8 Audio Retrieval

8.1 Statistical Features

- Typical features:
 - Loudness, Bandwidth, Brightness, Zero-Crossing Rate, Pitch, …
 - Statistical values efficiently describe audio files by feature vectors
 - Do not consider details such as rhythm and melody
 - Only query by example search makes sense

8.1 Music Retrieval

- In order to effectively differentiate complex pieces of music other information are required
- The melody is usually of central importance
 - Simple melody line
 - Formulation of the query, not only by sample audio files:
 - Query by humming
 - Query by whistling
 - Query by singing
 - …
8.1 Music Retrieval

- To establish the melody we first need to detect the notes from the audio signal
 - Many (often overlaid) instruments (possibly each with slightly different melody)
 - Singing

8.1 Query by Humming

- Model based approach
 - Only the characteristic melody should be used for music retrieval, and not the whole song
- What is the melody?
- How to represent melodies?
- How do typical queries look like?

8.1 Model based approach

- Steps:
 - Formulation of the query by humming, whistling, singing or an audio file
 - Extraction of the melody from the recording (spectral analysis, noise reduction, pitch tracking, ...)
 - Encoding the melody (Parsons code, differential code, ...)
 - Comparison with the database
 - Return of the results

8.1 Architecture

8.1 Input

- Singing
 - Difficult because of different talents and strong individuality
- Humming
 - Original idea (Ghia and others, 1995)
 - Often with sound “ta” for note separation
- Whistling
 - Little individuality and good note separation

- Input by virtual instrument (e.g., Greenstone library, New Zealand)
8.1 Conversion

- **Digital Recording**
 - Low sampling rate is sufficient
 - Noise reduction is often necessary
- **Grouping of samples in overlapping frames**
 - Frame size: approximately 50 milliseconds
 - Frame structure: each half-overlapping with the previous one and the subsequent frame
 - Ignore the first frame (start noise)

- For each frame, its **spectral sample** is calculated (short-time FFT)
- Calculation of **pitch** per spectrum, with average amplitude as volume
- If the volume of the pitch is too low, or it cannot be determined, mark the frame as a “silent” frame

8.1 Conversion

- **Find the note boundaries**
 - Boundaries of notes are marked by silent frames or sudden frequency jumps
 - At frequency jumps or sharp jumps in the volume
 - Add a new silent frame
 - The ratio of successive frequencies exceeds a threshold (about 3%):
 - Add a new silent frame

- Between two frames with the same frequency, there is a single frame with a different frequency:
 - **Smoothing**: replace the deviating frequency by the frequency of the neighbors
 - Between two silent frames, the frequency varies only slightly:
 - Replace the frequencies by the average frequency

8.1 Conversion

- **Connecting the same pitches to notes**
 - Connect all pitches between silent frames into a note with a higher duration (depending on the number of frames)
 - Remove notes below a specified minimum length
 - Remove all silent frames
- **Output**: melody with note height and duration

- Melody only needs to be **sufficiently well** represented
 - More accurate representation leads to larger amounts of data
 - Accurate representation by MIDI data (height, start time, duration, …)
- Simpler systems use only a rough classification of the melody

8.2 Symbolic Representation
8.2 The Parsons Code

- Simple classification of melody lines (Parsons, 1975)
- Sequence of note variations (Chain code)
 - U (up) at higher note
 - R (repeat) at the same note
 - D (down) at a lower note
- The first note is used just as reference (symbol: ◊)

8.2 The Parsons Code

- Example: Beethoven’s “Ode to Joy”
 - RUURDDDDRUURDR ...

8.2 The Parsons Code

- Ignores characteristics such as rhythm or precise note intervals
- An advantage is the high fault tolerance, especially towards the query
 - Input in third, fourth, … octave
 - Inadequate rhythm
 - Regardless of scale: major or minor (no transposition required)

8.2 The Parsons Code

- Parsons “The Directory of Tunes and Musical Themes”

Some examples:
- “Paula’s Theme” (Pauline’s Theme)
- “Black Night” (Black Night)
- “Love Me Tender” (Lover Me Tender)
- “White Christmas” (White Christmas)
- First verse in “My Way” (My Way)
- First verse in “The Sound of Music” (The Sound of Music)
- Verse in bitter line (Bitter Line)
- First verse in “Shadows in the Night” (Shadows in the Night)

8.2 Parsons Code Matching

- Parsons code of the query, has to be compared with all the codes from the database
- Matching using the edit distance
- Since we do not know at which point the query melody fragment occurs, matching must be performed on substrings

8.2 Parsons Code Matching

- Typical errors in music editing distance
 - A note is left out
 - One false note is added
 - An existing note is sung wrong
 - Several short notes are combined
 - Long notes are fragmented
8.2 Parsons Code Matching

- Given: two strings
 \(A = a_1, a_2, \ldots, a_m \) and
 \(B = b_1, b_2, \ldots, b_n \)

- Goal: intuitive measure of the dissimilarity \(d(A, B) \) of strings \(A \) and \(B \)

- Again edit distance:
 Convert \(A \) to \(B \) by using fixed operations; find the sequence of operations with minimum cost

 - Why not compare note by note?

8.2 Parsons Code Matching

- Operations:
 - Delete a single character
 - Inserting a single character
 - Replacing a single character
 - Replace a string of characters by a single character (consolidation)
 - Replacing a single character by a sequence of characters (fragmentation)

- Every character of \(A \) and \(B \) must be involved in exactly one operation!

- Cost table: entry \(w(x, y) > 0 \) indicates the cost of the replacement of a string \(x \) by \(y \)

8.2 Parsons Code Matching

- Example:
 \(A = RUDRR \)
 \(B = UUDR \)

- If we apply (as in the example), the operations from left to right, then every node results from a prefix of \(B \) and a suffix of \(A \)
 - E.g., \(A = RUDRR, B = UUDR \)

- This means a total of \(O(m \cdot n) \) vertices in the graph, which is much less than the number of all paths from \(A \) to \(B \)

8.2 Parsons Code Matching

- Since all costs are non-negative, one can find a path from \(A \) to \(B \) with minimal cost simply by means of dynamic programming (Mongeau and Sankoff, 1990)

- Examples:
8.2 Parsons Code Matching

• Cost values need to be adapted to typical input errors, of the user
 – Replacing R...R with R is an usual error
 – But: UD and DU is not, and the cost should be higher
 – Inserting R should therefore be cheaper than insertion of U or D (about half the cost)
 – At replacements, the costs of operations R→D and R→U should be smaller than that of D→U and U→D

8.2 Parsons Code Matching

• Dynamic programming considers all possible nodes in the graph, no matter how large the associated edit costs are
• But the query should not differ too much from the result
 – Therefore: ignore nodes in the graph:
 • Which are only reachable from A at high cost
 or
 • From which B can be reached only at high cost
 – To do this we can use a matrix of nodes of A and B

8.2 Parsons Code Matching

• Melody search is matching substrings: song A is longer than query B, but B can start at any point of A
 – The database should know where to look
 – Otherwise costly

8.2 Difference Codes

• Parsons code ignores the strength of the pitch change
• Difference codes save these interval information as number of semitones on the MIDI scale (12-tone scale)
8.2 Difference Codes

- Beethoven’s “Ode to Joy”
- Parsons Code:
 ◊ R U U R D D D D
 Difference Code:
 ◊ 0 1 2 0 −2 −1 −2 −2
- But also bigger jumps:

8.2 Difference Codes

- Distribution of intervals in a music database with about 10000 songs (Kosugi and others, 2000)

8.2 Difference Codes

- Advantages
 - Allows precise distinction of music, by considering also the size of the jump interval in the weighting of the edit distance
- Disadvantages
 - It also requires more effort in matching and a more accurate note segmentation
 - The result is very dependent on the audio collection, since melodies often have little tone steps and also on the users

8.2 Frame based Representation

- Precise segmentation of the query and the music in the database is essential for both the Parsons code, and the difference code
- Frame based representations do not segment notes, but only use the contour of the melody

8.2 Frame based Representation

- Frame classification should be equidistant
 - Not a frame of 10 ms and one of 100 ms
- Advantages:
 - No inaccuracies by incorrect segmentation
 - Frame sequences also contain the rhythm information
- ... But the retrieval time is also significantly higher
8.2 Frame based Representation

- The frame-based representation leads to a time series of pitch values
- **Point wise comparison** of the sound contour leads to very poor results because:
 - Speed of query might be different from the speed of objects in the database
 - The rhythm in the query is often wrong

8.2 Dynamic Time Warping

- Dynamic matching between contours is required (the “singing length” of the notes plays a minor role)
- Known method from the Data Mining: **Dynamic Time Warping** (DTW; Berndt and Clifford, 1994)
 - Distance measure for time series
 - Same principle as edit distance
 - The only difference: no finite alphabet (e.g., U D R in Parsons code) anymore, but continuous numbers
 - The cost of an operation depends on the values of the involved numbers

8.2 Illustration

Paths on a two-dimensional map of time (0, 0) to (M, N) are valid matching

8.2 Warping Paths

- Monotony: \(i(k) \leq i(k+1) \) and \(j(k) \leq j(k+1) \)
- Continuity: \(i(k+1)-i(k) \leq 1 \) and \(j(k+1)-j(k) \leq 1 \)
- Boundaries: \(i(1) = j(1) = 1 \), \(i(K) = N \) and \(j(K) = M \)
- Calculation using dynamic programming in \(O(m \cdot n) \) time
- In special cases even faster...

8.2 DTW

- DTW example
8.2 Uniform Time Warping

- The uniform time-warping distance between two time series \(x \) and \(y \) is defined as:
 \[
 D_{UTW}(x, y) = \sum_{i=1}^{\min(m,n)} |x_i - y_i|^2 / \min(m,n)
 \]
- Both time-axis are extended to \(mn \) (or to the least common multiple of \(m \) and \(n \))
 - Problematic for time series with variable speed

8.2 Local Dynamic Time Warping

- Intuitive matching for humans
 - Extend both series to the same length
 - Compare pointwise, but allow little warping intervals
- So again: extend the calculation on one area, which lies near the matrix diagonal

8.2 Local Dynamic Time Warping

- With LDTW distances we can build effective indexes for comparing time series (in our case, melodies)
- Extension of the GEMINI approach by envelopes (Zhu and Shasha, 2003)
 - Calculate the envelope for a query and cut with high-dimensional index structure

8.2 Example

- Idea of the uniform time warping is that warping paths should be as diagonal as possible
 - But UTW can also be calculated from time series of different lengths
- Uniform time warping is a generalization of the Time Scaling

- Example:
 - Time complexity of LDTW is \(O(kn) \) where \(k \) is the width of the strip

[Zhu and Shasha, 2003]
8.2 Example

(Zhu and Shasha, 2003)

• After transformation into special normal forms:

8.3 Example

• Acoustic events
 – Frame based methods shows the behavior of the audio signal, but we don’t know what this behavior means
 – How to determine acoustic events in the audio signal?
 • What has caused this particular signal path? (e.g., could it be the beginning of a note?)
 • More or less plausible explanations
 • How can we model it?

8.3 Example

• The observation could either be:
 – Independent short note on semitone 53
 – Or only envelope attack signal for semitone 52 (at sustain level)

8.3 Example

• Implementation of the (hidden) sequence of events in a string (over a fixed alphabet)

8.3 Example

• Acoustic event “single note” as a sequence of “atomic events” according to the envelope model
 – State set $Q = \{A, D, S, R, \epsilon\}$
 • These states represent attack, decay, sustain, release and silence
 – Possible state transitions are determined by a Markov chain (stochastic variant of finite automata)

8.3 Example

• Homogeneous Markov process:
 – In each state the outgoing edge weights add up to 1
 – Transition probabilities are time-invariant
 – An start distribution is defined
8.3 Start Distribution

- Start distribution for each node determines the probability that the process starts in this node.
- Example: single note always starts with attack
 \[\pi : Q \to [0, 1] \]
 with \(\pi(A) = 1 \) and \(\pi(D) = \pi(S) = \pi(\varepsilon) = 0 \)

8.3 Example

- Appearance probability subsequently ADSSR\(\varepsilon\):
 \[1 \cdot 0.3 \cdot 0.6 \cdot 0.7 \cdot 0.3 \cdot 0.5 = 0.0189 \]
- Appearance probability subsequently ADDDSR\(\varepsilon\):
 \[1 \cdot 0.3 \cdot 0.4 \cdot 0.4 \cdot 0.6 \cdot 0.3 \cdot 0.5 = 0.0043 \]

8.3 Basic Problem

- Detection of acoustic events (such as single notes) is from the audio signal, almost impossible
- Solution:
 - State sequences detection must also be probabilistic
 - “If the signal has the observed shape, then I am very likely in state x or less likely in state y”

8.3 Observations

- Finite class of possible observations
 - E.g., \(O = \{o_1, \ldots, o_6\} \)
- The probabilities that observation \(o_i \) is made in state \(q \in Q \), are required
 \[p_Q : O \to [0, 1] \]
 - E.g., \(p_{0A} \cdot 0.7 \)

8.3 Overall Probability

- Observation “\(o_3 \cdot o_5 \cdot o_1 \)”
- How high is the probability that the model “ADS” was responsible for this observation?
 \[\pi(A) \cdot p_A(o_3) \cdot p_{A,D}(o_5) \cdot p_{D,S}(o_1) \]
- “ADS” is just a supposition
 - The “true” model is hidden (thus: Hidden Markov Model)

8.3 The Real Problem

- Known sequence of \(n \) observations
 \(o_{i_1}, \ldots, o_{i_n} \in O^n \)
 - What is the most likely state sequence \(q_{i_1}, \ldots, q_{i_n} \in Q \)?
 - Is it possible to assign the sequence of observations, an overall probability of the event “single note”? (with respect to the specific model \(Q \))
We can assign a sequence of observations to the acoustic event, whose HMM has created the observations with the **highest** probability.

8.3 Acoustic Events

- **Observations**
- **Hidden States**

8.3 Conditional Probabilities

- Probability of event A if it is already known that event B has occurred:

\[P(A|B) := \frac{P(A \cap B)}{P(B)} \]

- Analogously for the probability densities of random variables X and Y:

\[P(X|Y) := \frac{P(X,Y)}{P(Y)} = \frac{P_X Y}{P_Y} \]

8.3 Stochastic Processes

- A **stochastic process** is a sequence of random variables \((X_0, X_1, X_2, \ldots)\).

- A **Markov process** additionally satisfies the Markov condition:

\[\forall n \in \mathbb{N} \text{ and } i_0, \ldots, i_{n+1} \in I \text{ mit } P(X_0 = i_0, \ldots, X_n = i_n) > 0 \]

\[P(X_{n+1} = i_{n+1}|X_0 = i_0, \ldots, X_n = i_n) = P(X_{n+1} = i_{n+1}|X_n = i_n) \]

- Remember Markov property by textures (neighborhood)!

8.3 Stochastic Processes

- Markov processes are **homogeneous** if the transition probability \(p_{ij}\) from state \(i\) to state \(j\) are independent of \(n\):

\[\forall n \in \mathbb{N} \text{ and } i, j \in I : P(X_{n+1} = j|X_n = i) = p_{ij} \]

- Knowing the initial distribution

\[\forall i \in I : \pi_i := P(X_0 = i), \quad \pi := (\pi_i)_{i \in I} \]

we can determine the overall distribution of the process.

8.3 Stochastic Processes

- A HMM has at any time additional **time-invariant** observation probabilities

- A **HMM** consists of

 - A homogeneous Markov process \((Q_1)_{i \in \mathbb{N}}\) with state set

\[Q := \{q_1, \ldots, q_N\} \quad \text{we } \forall t : Q_t : \Omega \to Q \]

 - Transition probabilities

\[\forall i, j \in [1 : N] : a_{ij} := P(Q_t = q_i|Q_{t-1} = q_j) \]
8.3 Hidden Markov Model

- Start distribution
 \(\forall i \in [1 : N] : \pi_i := P(Q_0 = q_i) \)

- Stochastic process \((O_t)_{t \in \mathbb{N}}\) of observations with basic sets
 \(\Omega := \{o_1, \ldots, o_M\} \) so \(\forall t : O_t : \Omega \rightarrow \Omega \)

- And observation probabilities of observation \(o_k\) in state \(q_j\)
 \(\forall j \in [1 : N], k \in [1 : M] : b_{jk} := P(O_t = o_k | Q_t = q_j) \)

...will be continued next lecture

This Lecture

- Audio Retrieval (continued)
 - Query by Humming
 - Melody: Representation and Matching
 - Parsons-Codes
 - Dynamic Time Warping
 - Hidden Markov Models

Next lecture

- To be continued: Hidden Markov Models
- Introduction to Video Retrieval