11 Video Similarity

11.1 Video Similarity

• Similarity is important:
 – Ranking of the retrieval results
 – Finding duplicates (different resolution, coding, etc.)
 – Detecting copyright infringements

• Various measures for the similarity
 – Simple idea: percentage of frames with high visual similarity
 * Analogous to Tanimoto similarity measure for texts: percentage of identical words in two texts (relative to the total number of words)

11.1.1 Video Similarity

• We usually have to consider...
 – The higher the number of features, the more properties can be used in the similarity measure (i.e. similarity measures get more accurate), but the more inefficient is the retrieval process
 – In general, for videos the accuracy of the scoring is not the critical factor, but efficiency is very important
11.1 Video Similarity

- 65,000 videos uploaded each day on YouTube
 - Prone to duplicates
- Redundancy is severely hampering video search
 - Eliminate duplicates
 - What are duplicates?

11.1 Video Similarity

- For identical copies it’s easy! But… we have to deal with “near duplicates”
 - (Wu, Ngu and Hauptmann, 2006) define ‘near duplicates’
- Near-duplicate web videos are “essentially the same”, differing in:
 - File formats
 - Encoding parameters
 - Photometric variations (color, lighting changes)
 - Editing operations (caption, logo and border insertion)
 - Different lengths

11.1 Video Similarity

- “The lion sleeps tonight”

11.1 Video Similarity

- Magnitude of the problem: video redundancy on the web

11.1 Video Signatures

- Idea: select a small number of features that represent a video with minimal errors
 - Minimize the distance between the video and its representation
 - Example:
 - Features as vectors in \(\mathbb{R}^n \)
 - Euclidean distance
 - Method of least squares (k-means)
 - Best cluster representatives (k-medoids)

11.1 Similarity Measures

- Assumptions
 - Each frame is represented through a (high dimensional) feature vector in a metric space \(F \) with distance measure (metric) \(d \)
 - The similarity measure (for videos) is invariant with respect to the shot sequence
 - Thus,…
 - Representation of videos by finite (unordered) sets of feature vectors
11.1 Similarity Measures

• \(d(x, y) \) is the **distance** (dissimilarity) between two feature vectors \(x \) and \(y \)

• Vectors (represented by frames) \(x \) and \(y \) are **visually similar**, if \(d(x, y) \leq \varepsilon \) for \(\varepsilon > 0 \) (independent of the actual values of \(x \) and \(y \))
 – Approach after Cheung and Zakhor, 2003

11.1 Video Similarity

• **Basic idea**: compute the percentage of similar frames in the videos
 – Naive video similarity: the total number of frames of a video, which are similar to at least one frame in the other video, divided by the total number of frames

11.1 Video Similarity

\[
\text{nvs}(X, Y; \varepsilon) = \frac{\sum_{x \in X} 1(\exists y \in Y: d(x, y) \leq \varepsilon)}{|X|} + \frac{\sum_{y \in Y} 1(\exists x \in X: d(x, y) \leq \varepsilon)}{|Y|}
\]

– Indicator function \(1_A \) for a set \(A \): value of 1 if \(A \) is not empty, value 0 otherwise
– If each frame in \(X \) can be mapped in a similar frame in \(Y \) (and vice versa), \(\text{nvs} = 1 \)
– \(\text{nvs} = 0 \), if there are no similar frames in the two videos

11.1 Video Similarity

• Naive video similarity is often **not intuitive**
 – Shots may contain many visually similar frames
 – E.g., generate \(Y \) through multiplication of a single frame from \(X \). For \(|Y| >> |X| \) \(\text{nvs}(X, Y, \varepsilon) \approx 1 \)

11.1 Video Similarity

• **Solution**: consider quantities of similar frames as fundamental units
 – Without regarding the temporal structure (representation as a set of feature vectors) we combine all visually similar frames to clusters
 – Two frames \(x, y \in X \) belong to the same cluster if \(d(x, y) \leq \varepsilon \)
 – **Problem**: consistent cutting is not always possible
 * if \(d(x, y) \leq \varepsilon \) and \(d(y, z) \leq \varepsilon \), then what is with \(d(x, z) \)?
11.1 Video Similarity

- In single link clustering, \(d(x, y) \leq \varepsilon \) implies that \(x \) and \(y \) are in the same cluster, not vice versa.
 - The clusters \([X]_\varepsilon \) of a video \(X \) are the connected components in "distance < \(\varepsilon \)"-graph.

- A cluster is called \(\varepsilon \)-compact if all the frames of the cluster have at most a distance of \(\varepsilon \) to one another.

- Considering \([X \cup Y]_\varepsilon \) the union of the clusters of two videos, is a cluster from this set contains the frames of both videos, then they are visually similar.

11.1 Video Similarity

- The Ideal Video Similarity is the percentage of clusters in \([X \cup Y]_\varepsilon \), which contain frames from both videos (relative to the total number of clusters).

\[
ivs(X, Y; \varepsilon) = \frac{\sum_{x \in X} \sum_{y \in Y} \mathbb{1}_{d(x, y) < \varepsilon}}{|[X \cup Y]_\varepsilon|}
\]

11.1 IVS Calculation

- Naive calculation requires distance calculations between \(|X| \cdot |Y| \) frame pairs.
- More efficient methods estimate the ivs by sampling:
 - Represent each video through \(m \) randomly selected video frames.
 - Estimate the ivs by the number of similar pairs \(W_m \) in the samples.

11.1 IVS Calculation

- Small values of \(m \) speed up calculation, but may distort the results.
 - Consider two videos \(X \) and \(Y \) are of the same length.
 - For each frame in \(X \) there is exactly one similar frame in \(Y \) (and vice-versa).
 - Therefore \(ivs = 1 \).
 - The expected value of the number of similar pairs in a sample of size \(m \) is \(E(W_m) = m^2/|X| \).
 - Thus it takes an average of \(\sqrt{|X|} \) samples to find on average at least a similar pair.

- Other solutions? Voronoi diagrams.

11.2 Voronoi

- Georgi Voronoi: Russian mathematician
 - Known for the Voronoi diagrams: decomposition of a metric space into disjoint parts.
 - Starting from a:
 - \(\cdots \) metric space \((F, d) \)
 - \(\cdots \) set of discrete points \(X \subseteq F \)
 - Goal:
 - Divide \(F \) in exactly \(|X| \) disjoint parts.
 - In each of these parts there is just one point from \(X \).

\[\text{Georgi Voronoi}\]
11.2 Voronoi Diagrams

- Voronoi’s tessellation:
 - Each point in the $x_i \in X$ region is closer to x_i than to any other $x_j \in X$ with $j \neq i$
 - Given a point $z \in F$, to which part of space does z belong to?
 - Determine the point $x \in X$, which is the closest to z
- In Euclidean spaces: the set of equidistant points for each pair of points, forms a hyperplane

11.2 Voronoi Video Similarity

- Applications such as in the analysis of the growth of crystals
- Simple algorithmic calculation (n^2) of Voronoi diagrams by grouping areas
 - For a fixed point calculate all the dividing hyperplanes; Merging the planes results in the Voronoi cell
 - More efficient algorithms exist e.g., in the Euclidean case: running time $O(n \log n)$

- Voronoi diagrams are specific geometrical layouts of spaces
- For videos we divide the feature space according to the cluster
 - Given a video with l frames
 - $X = \{x_t : t = 1, \ldots, l\}$
 - The Voronoi diagram $V(X)$ of X is a division of the feature space F in l Voronoi cells

- The Voronoi cell $V_X(x_t)$ contains all vectors in F, which lie closer to the frame x_t as to all other frames of X
 - $V_X(x_t) = \{s \in F : g_X(s) = x_t \text{ and } x_t \in X\}$
 - with $g_X(s)$ as the closest frame from X to s
 - In the case of equal intervals of several frames one takes for $g_X(s)$ usually the frame that is next to a predetermined point (e.g., the origin)

- Voronoi cells are combined for frames of identical clusters, therefore for $C \subseteq [X]$, $V_X(C) = \bigcup_{x_t \in C} V_X(x_t)$ is valid
11.2 Voronoi Video Similarity

- We can define similar Voronoi regions for two videos X and Y and their two Voronoi diagrams through
 \[R(X, Y; \epsilon) = \bigcup_{d(x, y) \leq \epsilon} V_X(x) \cap V_Y(y) \]
 - If x and y are close to one another, then also their Voronoi cells will intersect. The more similar pairs there are, the greater the surface area of the \(R(X, Y; \epsilon) \).

- Example: two videos, each with two frames and their corresponding Voronoi cells. The gray area is the common area \(R(X, Y; \epsilon) \).

- The volume of \(R(X, Y; \epsilon) \) is a measure of video similarity.
- Technical problems:
 - The Voronoi cells must be measurable (volume as a Lebesgue integral).
 - The feature space is considered compact (therefore, restricted and closed) so volumes are finite.
 - For normalization: \(\text{Vol}(F) = 1 \).

- Since both the clusters and the Voronoi cells don't overlap, the Voronoi video similarity is:
 \[\text{vvs}(X, Y; \epsilon) = \text{Vol}(R(X, Y; \epsilon)) = \sum \text{Vol}(V_X(x) \cap V_Y(y)) \]

11.2 Example

- \text{vvs} in the example is 0.33, which is also consistent with the ivs in this example.
- The reason for the very good correlation is the similar volume of each Voronoi cell.
- This correlation, is not however, generally provided.

11.2 Estimation of VVS

- An estimate of \(\text{vvs}(X, Y; \epsilon) \) is possible through random sampling:
 - Generate \(m \) vectors \(s_1, \ldots, s_m \) (seed vectors) independent and uniformly distributed over the space \(F \).
 - Check for each seed \(s_i \) if it is located inside \(R(X, Y; \epsilon) \), i.e., in any Voronoi cell \(V_X(x) \) and \(V_Y(y) \) with \(d(x, y) \leq \epsilon \).
 - Let \(g_X(s_i) \) be the frame from X with the smallest distance to \(s_i \).
 - Then: \(s_i \in R(X, Y; \epsilon) \) iff \(d(g_X(s_i), g_Y(s_i)) \leq \epsilon \).
It is possible to describe each video \(X \), through the tuple \(\mathbf{X}_s := (g_X(s_1), \ldots, g_X(s_m)) \).

\(\mathbf{X}_s \) is called video signature with respect to \(S \).

As a similarity measure for videos \(X \) and \(Y \) we can now use the degree of overlap between \(\mathbf{X}_s \) and \(\mathbf{Y}_s \):

\[
\text{vss}_b(X, Y; \epsilon, m) = \frac{\sum_{i=1}^{m} 1(\epsilon(g_X(s_i), g_Y(s_i)) \leq \epsilon)}{m}
\]

\(\text{vss}_b \): basic video signature similarity

Since the seed vectors are uniformly distributed, the probability of event “\(s \in R(X, Y, \epsilon) \)” represents the volume of \(R(X, Y, \epsilon) \), thus \(\text{vss}(X, Y, \epsilon) \).

\(\text{vss}_b \) is an unbiased estimator for \(\text{vss} \).

For video collections identical seeds must be used for all signature calculations.

The number \(m \) of seeds is the signature length.

– The larger \(m \), the more accurate the estimate
– The smaller \(m \), the easier the signature calculation

Important issue for the selection of \(m \): how high is the error probability?

– Video database \(\Lambda \) with \(n \) videos and \(m \) seeds
– Constant \(\gamma > 0 \) (maximum deviation)
– \(P_{\text{err}}(m) = P \left(\text{the database contains at least a couple of videos, for which the difference between \(\text{vss} \) and \(\text{vss}_b \) is greater than \(\gamma \) } \right) \)

A sufficient condition to guarantee for \(P_{\text{err}}(m) \leq \delta \) is the choice of \(m \) as

\[
m \geq \frac{2 \ln n - \ln \delta}{2 \gamma^2}
\]

Proof: next slides

Define \(\rho(X, Y) = \text{vss}(X, Y; \epsilon) \)

\(\hat{\rho}(X, Y) = \text{vss}_b(X, Y; \epsilon, m) \)

Using Hoeffding’s inequality we can determine the maximum probability, that a sum of independent random and limited variables deviates with more than a given constant from its expected value:

\[
\text{Prob}(|\rho(X, Y) - \hat{\rho}(X, Y)| > \gamma) \leq 2 \exp(-2\gamma^2m)
\]

Therefore:

\[
P_{\text{err}}(m) \leq \frac{\gamma}{m} \leq \frac{2 \ln n - \ln \delta}{2 \gamma^2m}
\]

Sufficient conditions for \(P_{\text{err}}(m) \leq \delta \):

\[
\frac{2 \ln n - \ln \delta}{2 \gamma^2m} \leq \delta \Rightarrow m \geq \frac{2 \ln n - \ln \delta}{2 \gamma^2\delta}
\]
11.2 Estimation of VVS

The bound for \(m \) is logarithmic of the size \(n \) of the video database.

- The smaller the error \(\gamma \) is, the greater the values chosen for \(m \) should be.

\[
m \geq \frac{2\ln n - \ln \delta}{2n^2}
\]

11.2 Seed Vector Generation

- The vvs is not always the same as ideal video similarity (ivs).
- ivs and vvs are the same, if the clusters are evenly distributed over the entire feature space.

11.2 Seed Vector Generation

- Consider cases with ivs = 1/3, but too small or too high Voronoi video similarity:

11.2 Seed Vector Generation

- Goal: estimation of the ivs through basic video signatures (vss) even if ivs and vvs differ
 - Since the seeds are spread evenly throughout the feature space, the estimation is influenced by various sizes of Voronoi cells.
 - Solution: distribute the seeds evenly over the Voronoi cells, regardless of their volumes.

11.2 Seed Vector Generation

- To generate the seeds (rather than using the uniform distribution over \(F \)) use a distribution with density function as follows:
 - Given: two videos \(X, Y \)
 - Distribution density at \(u \in F \):
 \[
f(u; X \cup Y) = \frac{1}{||X \cup Y||_e} \cdot \frac{1}{\text{Vol}(V_{X \cup Y}(C))}
\]
 - \(C \) denotes the cluster in \([X \cup Y]_e\) with \(u \in V_{X \cup Y}(C)\)

11.2 Seed Vector Generation

- \(f(u; XUY) \) is inversely proportional to the volume of each cell
 - Uniform distribution on the set of clusters
- \(f(u; XUY) \) is constant within the Voronoi cell of each cluster
 - Equal distribution within each cluster
- Possible generation method for seeds:
 - Randomly choose a cluster (uniformly distributed)
 - Choose a random point within this cluster (uniformly distributed)
11.2 Seed Vector Generation

- If we do not uniformly produced seeds, but with density \(f(u; X \cup Y) \), we obtain the following estimator for \(ivs \):
 \[
 \sum_{d(x,y) \leq \varepsilon} \int_{V_X(x) \cap V_Y(y)} f(u; X \cup Y) \, du
 \]
 - For \(f(u; X \cup Y) = 1 \) (uniform distribution on \(F \)) it is exactly the definition of \(vvs(X, Y; \varepsilon) \)

11.2 VSS\(_B\) and IVS

- \(vss \) approximates \(ivs \) if the clusters are either identical or very good separated

- **Theorem:** let \(X \) and \(Y \) be videos, so that for all pairs of clusters \(c_X \in [X]_{\varepsilon} \) and \(c_Y \in [Y]_{\varepsilon} \)
 - Either \(c_X = c_Y \)
 - Or all the frames in \(c_X \) further away with more than \(\varepsilon \) from all frames in \(c_Y \)

- Then:
 \[
 ivs(X, Y; \varepsilon) = \sum_{d(x,y) \leq \varepsilon} \int_{V_X(x) \cap V_Y(y)} f(u; X \cup Y) \, du
 \]

11.2 VSS\(_B\) and IVS

- **Proof:**
 - For each term in the sum if \(d(x,y) \leq \varepsilon \), then \(x \) and \(y \) belong to the same cluster \(C \) in \([X]_{\varepsilon} \) and \([Y]_{\varepsilon} \)

 Thus, one can rewrite the sum as follows:
 \[
 \sum_{d(x,y) \leq \varepsilon} \int_{V_X(x) \cap V_Y(y)} f(u; X \cup Y) \, du
 \]
 \[
 = \sum_{C \in [X]_{\varepsilon} \cap [Y]_{\varepsilon}} \int_{V_X(x) \cap V_Y(y)} f(u; X \cup Y) \, du
 \]

11.2 VSS\(_B\) and IVS

- Since \([X]_{\varepsilon} \cap [Y]_{\varepsilon} \) is the set of similar clusters in \([X \cup Y]_{\varepsilon} \), the last term is just the \(ivs \)

11.2 Application

- It is not possible to use the density function \(f \) for the estimation of \(ivs \) for the calculation of video signatures
 - The density function is specific for each pair of videos, but for comparison within collections, same seeds must be used
 - For this reason we use a (representative!) training set \(T \) for the definition of the density function
11.2 Application

- **Algorithm** for generating a single seed:
 (m independent repetitions of the algorithm provide m seeds)
 - Given:
 - A value ℓ_{SV}
 - A training set of T frames, which reflect the collection as well as possible
 - Identify all clusters $[T]_{\ell_{SV}}$ of set T
 - Choose any cluster $C \in [T]_{\ell_{SV}}$

11.2 Application

- Create a seed in the Voronoi cell of the selected cluster
 - Generate random vectors over the feature space, until one of them is in $V(C)$
 - (to simplify this procedure, one can also use a random frame from C as seed)

11.2 Application

- **Experiment:**
 - 15 videos from the “MPEG-7 content set”
 - Average length: 30 minutes
 - By means of random deletion of frames, 4 new videos were produced from each video, each having ivs 0.8, 0.6, 0.4 and 0.2 when compared to the full video
 - Then the ivs was estimated through the vss
 - Two methods for generating the seeds ($m = 100$):
 (1) uniformly distributed on F and
 (2) based on a test collection of 4,000 photographs from the Corel photo collection

<table>
<thead>
<tr>
<th>Seed Vectors</th>
<th>Uniform Random</th>
<th>Corel Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Average</td>
<td>0.573</td>
<td>0.499</td>
</tr>
<tr>
<td>StdDev</td>
<td>0.416</td>
<td>0.306</td>
</tr>
</tbody>
</table>

11.2 Voronoi Gap

- Consider a feature space with ivs = 1:

- The Voronoi regions differ slightly, and therefore do not fill the entire feature space

11.2 Voronoi Gap

- ν_{SV} and ivs are the same, if clusters are either identical or clearly separated
 - The feature vectors are only an approximation of the visual perception, therefore, they may contain small discrepancies within visually similar clusters

11.2 Voronoi Gap

- In this example: since the ν_{SV} is defined by the similar Voronoi regions, it is **strictly smaller** than ivs
 - The difference is calculated using the offset (the free space)
 - The greater the difference, the more underestimates ν_{SV} the ivs
11.2 Voronoi Gap

- Consider seed \(s \) between the Voronoi cells

- Observation:
 - The next signature frames \(g_X(s) \) and \(g_Y(s) \) for two videos \(X \) and \(Y \) are far apart from one another: \(d(g_X(s), g_Y(s)) > \varepsilon \)
 - Both signature frames are similar to frames of the other videos, therefore there is an \(x \in X \) with \(d(x, g_Y(s)) \leq \varepsilon \) and there is an \(y \in Y \) with \(d(y, g_X(s)) \leq \varepsilon \)

- Therefore: seeds between Voronoi cells can cause dissimilar signature vector pairs, even if both vectors have similar partners in the other videos

- The Voronoi Gap \(G(X, Y; \varepsilon) \) for videos \(X \) and \(Y \) is the set of all \(s \in F \) with:
 - \(d(g_X(s), g_Y(s)) > \varepsilon \)
 - There is an \(x \in X \) with \(d(x, g_Y(s)) \leq \varepsilon \)
 - There is an \(y \in Y \) with \(d(y, g_X(s)) \leq \varepsilon \)

11.2 Seed Generation

- If we randomly generate \(m \) seeds of which \(n \) lie in the Voronoi gap, then is \(\text{vs} \) of the remaining \((m - n) \) vectors exactly the IvS

- Problem: how to efficiently recognize whether the vector lies in the Voronoi gap?

- One can analytically show that for simple feature spaces the volume of the Voronoi gap can’t be neglected:
 - There are usually seeds that fall into the Voronoi gap and distort the estimate of the IvS
 - The smaller the \(\varepsilon \), the smaller the Voronoi gap
 - Goal: avoid the use of seeds which (probably) lie in the Voronoi gap

- The pure definition of the Voronoi gap does not help in the verification
 - Requires distance calculations between each signature vector and all frames of the other videos
 - Thus the efficient description of the video would be invalidated by his signature
 - It’s enough to assign probabilities for the fact that a seed is in the Voronoi gap

- Observation
 - Both video sequences have a roughly equidistant pair of frames with respect to \(s: (x, g_X(s)) \) and \((y, g_Y(s)) \)
 - It is clear that the pairs themselves are dissimilar: \((x, g_X(s)) \geq \varepsilon \) and \((y, g_Y(s)) \geq \varepsilon \)
 - Since the seeds in the Voronoi gap are near the borders of different Voronoi cells, one can easily find such equidistant pairs
11.2 Criterion

• Given: two videos \(X, Y \) with \(\varepsilon \)-compact clusters \([X \cup Y]\) \(\varepsilon \)
• For every seed \(s \) in the Voronoi gap, there is a vector \(x \in X \) (\(y \in Y \)) with
 – \(x \) is dissimilar to \(g_x(s) \), therefore \(d(x, g_x(s)) > \varepsilon \)
 – \(x \) and \(g_x(s) \) are equidistant from \(s \), particularly \(d(x, s) - d(g_x(s), s) \leq 2\varepsilon \)

11.2 Criterion

– Since \(s \) is in the Voronoi gap, there is a \(y \in Y \) with \(d(y, g_x(s)) \leq \varepsilon \), and due to the definition of \(g \)
 \(d(g_y(s), s) \leq d(y, s) \)
 – So one can estimate \(g_y(s) \) through \(y \). The triangle inequality yields:
 \[d(x, s) - d(g_x(s), s) \leq \varepsilon + d(g_y(s), s) - d(g_x(s), s) \leq \varepsilon + d(y, g_y(s)) \]

11.2 Criterion

• Test whether a seed \(s \) is in the Voronoi gap between a video \(X \) and any other random sequence:
 – If there is no vector \(x \in X \) with
 * \(x \) is dissimilar to \(g_x(s) \) and
 * \(d(x, s) - d(g_x(s), s) \leq 2\varepsilon \),
 then \(s \) is never in the Voronoi gap between \(X \) and another video

11.2 Application

• Define a ranking function \(Q \) for the signature vector:
 \[Q(g_x(s)) = \min_{x \in X, d(x, g_x(s)) \leq \varepsilon} d(x, s) - d(g_x(s), s) \]
 – The further away are seeds from the borders of Voronoi cells, the higher the value of \(Q(g_x(s)) \)

11.2 Application

• Higher values of \(Q \) are bright, lower values are dark
11.2 Application

• “Safe” seeds have Q-values > 2ε
• This is not required but sufficient, and often difficult to find
 – In general, many seeds with Q-value ≤ 2 ε are not in the Voronoi gap
• Generate various seeds and choose only the ones with the best Q-values

11.2 Application

• Let m’ > m be the number of frames in the video signature
 – Generate X with a set of m’ seed vectors
 – Then compute Q(g(s)) for all g(s) from X and arrange the g(s) according to decreasing Q-value
• Analogous to vss, we can now define ranked video similarity vss_r

11.2 Application

• The symmetrical vss, between two videos is defined by the seeds with the highest ranking in X and Y:
 \[vss(X, Y; \epsilon, m) = \frac{1}{m} \sum_{i=1}^{m} \sum_{s=1}^{[m/2]} 1\{d(gX(s), gY(s)) \leq \epsilon\} + \sum_{s=1}^{[m/2]} 1\{d(gX(s), gY(s)) > \epsilon\} \]
 – With j[1], ..., j[m'] and k[1], ..., k[m'] as the rankings of the signature frame in the X and Y
 (e.g., Q(gX(s_j)) ≥ ... ≥ Q(gX(s_j)))

11.2 Application

• The asymmetric form leads to some distortion in the estimate
 – If a video is a partial sequence of another video, the asymmetric vss, is significantly higher when calculated with the shorter video, rather than with the longer one
 – Allows more efficient implementations

11.2 Application

• Database of short video clips from the Web
• Based on manual tagging

11.2 Application

• vss, uses 50% of the frames with the highest ranking in X, for comparison with the corresponding frames in Y, and 50% of the frames with the highest ranking in Y, for comparison with the corresponding frames in the X
 – Overall, again only m comparisons
 – Alternatively we can also use an asymmetric vss, with m seeds with the highest ranking with respect to just one video

11.2 Retrieval Effectivity: VSS vs. VSS

• The asymmetric form leads to some distortion in the estimate
 – If a video is a partial sequence of another video, the asymmetric vss, is significantly higher when calculated with the shorter video, rather than with the longer one
 – Allows more efficient implementations
• Video Similarity
 – The naive approach
 – Voronoi Video Similarity

Next lecture

• Video Abstraction
 – Video Skimming
 – Video Highlighting
 – Skimming vs. Highlighting