation of
 \(\Pr(q_1, \ldots, q_k) = \Pr(q_1) \cdot \cdots \cdot \Pr(q_k) \) with respect to the document’s language model
• **Pros:**
 – Clear statistical foundation, no ad hoc weightings
 – Collection statistics are an integral part of the model, rather than being used heuristically
 – Works good, comparable to the vector space model

• **Cons:**
 – Independence assumption in unigram model
 – No explicit notion of relevance, integration of user feedback is difficult
Deepdyve:

- Some old marketing claims:
 - “The content is your query”
 - “Queries can be words, phrases, paragraphs, formulas, whole documents or even sets of documents”
 - “It indexes every word, as well as every phrase in each document, and weighs their informational impact using advanced statistical computation”
 - “It is language independent”
 - “Results are arranged by topic”

- Claims are gone, but Deepdyve still encourages users to use whole paragraphs as queries
Lecture 6: Language Models and Evaluation

1. Language Models

2. Evaluation of IR Systems
What should be evaluated in IR?

- **Efficiency**
 - Use of system resources
 - Scalability

- **Effectiveness**
 - Result quality
 - Usability
Efficiency

- Efficiency:
 - Storage space
 - CPU time
 - Number of I/O operations
 - Response time
 - ...

- Depends on hardware and software
- Goal in IR: “be efficient enough”
- Efficiency usually is easy to evaluate, therefore it will not be discussed here any further
• **Effectiveness**: How to measure **result quality**?
• Key concept is **relevance**
• There is **no fully satisfactory definition** of relevance
 – The same problem as with “information” and “intelligence”…
• What we will do next?
 – Point out some **important aspects** of relevance
 – Give a **pragmatic approach** from the **system builder’s point of view**
• Fortunately, often we don’t need a precise definition (think of probabilistic retrieval)
Saracevic (2007) identifies five manifestations of relevance:

- **System or algorithmic relevance**
- **Topical or subject relevance**
- **Cognitive relevance or pertinence**
- **Situational relevance or utility**
- **Affective relevance**
• **System or algorithmic relevance:**
 - Relevance as a **static and objective** concept
 - Relevance can be **judged by some algorithm:**
 “How close is the fit between the retrieved set of documents and the user’s query?”
 - Not influenced by users
 - The most common and clearest definition of relevance
 - “How well does the **topic** of the retrieved information match the **topic** of the request?” (Problem: “**topic**” is undefined)
 - Example: “Vector space model relevance”
• **Topical or subject relevance:**

 – Relevance as a **subjective** or **user-based** concept

 – Still a **static** concept

 – The concept of **topic** is understood as **aboutness**, not contents, i.e., an **intellectual assessment** of how a document corresponds to the topical area required and described by the query

 – “How close is the **semantic fit** between the query and the topics of the document retrieved?”

 – Consequently, based on **judgments**

 – Documents may be assessed for aboutness independent of the query
Cognitive Relevance or Pertinence

- Cognitive relevance or pertinence:
 - Again, subjective
 - Relevance as relation between documents and the cognitive state of knowledge and information need of a user
 - “What is the user’s judgment about the applicability of the retrieved documents to the matter at hand?”
 - Relevance may be dynamic, i.e., change over session time
• Situational relevance or utility:
 – Again, **subjective** and **dynamic**
 – Relevance as the relation between the **situation, task, or problem at hand**, and documents
 – “Do the retrieved items allow the user to complete the task at hand?”
 – Involves **serendipity**: Information may be useful although you did not expect this in advance
• **Affective relevance:**
 - Again, *subjective* and *dynamic*
 - Relevance as the relation between documents and the *intents, goals, emotions, and motivations* of a user
 - Represents the human *drive for information*
Manifestations of Relevance

<table>
<thead>
<tr>
<th>Type of Relevance</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>System or algorithmic relevance</td>
<td>Rules for comparative judgments</td>
</tr>
<tr>
<td>Topical or subject relevance</td>
<td>Aboutness</td>
</tr>
<tr>
<td>Cognitive relevance or pertinence</td>
<td>Informativeness, novelty, information quality, …</td>
</tr>
<tr>
<td>Situational relevance or utility</td>
<td>Usefulness in decision making, appropriateness of information in resolution of a problem, reduction of uncertainty, …</td>
</tr>
<tr>
<td>Affective relevance</td>
<td>Satisfaction, success, accomplishment, …</td>
</tr>
</tbody>
</table>
What’s Our Notion of Relevance?

- Our notion of relevance: **Topical or subject relevance**

- **Current goal of IR:**
 - Build an algorithm resembling topical relevance for “most” users

- **Future goals (current research):**
 - Address the other subjective manifestations of relevance
• **Relevance vs. pertinence:**

 - Pertinence \rightarrow Personal information need
 - Relevance \rightarrow Query
 - Query \rightarrow IR system
 - IR system \rightarrow Answer

• **Be careful:**
 - Often “relevant to a *query*” means “relevant to a ‘*typical*’ information need that fits the query”
Back to our initial question: How to **evaluate** a system’s **result quality**?

Traditional approach: Evaluation benchmarks

- A benchmark document **collection**
- A benchmark suite of **information needs**, expressible as **queries**
- An **assessment** of the relevance of each query–document pair, called “gold standard” or “ground truth”
 - Usually, relevance is assessed in binary fashion

Example of an information need:

- “What are the prospects of the Quebec separatists achieving independence from the rest of Canada?”
• How to completely assess very large collections?
• The **pooling method** is widely used:
 – Run each query on a set of very different IR systems
 – “Pool” their results to form a set of documents, which have at least this recommendation of potential relevance (usually, take top k results from each system)
 – The union of these retrieved sets is presented to human judges for relevance assessment
 – **Assumption: Unassessed documents are irrelevant!**
• The Cranfield collection:
 – Pioneering test collection
 – Cranfield University (UK)
 – 1960s
 – Total size: 1.6 Mbytes
 – 1400 abstracts of aerodynamics (aircraft design) journal articles
 – 225 queries generated by some of the documents’ authors
 – Exhaustive relevance judgments for all query–document pairs (done by students and “experts”)
• Rating scale used for relevance judgments:
 1. References which are a complete answer to the question
 2. References of a high degree of relevance, the lack of which either would have made the research impracticable or would have resulted in a considerable amount of extra work
 3. References which were useful, either as general background to the work or as suggesting methods of tackling certain aspects of the work
 4. References of minimum interest, for example, those that have been included from an historical viewpoint
 5. References of no interest
• **Example document:**
 - “viscous flow along a flat plate moving at high speeds. by the distortion of coordinates, it is shown that, in the case of supersonic viscous flow past a flat plate, the boundary-layer and simple wave theories can be combined to give a complete representation of the velocity and pressure fields. [...]”

• **Example query:**
 - “why does the compressibility transformation fail to correlate the high speed data for helium and air”
- **TREC**
 - Annual Text Retrieval Conference, beginning in 1992
 - Sponsored by the U.S. National Institute of Standards and Technology as well as the U.S. Department of Defense
 - Today: many different tracks, e.g. blogs, genomics, spam
 - http://trec.nist.gov/tracks.html
 - Provides data sets and test problems
 - **Research competitions**
TREC collections:

- **Best known:**
 Test collections used for the TREC Ad Hoc track during the first eight TREC evaluations between 1992 and 1999
- 1.89 million documents (mainly newswire articles)
- 450 information needs (specified in detailed text passages)
- **Binary** relevance judgments (used the **pooling method**)

Information Retrieval and Web Search Engines — Wolf-Tilo Balke and Joachim Selke — Technische Universität Braunschweig
• **Example information need:**

 - **Title:**
 Endangered Species (Mammals)

 - **Description:**
 Compile a list of mammals that are considered to be endangered, identify their habitat and, if possible, specify what threatens them.

 - **Narrative:**
 Any document identifying a mammal as endangered is relevant. Statements of authorities disputing the endangered status would also be relevant. A document containing information on habitat and populations of a mammal identified elsewhere as endangered would also be relevant even if the document at hand did not identify the species as endangered. Generalized statements about endangered species without reference to specific mammals would not be relevant.
• **Some more collections:**

 – **CACM**
 • 3,204 titles and abstracts from the journal Communications of the ACM

 – **Reuters-21578**
 • 21,578 newswire articles

 – **Reuters-RCV1**
 • Reuters Corpus Volume 1
 • 806,791 news stories in English
 • 2.5 Gbytes (uncompressed)

 – **20 newsgroups**
 • 1,000 articles from each of twenty Usenet newsgroups
 • 18,941 articles after duplicates have been removed

 – **ClueWeb09**
 • http://lemurproject.org/clueweb09/
Test Collections

- Evaluate algorithmic relevance against topic relevance
- Underlying assumptions:
 - Laboratory retrieval resembles real retrieval
 - Intersubject reliability:
 There is at least some consistency between this user’s opinion and those of others
 - Independence of interdocument relevance assessments:
 The relevance of a document can be assessed independently of assessments of other documents
 - Binary relevance
Evaluation of Answer Sets

- First, we deal with the evaluation of IR systems that return **result sets**, i.e., they do not provide any ranking.
- **Idea:** Compare result set with ground truth result set.

- What sets are involved here?

![Venn Diagram]
The diagram shows two sets: **relevant** and **returned**, with an overlap indicating the intersection of relevant documents that have been returned by the system.
False Positives

- **False positives:**
 - Irrelevant documents returned by the system
 - Extend the result set unnecessarily
 - Often inevitable
 - Usually can be filtered out by the user quite easily
False Negatives

- **False negatives:**
 - Relevant documents not returned by the system
 - Problematic, since the user usually is not aware of them
 - Are there any “better” documents?
 - Often worse than false positives
• Remaining sets: **True positives** and **true negatives**

<table>
<thead>
<tr>
<th></th>
<th>relevant</th>
<th>nonrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>returned</td>
<td>true positives</td>
<td>false positives</td>
</tr>
<tr>
<td>not returned</td>
<td>false negatives</td>
<td>true negatives</td>
</tr>
</tbody>
</table>
• Precision, recall, and fallout are important measures of (unranked) answer sets

• **Precision:**
 - Uses the number of *true positives* as measure of result quality
 - How many of the returned documents are relevant?
 - Definition:
 \[
 \text{Precision} = \frac{\#(\text{relevant items retrieved})}{\#(\text{items retrieved})}
 \]
 - Value in [0, 1], where 1 is best
 - High precision usually is important in **Web search** (result set = first page of results)
Recall

- **Recall:**
 - Also uses the number of *true positives* as measure of quality
 - How many of all relevant documents have been returned?
 - **Definition:**
 \[
 \text{Recall} = \frac{\#(\text{relevant items retrieved})}{\#(\text{relevant items})}
 \]
 - Value in \([0, 1]\), where 1 is best
 - High recall usually is important for *professional searchers* such as paralegals and intelligence analysts; it is also important for *desktop search*.
• Precision and recall clearly trade off against one another:
 – Achieve **perfect recall** (but awful precision) by always returning all documents in the collection
 – Achieve **very good precision** (but awful recall) by always returning only the single result that seems to match best
• Normally, this leads to tradeoffs in system tuning
 – Small result sets usually lead to better precision but worse recall
• What about measurement?
 – **Precision is easy to measure**
 – **Measuring recall is at least very difficult, and often impossible**
Fallout

• **Fallout:**
 - Uses **false positives** to measure retrieval quality
 - How many returned documents have been nonrelevant?
 - Definition:
 \[
 \text{Fallout} = \frac{\#(\text{nonrelevant items retrieved})}{\#(\text{nonrelevant items})}
 \]
 - Value in \([0, 1]\), where 0 is best
 - Zero fallout can be achieved by returning empty result sets
 - **Fallout usually only makes sense for large result sets**
 • For typical queries, most documents in the collection are nonrelevant
Example: Comparison of three retrieval systems

Average precision of system 3 at recall level 0.2

Which system is best?

What’s more important: Precision or recall?
The **F measure** combines precision and recall

- It’s a weighted **harmonic mean** of precision and recall
- **Definition:**

\[
F = \frac{1}{\alpha \cdot \text{precision} + (1 - \alpha) \cdot \text{recall}}
\]

- Parameterized by weighting factor \(\alpha \in [0, 1] \)
- **Balanced F measure:** \(\alpha = 1/2 \)
- Value in \([0, 1]\), where 1 is best
- **Why do we use the harmonic mean?**
 With the arithmetic mean, an F measure of 0.5 could easily be achieved e.g. by returning all documents
Now, how to evaluate ordered result lists?

- **Idea:** Compute precision and recall for the set of the top k retrieved documents; repeat this for many different k
- We then get the **precision at k** and the **recall at k**
- **Example result list** (assume there are 5 relevant docs):

<table>
<thead>
<tr>
<th>k</th>
<th>Relevant?</th>
<th>#Relevant</th>
<th>Recall at k</th>
<th>Precision at k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>1</td>
<td>$1/5 = 0.2$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>2</td>
<td>$2/5 = 0.4$</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>2</td>
<td>$2/5 = 0.4$</td>
<td>$2/3 \approx 0.67$</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>3</td>
<td>$3/5 = 0.6$</td>
<td>$3/4 = 0.75$</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>3</td>
<td>$3/5 = 0.6$</td>
<td>$3/5 = 0.6$</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>3</td>
<td>$3/5 = 0.6$</td>
<td>$3/6 = 0.5$</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
<td>3</td>
<td>$3/5 = 0.6$</td>
<td>$3/7 \approx 0.43$</td>
</tr>
</tbody>
</table>
• Plotting precision at k and recall at k, for many k, again gives us a **precision–recall curve**.

• Example from (Manning et al., 2008):

Typical sawtooth shape:
If the $(k + 1)$-th retrieved document is nonrelevant, then recall is the same as for the top k documents, but precision has dropped.
• To get rid of the sawtooth shape, we can use the **interpolated precision** at a certain recall level instead.

• **Definition:**
The interpolated precision at recall level r is the highest precision found for any recall level $r' > r$.
• TREC uses eleven-point interpolated average precision:
 – Recall levels used are 0.0, 0.1, …, 1.0
 – Precision values are averaged over many different queries

• Averaged eleven-point interpolated precision/recall; example from (Manning et al., 2008):
Some people like single aggregate values instead of curves
A popular one is the mean average precision (MAP)

Definition:
1. Compute precision at k, for any k such that there is a relevant document at position k in the result list
2. Then compute the arithmetic mean of all these precision values
3. Compute the mean over many different queries; this value is the mean average precision of the IR system

MAP has been shown to have especially good discrimination and stability

Broadly spoken: MAP is the average area under the precision–recall curve for a set of queries
• Clustering