Relational Database Systems 2
8. Join Order Optimization

Christoph Lofi
Benjamin Köhncke
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
Introduction into heuristic query optimization
Simple heuristics commonly used
Heuristics in action
Complex heuristics
Optimizer hints
8 Join Order Optimization

8.1 Basic join order optimization
8.2 Join cost and size estimations
8.3 Left-deep join trees
8.4 Dynamic programming
8.5 Greedy strategy
8.6 Randomized algorithms
8.1 Introduction

• Joins are **commutative** and **associative**
 – \(R \bowtie S \equiv S \bowtie R \)
 – \(R \bowtie (S \bowtie T) \equiv (S \bowtie R) \bowtie T \)

• This allows to evaluate individual joins in any order
 – Results in **join trees**
 • Different join trees may show very different evaluation performance
 – Join trees have different **shapes**
 – Within a shape, there are different relation **assignments** possible

• Example: \(R \bowtie S \bowtie T \bowtie U \)
8.1 Shapes of Join Trees

- Number of possible join trees grows rapidly with number of join relations
 - For n relations, there are $T(n)$ different tree shapes

 - $T(1) = 1$
 - $T(n) = \sum_{i=1}^{n-1} T(i)T(n-i)$

- “Any number of $1 \leq i \leq n-1$ relations may be in the left subtree and ordered in $T(i)$ shapes while the remaining $n-i$ relations form the right subtree and can be arranged in $T(n-i)$ shapes.”
This number sequence is called Catalan Numbers

- Named after Belgian mathematician Eugène Charles Catalan (1814–1894)
- Can be rewritten as

\[
T(n) = C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}
\]
8.1 Shapes of Join Trees

– Example: Shapes for \(n=4 \)

– Example: The 21 first Catalan Numbers:

 • 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020

 • Grows quite quickly….
8.1 Sequence of Relations

- For each shape, the relations can be assigned in $n!$ ways to the tree nodes
 - Example: Left-deep tree shape for $n=3$

- There are $T(n)*n!$ different join trees for n relations!

<table>
<thead>
<tr>
<th>n</th>
<th>$1*2! = 2$</th>
<th>$6 : 42*6! = 30,240$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n=2$</td>
<td>$2*3! = 12$</td>
<td>$9 : 1,430*12! = 518E6$</td>
</tr>
<tr>
<td>$n=3$</td>
<td>$5*4! = 120$</td>
<td>$12 : 58,786*12! = 28E12$</td>
</tr>
<tr>
<td>$n=4$</td>
<td>$14*5! = 1,680$</td>
<td>$15 : 2,674,440*15! = 3.49E18$</td>
</tr>
</tbody>
</table>
Finding the “most efficient” join tree and join implementation is a challenging problem.

- Number of possible join trees grows extremely with the number of join relations.
 - Problem was shown to be NP-hard in the general case.
 - \(O(n!) \), with \(n \) as number of join relations.
 - Estimating cost of all trees is not feasible for larger joins.

- Some join implementations are asymmetric.
 - Performance varies greatly depending on relation order.

Query optimizer has to find a good plan in sensible time.
8.1 Basic Join Order Optimization

• Naming convention
 – Left: Build Relation
 – Right: Probe Relation

• Desirable Join Cases
 – Attention: Role (inner/outer relation) of build and probe depends on chosen algorithm
 – **Block Nested Loop Join**
 • Build relation is in *inner loop*, probe relation is in *outer loop*
 • Build relation **significantly** smaller than probe
 – **“Single Pass Join”**
 • Best case
 • **Nested Loop Join** where build relation fits completely into main memory
 – **Index Join**
 • Build relation is in *outer loop*, probe relation is in *inner loop*
 • Index on probe relation
 • Build relation small
8.1 Basic Join Order Optimization

• Optimizer has 3 choices
 – Consider all possible join trees
 • Usually not possible
 – Consider a subset of all trees
 • i.e. restrict to trees of certain shapes
 – Use heuristics to pick a certain shape
8.2 Join Metrics

• For optimizing joins, metrics are necessary
 – Estimated **Join Result Size**
 • “What is the expected size of the result set?”
 • Needed by the query optimizer for global query optimization
 • May be used within the cost metric
 • Is **the same** for all different join orders
 – Estimated **Join Cost**
 • Represents the actual costs for performing the join
 • May consider CPU, I/O, buffer statistics, etc. and varies with join algorithm implementation
8.2 Join Metrics – Size

• **Size Estimation:**

 – A join selects tuples fulfilling a join condition from a Cartesian product: \(R \bowtie_c S \equiv \sigma_c (R \times S) \)

 • \(|R \bowtie_c S| \leq |R \times S| \)
 • \(|R \bowtie_c S| \leq |R|*|S| \)
 • \(|R \bowtie_c S| = r_{\sigma} *|R|*|S| \)

 – \(r_{\sigma} \) the reduction factor of the selection with the join condition wrt. the Cartesian product (fraction of remaining tuples after selection)

 – We need to estimate the reduction factor of the selection!
8.2 Join Metrics – Size

- Remember lecture 6.4: reduction factors for selections
 - Simplified: Two useful cases for joins
 - $\text{rel}_1.\text{col}_1 = \text{rel}_2.\text{col}_2$ (natural join, equijoin) shows a reduction factor: $\frac{1}{\max(\#dV(\text{rel}_1, \text{col}_1), \#dV(\text{rel}_2, \text{col}_2))}$
 - Assuming that every tuple in the smaller relation has a match in the larger relation
 - $\#dV(R, A)$ is number of distinct values of attribute A in relation R
 - $\text{rel}_1.\text{col}_1 \theta \text{rel}_2.\text{col}_2$, $\theta \in \{\leq, <, =, >, \geq, \neq\}$ (theta join) shows a reduction factor of about 0.5
 - Assuming that each value in rel_1 is joined with about half the values in rel_2
8.2 Join Metrics – Size

• **Observations:** $R \bowtie S$ on common attribute A

 – Natural join: $R.A = S.A$

 – Join size depends heavily on the relation of values of A in R and S

 • R and S may have **disjoint** A values

 – $rf_\sigma = 0 \implies |R \bowtie S| = 0$

 • A might be **key** of S and **foreign key** of R

 – Each tuple of R joins with exactly one tuple of S

 – $\implies |R \bowtie S| = |R|$

 • Most tuples of R and S could have **equal** values for A

 – $rf_\sigma \approx 1 \implies |R \bowtie S| \approx |R|^*|S|$
8.2 Join Metrics – Size

• Idealized case with keys and foreign keys
 – Usually, tuples of one relation match a tuple in the other
 • Attribute A is key of S and foreign key of R
 ⇒ rf_σ = 1 / #dV(R, A)
 • Attribute A is key of R and foreign key of S
 ⇒ rf_σ = 1 / #dV(S, A)
 • You don’t know which relation contains key and which foreign key
 ⇒ rf_σ = 1 / max(#dV(R, A), #dV(S, A))
 – | R⋈S | = |R|*|S| /max(#dV(R, A), #dV(S, A))
8.2 Join Metrics – Size

• Join Result Sizes
 – For a single equality join condition on A:
 • $|R \bowtie S| = |R| \times |S| / \text{max}(\#dV(R, A), \#dV(S, A))$
 – For multiple equality join conditions on A_1, \ldots, A_n:
 • Multiply reduction factors
 • $|R \bowtie S| = |R| \times |S| / \Pi_i \text{max}(\#dV(R, A_i), \#dV(S, A_i))$
 – For multiple join relations R_1, \ldots, R_n
 • Cascade formula for two relations
 • i.e. $|R_1 \bowtie \cdots \bowtie R_n| = |(||R_1 \bowtie R_2| \bowtie \cdots | \bowtie R_n|)$
 • Order of relations does not matter for total size estimation
8.2 Join Metrics – Size

– Estimation accuracy can be improved using more sophisticated statistics
 • Histograms
 • Dynamic sampling
 • Simulating common queries
 • Correlation Statistics
 • Incorporating previous query results

– Are more complex statistics worth it?
 • Keeping statistics is expensive in databases with high change rate
 • Which statistics to create?
 – Adapting statistics to queries?
• **Execution Cost Estimation:**
 – For selecting a good join tree, we have to minimize the actual costs for computing the result
 – Easiest cost metric: *size of intermediate results*
 • Creating intermediate results is costly (writing to disk), costs increase with size of relations
 • Final result is *not* an intermediate result
 • **Example:**
 – Costs \((R \bowtie S)\) = 0
 – Costs \(((R \bowtie S) \bowtie T)\) = \(|R \bowtie S|\)
 • Metric does not consider real I/O, memory and CPU costs
 • Metric ignores actual join algorithm implementation
8.2 Join Cost Metrics – Access Costs

• **Cost metric: block accesses**

 – Block accesses are the major performance bottlenecks

 – Depends on the used join implementation

 – **Costs for writing the result**

 • $\text{Costs}_{\text{Result}} (R \bowtie S) = |R \bowtie S| / \text{blockingFactor}_{\text{Result}}$

 • Use size estimation for $|R \bowtie S|$

 – **Block Nested Loop**

 • $\text{Costs}_{\text{BNL}} (R \bowtie S) = b_R + (b_R \cdot b_S) + \text{Costs}_{\text{Result}} (R \bowtie S)$

 • b_R is number of blocks in R

 • b_S is number of blocks in S
8.2 Join Cost Metrics – Access Costs

- **Block Access Costs:** *Index Loop Join*

 \[\text{Costs}_{\text{IXL}}(R \bowtie S) = b_R + (|R| \times (C_{\text{ix}} + 1)) + \text{Costs}_{\text{Result}}(R \bowtie S) \]

- Costs depend on **index retrieval cost** \(C_{\text{ix}} \)

 - **IndexAccessCosts** vary on the type of index

 - Assume 0 for in-memory index
 - Increasing costs per index level for disk residing indexes
8.2 Join Cost Metrics – Access Costs

- Retrieval costs for some different indexes
 - With S_σ, the selection cardinality of S: Estimated number of records in S fulfilling the join condition for a given record from R; see lecture 6.4
 - **Cluster index**
 - $C_{ix} = \text{indexAccessCost} + \left(\frac{S_\sigma}{\text{blockingFactor}_{\text{index}}} \right)$
 - **Secondary Index**:
 - $C_{ix} = \text{indexAccessCost} + S_\sigma$
 - **Hash Index**:
 - $C_{ix} \geq 1$; Average costs for retrieving a record, depending of hash size and key collision
8.2 Join Cost Metrics – Access Costs

• Block access costs: **Sort-Merge-Join**
 – Assume that relations are already sorted on the join attribute:

 \[
 \text{Costs}_{\text{SMJ}} (R \bowtie S) = b_R + b_S + \text{Costs}_{\text{Result}} (R \bowtie S)
 \]

 • Very efficient when already sorted
 • If not, additional costs for sorting have to be considered
A simple heuristic for reducing the search space size is using **left-deep join trees**

- Introduced by System R optimizer
- Considers **only one tree shape**: left-deep tree
 - In left-deep trees, all right children are leaves
8.3 Left-deep Join Trees

• Left-deep join trees cooperate well with most join algorithms as they aim for decreasing the build relation
 – Usually, left-deep join tree yield good performance
 – Optimized buffer usage

• Left-deep plans allow output of each operator to be pipelined into the next operator
 – No need to store results in a temporary relation
 – Careful: not for sort-merge joins
8.3 Left-deep Join Trees

• The number of possible left-deep join trees is significantly smaller than the number of all join trees

<table>
<thead>
<tr>
<th>n</th>
<th>All join trees</th>
<th>Left-deep trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>30,240</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td>518E6</td>
<td>362,880</td>
</tr>
<tr>
<td>12</td>
<td>28E12</td>
<td>479E6</td>
</tr>
</tbody>
</table>

• But…
 – **Still** a considerable amount (impractical for >15 joins)
 – Parallel execution of joins is **not possible**!
8.4 Finding the Best Tree

- Exploring all possible join orders is not possible
 - Employ techniques for reducing search space which still deliver **best solution**
 - Dynamic Programming
 - Branch and Bound
 - Employ **approximate techniques** that deliver a sufficiently good solution
 - Greedy Strategies
 - Randomized Strategies
 - Genetic Algorithms
8.4 Dynamic Programming

• **Dynamic programming** techniques are frequently used to explore the search space more efficiently
 - Break the problem into smaller subproblems
 - Solve these subproblems optimally recursively and remember the best solutions
 • Memorization
 - Use these optimal solutions to construct an optimal solution for the original problem
8.4 Dynamic Programming

• For finding a join plan, DP is often implemented with a **cost table**
 – Table stores lowest costs for joins of subsets of all relations
 • Only good sub-solutions are remembered
 • Use an adequate cost function for joins
 – In the following we assume intermediate result sizes as costs
 – Storing the table uses up buffer space!
8.4 Dynamic Programming

– The table contains columns for

 • The relation subset described by the row
 • The estimated size of the join result
 • The estimated lowest costs for performing the join
 – i.e. estimated intermediate result size, estimated IO cost, estimated CPU cost, etc.
 • The expression (i.e. tree shape and assignment) which produced the lowest costs

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{R,S,T,U}</td>
<td>2,500</td>
<td>25,750</td>
<td>(U ⋈ (S ⋈ T)) ⋈ R</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Table is build *inductively* on the subsets of relations

• *Claim:*
 – Table always contains *join expressions* with *lowest costs* for given *relation subsets*
• Basics:
 – For each single relation subset \(\{R_a\} \), table contains one row with size of \(R_a \), with size \(|R_a| \), costs 0 and expression \(R_a \)
 – For each relation subset of size two \(\{R_a, R_b\} \), table contains one row
 • Estimated size as described in previous section
 • Costs 0 (⇒ no temp files!)
 • Either expression \(R_a \bowtie R_b \) or \(R_b \bowtie R_a \); use heuristic to choose which expression is better: usually, order smaller relation to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R_1}</td>
<td>2000</td>
<td>0</td>
<td>(R_1)</td>
</tr>
<tr>
<td>{R_2}</td>
<td>1000</td>
<td>0</td>
<td>(R_2)</td>
</tr>
<tr>
<td>{R_1, R_2}</td>
<td>500</td>
<td>0</td>
<td>(R_2 \bowtie R_1)</td>
</tr>
</tbody>
</table>
• **Induction:**

 – For each *relation subset of size* n $Rs = \{R_a, R_b, \ldots, R_z\}$, create a table row

 – Find two subsets $Rs_1 \cup Rs_2 = Rs$ within the table such that $\text{Cost}(Rs_1 \bowtie Rs_2)$ are minimal

 • For *deep-left trees*, only subsets with $|Rs_1| = n-1$ and $|Rs_2| = 1$ need to be considered
8.4 Dynamic Programming

- Fill row with
 - Rs as subset identifier
 - Estimated size $|Rs_1 \bowtie Rs_2|$
 - Estimated costs $Cost(Rs_1 \bowtie Rs_2)$
 - Concatenation of the expressions of Rs_1 and Rs_2
 - For deep-left join trees, always place expression of Rs_1 to the left
 - otherwise, place expression with smaller result size to the left

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>${R_1}$</td>
<td>2000</td>
<td>0</td>
<td>R_1</td>
</tr>
<tr>
<td>${R_2}$</td>
<td>1000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_3}$</td>
<td>3000</td>
<td>0</td>
<td>R_2</td>
</tr>
<tr>
<td>${R_1, R_2}$</td>
<td>500</td>
<td>0</td>
<td>$R_2 \bowtie R_1$</td>
</tr>
<tr>
<td>${R_1, R_3}$</td>
<td>1200</td>
<td>0</td>
<td>$R_1 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_2, R_3}$</td>
<td>1800</td>
<td>0</td>
<td>$R_2 \bowtie R_3$</td>
</tr>
<tr>
<td>${R_1, R_2, R_3}$</td>
<td>200</td>
<td>500</td>
<td>$(R_2 \bowtie R_1) \bowtie R_3$</td>
</tr>
</tbody>
</table>

Here:
- $Rs_1 = \{R_1, R_2\}$
- $Rs_2 = \{R_3\}$
8.4 Dynamic Programming

- Find optimal join order restricted to left-deep join trees
- 4 Relations
 - \(R \) with attributes \(a \) and \(b \)
 - \(S \) with attributes \(b \) and \(c \)
 - \(T \) with attributes \(c \) and \(d \)
 - \(U \) with attributes \(d \) and \(a \)
 - Each relation has size of 1000
 - Following Table: \#dV(\text{Relation, attribute})
 - Number of distinct values for attributes and relations

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Start with subsets of size one
 - Use intermediate result set size as cost metric
- Fill table with subsets of size two
 - Still no costs because of intermediate result cost metric
 - Heuristic: Smaller relation to the left side of join

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Fill table with subsets of size three
 - Use previous table entries and combine a subset result of size two with a result of size one
 - Always select pairs smallest size
 - Single relation to the right side due to left-deep join tree restriction
 - For \{R, S, T\} consider:
 - \((R \bowtie S) \bowtie T\) : Costs 5,000
 - \((R \bowtie T) \bowtie S\) : Costs 1,000,000
 - \((S \bowtie T) \bowtie R\) : Costs 2,000

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
<tr>
<td>{R, S, T}</td>
<td>10,000</td>
<td>2,000</td>
<td>(S \bowtie T) \bowtie R</td>
</tr>
<tr>
<td>{R, S, U}</td>
<td>50,000</td>
<td>5,000</td>
<td>(R \bowtie S) \bowtie U</td>
</tr>
<tr>
<td>{R, T, U}</td>
<td>10,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie R</td>
</tr>
<tr>
<td>{S, T, U}</td>
<td>2,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie S</td>
</tr>
</tbody>
</table>
8.4 Dynamic Programming

- Subsets of size four
 - Subsets of size four can be found by combining a triple and a single relation
 - Again, single to the right
- For \(\{R, S, T, U\} \) consider:
 - \((S \bowtie T) \bowtie R) \bowtie U : 12,000\)
 - \((R \bowtie S) \bowtie U) \bowtie T : 55,000\)
 - \((T \bowtie U) \bowtie R) \bowtie S : 11,000\)
 - \((T \bowtie U) \bowtie S) \bowtie R : 3,000\)

<table>
<thead>
<tr>
<th>Subset</th>
<th>Size</th>
<th>Costs</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>{S}</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>{T}</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>{U}</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>{R, S}</td>
<td>5,000</td>
<td>0</td>
<td>R \bowtie S</td>
</tr>
<tr>
<td>{R, T}</td>
<td>1 M</td>
<td>0</td>
<td>R \bowtie T</td>
</tr>
<tr>
<td>{R, U}</td>
<td>10,000</td>
<td>0</td>
<td>R \bowtie U</td>
</tr>
<tr>
<td>{S, T}</td>
<td>2,000</td>
<td>0</td>
<td>S \bowtie T</td>
</tr>
<tr>
<td>{S, U}</td>
<td>1 M</td>
<td>0</td>
<td>S \bowtie U</td>
</tr>
<tr>
<td>{T, U}</td>
<td>1,000</td>
<td>0</td>
<td>T \bowtie U</td>
</tr>
<tr>
<td>{R, S, T}</td>
<td>10,000</td>
<td>2,000</td>
<td>(S \bowtie T) \bowtie R</td>
</tr>
<tr>
<td>{R, S, U}</td>
<td>50,000</td>
<td>5,000</td>
<td>(R \bowtie S) \bowtie U</td>
</tr>
<tr>
<td>{R, T, U}</td>
<td>10,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie R</td>
</tr>
<tr>
<td>{S, T, U}</td>
<td>2,000</td>
<td>1,000</td>
<td>(T \bowtie U) \bowtie S</td>
</tr>
<tr>
<td>{R, S, T, U}</td>
<td>100</td>
<td>3,000</td>
<td>((T \bowtie U) \bowtie S) \bowtie R</td>
</tr>
</tbody>
</table>
Adapting DP to arbitrary join orders

- Previously, a larger relation set of size n was computed by finding the optimal solution for size $n-1$ and joining another relation
 - The new relation is always placed to the right side of the join to form a **deep-left tree**, e.g., $((T \bowtie U) \bowtie S) \bowtie R$
 - Significantly reduced search space per step
– If any shape of join tree is possible, for computing an solution for subset of size \(n \), all combinations of smaller subsets have to be considered

• e.g., for \(n=5 \) consider
 – All subsets of size 4 with all valid subsets of size 1
 – All subsets of size 3 with all valid subsets of size 2
 – All subsets of size 2 with all valid subsets of size 3
 – All subsets of size 1 with all valid subsets of size 4
Based on the previous example:

- For \{R, S, T, U\} consider:
 - Triple with Single
 - \{S, T, R\} \bowtie \{U\}
 - \{R, S, U\} \bowtie \{T\}
 - \{T, U, R\} \bowtie \{S\}
 - \{T, U, S\} \bowtie \{R\}
 - Pair with Pair
 - \{T, U\} \bowtie \{R, S\}
 - \{R, T\} \bowtie \{S, U\}
 - \{S, T\} \bowtie \{R, U\}
 - Single with Triple
 - \{U\} \bowtie \{S, T, R\}
 - \{T\} \bowtie \{R, S, U\}
 - \{S\} \bowtie \{T, U, R\}
 - \{R\} \bowtie \{T, U, S\}

- Optimal solution for join order is not a deep-left tree, but \(R \bowtie (T \bowtie U) \bowtie S\)
 - Same intermediate result costs, but lower estimated execution costs as \textit{build} and \textit{probe} relations are ordered better (smaller to the left)
8.4 Dynamic Programming

• Summary Dynamic Programming
 – Guarantees “best” join order
 – Search effort still exponential, but strongly limited compared to exhaustive search
 • Complexity $O(2^n)$
 • Useful up to 10-15 joins only
 – Additional space consumption for storing the cost table
8.5 Greedy Strategy

• For larger joins dynamic programming will be too expensive…
 – Remember: $O(2^n)$

• Idea: Use a **Heuristic Greedy Algorithm**
 – Quickly construct only left-deep join trees
 – Result not necessarily optimal
8.5 Greedy Strategy

• Algorithm
 – **Start** with tree containing a join pair with cheapest costs
 • Smaller relation to the left
 – **While** not all relations on tree
 • Join current tree with relation promising cheapest join costs by attaching new relation to the right side of the tree
8.5 Greedy Strategy

• Find “good” join order restricted to left-deep join trees
• 4 Relations
 – \(\textbf{R} \) with attributes \(a \) and \(b \)
 – \(\textbf{S} \) with attributes \(b \) and \(c \)
 – \(\textbf{T} \) with attributes \(c \) and \(d \)
 – \(\textbf{U} \) with attributes \(d \) and \(a \)
 – Each relation has size of 1000
 – Following Table: \#dV(\text{Relation, attribute})

 • Number of distinct values for attributes and values

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{\#dV} & \text{R} & \text{S} & \text{T} & \text{U} \\
\hline
a & 100 & & & 50 \\
\hline
b & 200 & 100 & & \\
\hline
c & & 500 & 20 & \\
\hline
d & & & 50 & 1000 \\
\hline
\end{array}
\]
8.5 Greedy Strategy

- Start with \(T \bowtie U \) promising the smallest result
 - Cost 1000
- Consider \((T \bowtie U) \bowtie R\) and \((T \bowtie U) \bowtie S\)
 - \((T \bowtie U) \bowtie S\) better with costs 2000
- Join in \(R \)
 - Result \(((T \bowtie U) \bowtie S) \bowtie R\) with costs 3000

<table>
<thead>
<tr>
<th>#dV</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>500</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td>50</td>
<td>1000</td>
</tr>
</tbody>
</table>
8.6 Randomized Algorithms

• The algorithms so far have some **drawbacks**:
 – DP algorithms are optimal, but very heavy weight
 • Especially memory consumption is high
 – Greedy heuristics are still only heuristics
 • Will probably not find the optimal solution
 – Both find a solution only after the complete search
• Sometimes a **light-weight** algorithm is needed
 – Low memory consumption
 – Can stop when time runs out and still has an result
 – Usually finds a good solution
8.6 Motivation

• Solutions to the join order problems can be seen as points in a solution space
 – Connect these point by a set of edges transforming the solutions into each other
 – Edges are called moves

• Randomized algorithms perform a random walk through the solution space along the edges
 – Random walk moves into the direction of better solutions
 – The walk can be stopped at any time, or if a (local) minimum is reached

Relational Database Systems 2 – Christoph Lofi - Benjamin Köhncke – Institut für Informationssysteme
8.6 Typical Moves

• If the search is restricted to **left-deep plans only**, the solutions are simple sequences of the relations \(R_1, \ldots, R_n \).

• Sequences can be transformed into each other by **two different moves**

 – **Swap**: exchange the positions of two arbitrary positions in the sequence

 – **3Cycle**: cyclic rotations of three arbitrary positions in the sequence
8.6 Typical Moves

• If also **bushy trees** are considered, add four moves can be applied:

 – **Commutativity**

 – **Associativity**
8.6 Typical Moves

- **Left Join Exchange**
 - $R_1 \bowtie R_3 \bowtie R_2$
 - $R_2 \bowtie R_1 \bowtie R_3$

- **Right Join**
 - $R_1 \bowtie R_2 \bowtie R_3$
 - $R_2 \bowtie R_3 \bowtie R_1$
8.6 Randomized Algorithms

• Typical algorithms are
 – Iterative Improvement
 – Simulated Annealing

• Each of these algorithms can return some result at all times, but can improve them with more time
 – i.e. optimize until a good enough solution is reached and stop
 – Either stop after a certain time span, or once a local minimum is detected
8.6 Iterative Improvement

• The set of solutions will **not contain** only a single global cost minimum reachable via all paths
 – But local minima are often sufficient
 – Remember: The optimizer does not need the optimal plan, but has to avoid crappy ones

• Simple **hill climbing** would
 – Start at some random point
 – Determine the neighboring node with smallest costs
 – Carry out the respective move
 – Until no smaller neighbor can be found
• But finding the minimum cost of all possible neighbors is expensive

• **Iterative improvement**
 – Starts at some random point
 – Randomly applies a move
 – Checks whether the new solution is less costly
 • If yes, start new iteration from current solution
 • If no, undo last move start new iteration
 – If no better move is found for several iteration, the solution is considered a local minimum; algorithm stops
Iterative improvement performs a random walk through the solution space by taking every possible improvement

- Quite efficient procedure
- Constant improvement during the walk
- No possibility to leave local minima, even if there is a global minimum near
 - Local minima may still have high cost
8.6 Simulated Annealing

• **Simulated annealing** is a refinement of iterative improvement

 – Moves do **not always** have to result in lower costs

 – Simulated annealing does not get caught in local minima so easily
8.6 Simulated Annealing

• The algorithm simulates the natural annealing process of crystals
 – simply stated: first **heating** and then **slowly cooling** a liquid will result in **crystallization**
 – One large crystal is of lower energy than several smaller ones combined
 – The system eventually reaches a state of minimum energy
 • The slower the cool down, the lower the final energy
8.6 Simulated Annealing

- Basic algorithm with cost function c
 - Start with a random tree and a high temperature
 - Apply a random move
 - Proceed with the new solution, if it is less expensive
 - **Proceed with the new solution anyway with a probability of**
 \[
 e^{-\frac{(c(\text{newsolution}) - c(\text{oldsolution}))}{\text{temperature}}}
 \]
 - Reduce temperature and apply new random move until an equilibrium is reached or the temperature is at freezing point
• It is very hard to determine the best parameters
 – Starting temperature, temperature reduction, stopping condition, etc.
• Often a two-phase version is used
 – Do iterative improvements for several random solutions
 – Use the least expensive result solution for a simulated annealing process
 • Since the initial solution is already better, the process can start with a lower temperature
8.6 Randomized Algorithms

• If the solution space cannot be enumerated, **randomized algorithms** are generally most appropriate

 – If **good solutions** are of primary importance use simulated annealing

 – If **short optimization times** are of primary importance use iterative improvement

 – Results for both are **far better** than in the heuristic case
8.6 Randomized Trees

• Problem: **How to generate a random join tree?**

• Generating a Random Join Tree has two phases
 – Generate a random **tree shape**
 – Generate a random **relation assignment** to the shape
8.6 Randomized Trees

• **Easiest Case:** Generate a Random Deep-Left Tree for \(n \) relations

 – Deep-Left Tree has only one shape
 – Relations can be assigned in any order (permutation) to the shape
 – Need to find a random permutation of the \(n \) relations
• Generating a real random permutation efficiently is tricky

 – We use a technique named Ranking/Unranking

Let S be a set with n elements.
• a bijective mapping $f : S \rightarrow [0, n[$ is called ranking
• a bijective mapping $f : [0, n[\rightarrow S$ is called unranking

– Consider S as being the set of all permutations of relations

– Given an unranking function, we can generate random elements in S by generating a random number in $[0, n[$ and unranking this number.

 • Challenge: making unranking fast.
8.6 Randomized Trees

• An efficient **unranking** for permutations
 – Unranking between integers \([0,n!]\) and permutations
 • Based on factoradic numbers
 – Array *elements* contains relations \([R_1, R_2, R_3, \ldots, R_n]\)
 – Algorithm returns the *k*’s permutation of *s*

```plaintext
function permutation(k, elements) {
    for j = 2 to length(elements) {
        k := k / (j - 1);  // integer division
        swap elements[(k mod j) + 1] with elements[j]; }
    return elements;
}
```
Loop iterates over all elements of the array but the first

The red code fragments will generate a unique corresponding sequence of \(n \) integers
- First is in \(\{0, 1\} \), second in \(\{0, 1, 2\} \), third in \(\{0, 1, 2, 3\} \), ...
- Sequence depends on \(k \)

The green fragments swaps the current element with one of the previous elements based on the sequence

Result: Uniformly distributed random permutations of the element array

```plaintext
function permutation(k, elements) {
    for j = 2 to length(elements) {
        k := k / (j-1);
        swap elements[(k mod j)+ 1] with elements[j];
    }
    return elements;
}
```
8.6 Randomized Trees

- **More Difficult Case**: Generate arbitrarily shaped Random Trees for \(n \) relations
 - Generate a random shape
 - To be done..
 - Assign a random permutation of relations to the shape
 - Learned already
8.6 Randomized Trees

- How to generate a random tree shape?
 - Generating random trees is tricky

- Usually, not the tree itself is generated but an equivalent code word
 - Example: Dyck words (words of balanced number of characters, usually parenthesis)
 - e.g. (), (()), (())(), (()((()))), ...
 - There is an bijection between all Dyck words and all binary trees
• **Encoding Binary Tree with Dyck Words**

 – Traverse the tree in Pre-Order

 • Pre-Order
 – Visit node
 – Traverse left subtree
 – Traverse right subtree

 • Skip last leaf node

 • For each encountered *inner node*, write a ‘(‘
 • For each encountered *leaf node* write a ‘)’
 • For binary Dyck Representation, replace ‘(‘ with ‘1’ and ‘)’ with ‘0’

 – so called Zaks sequence

```
(()())() = 11010010
```
• Dyck words can be mapped to a triangle grid
 – Start at \((0,0)\); end at \((2n,0)\)
 – For each digit move one hop to the right, move up for 1 and
down for 0
• Number of paths described by Catalan Numbers

\[
C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}
\]

\(((())()) = 11010010\)
• **Unranking Binary Trees**

 – We try to create an unranking function for binary trees

 • Translates an integer number to a tree

 – i.e. generate a Zaks/Dyck sequence word from an integer

 – A tree with \(n+1 \) leaves has \(n \) inner nodes

 • For each relation in the join tree, one leaf is needed
 • We need Dyck words of the length \(2n \) for \(n-1 \) relations

 – In the following: sketch of the canonical version
8.6 Randomized Trees

• For unranking, we work on a **triangle grid**
 – Number of possible paths from (0,0) to any position in the grid
 • \(p(i, j) = \frac{j+1}{i+1} \left(\frac{i+1}{2(i+j)+1} \right) \)
 • so called **Ballot number**
 – Number of possible paths from any position to (2n,0)
 • \(q(i, j) = p(2n-i, j) \)

• **Algorithm Sketch** (without proofs and derivation...)
 – Work on a triangle grid
 – Generate random tree rank \(r \) from \([0, C(n)]\)
 • Maximum number of possible trees (again) expressed by Catalan numbers
 – Start on (0,0)
– While **number of paths** from current point to \((2n,0)\) exceeds rank \(r\) (i.e. \(q(i,j)>r\)), **or** baseline \((x,0)\) is reached move a step **top-right**
 • i.e. go from \((i,j)\) to \((i+1,j+1)\)
 • Write an ‘(‘ or ‘1’ for each upward movement

– Otherwise
 • Write an ‘)’ or ‘0’, move to the **lower-right**
 – i.e. go from \((i,j)\) to \((i+1,j-1)\)
 • **Subtract** number of paths of the overlaying coordinate (i.e. the one which we had reached if we had gone top-right) from the **rank** and **resume** moving top-right
 – i.e. if we just went from \((i,j)\) to \((i+1,j-1)\), subtract number of paths from \((i+1,j+1)\)

– **Stop** when \((2n,0)\) is reached
8.6 Randomized Trees

- Example: \(n=4 \) (join trees for 3 relations)
 - \(C(4) = 14 \)
 - Generate random rank in \([0,14]\)

 - e.g. \(r=9 \)

Result:
8.6 Randomized Trees

- Start at (0,0), rank \(r=9 \)
- Number of Paths at (0,0): 14
 - \(q=14 > r=9 \) ⇒ Move up
- Reach (1,1)

\[
\begin{align*}
\text{Result:} & \\
(& \\
1 &)
\end{align*}
\]
8.6 Randomized Trees

- Position (1,1), rank $r=9$
- Number of Paths at (1,1): 14
 - $q=14 > r=9 \Rightarrow$ Move up
- Reach (2,2)

Result: (11)
8.6 Randomized Trees

- Position (2,2), rank $r=9$
- Number of Paths at (2,2): 9
 - $\text{not } (q=9 > r=9) \Rightarrow \text{Move down}$
 - Subtract $q(3,3)=4$ from rank $r; r:=5$
- Reach (3,1)

Result:
(()

110
8.6 Randomized Trees

- Position (3,1), rank \(r=5 \)
- Number of Paths at (3,1): 5
 - not (\(q=5 \) > \(r=5 \)) \(\Rightarrow \) Move down
 - Subtract \(q(4,2)=3 \) from rank \(r; r:=2 \)
- Reach (4,0)

Result:
\((()\)

1100
8.6 Randomized Trees

- Position (4,0), rank $r=2$
- Number of Paths at (4,0): 2
 - not $(q=2 \geq r=2)$, but reached base line ⇒ Move up
- Reach (5,1)

Result:

11001
8.6 Randomized Trees

- Position (5,1), rank \(r = 2 \)
- Number of Paths at (5,1): 2
 - not (\(q = 2 > r = 2 \)) ⇒ Move down
 - Subtract \(q(6,2) = 1 \) from rank \(r; r := 1 \)

- Reach (6,0)

Result:
((()())
110010
8.6 Randomized Trees

- Position (6,0), rank $r=1$
- Number of Paths at (6,0): 1
 - not $(q=2 \geq r=2)$ but reached base line ⇒ Move up
- Reach (7,1)

Result:

```
(()())()
1100101
```
8.6 Randomized Trees

- Position (7,1), rank $r=1$
- Number of Paths at (7,1): 1
 - not ($q=1 \geq r=1$) ⇒ Move down
 - Try to subtract $q(8,2)=\text{NaN}$ from rank r...

- Reach (8,0)

Result:
(()(()))
11001010
8.6 Randomized Trees

- **In General:**
 - **Red:** Number of possible paths \(q(i,j) \)
 - **Green:** Interval of remainder ranks choose the annotated path
8.6 Randomized Trees

• Example:
 \[R = 11 \]
• Canonical unranking performs badly
 – Generating and working with Catalan numbers is expensive
 • $C(5000)$ has already 2000 digits…
• We need algorithms which work in space/time complexity of $O(n)$
 – Generate Dyck words/Zaks sequences directly without Catalan numbers
 – There are already such wonderful algorithms
 • Arnold and Sleep Algorithm
 • Atkinson and Sack Algorithm
 • Martin and Orr Algorithm
 • Johnson and Zergling Algorithm
 • …
8 Join Order Optimization

Basic join order optimization
Join cost and size estimations
Left-deep join trees
Dynamic programming
Greedy strategy
Randomized algorithms
Outlook: Transaction Processing

Basic database transactions
The ACID principle
Transaction schedules
Conflict serializability
Locking schedulers