12 Video Abstraction

12.1 Video Summary

12.2 Video Skimming & Highlighting

Previous Lecture

- Video Similarity
  - The naïve approach
  - Voronoi Video Similarity

12.0 Search Results

- After the retrieval: presentation of results
  - Text Retrieval:
    - Summary (abstract) or
    - Parts of the text with the keywords of the query (snippets)
  - Image Retrieval:
    - Images with reduced resolution, "thumbnails"
  - Audio Retrieval:
    - Short snippet, "earcon"
  - Video Retrieval:
    - ?

- Current approaches for result presentation in video search
  - Same as image search presentation
    - E.g., Google video, Yahoo video, YouTube, Metacafe, etc.
  - Start playing something
    - E.g., Bing video, blinkx.com, dogpile.com
  - Use minimal video structure information like shots and key frames
    - E.g., videosurf.com

- Result presentation for video retrieval
  - Minimize the amount of data (don’t play the whole movie)
  - Simple assessment of possible relevance
  - Textual summary is not enough especially if the query is based on visual characteristics
  - How is it in practice?
    - State of the art for results presentation in video search
12.0 Search Results

• So…the existing solutions are not that great
• Are there any other approaches not yet implemented?
  – Yes…and that is video abstraction

12.0 Video Abstraction

• Video abstraction is essentially divided into two parts
  – Video summary (still abstracts, storyboards) select frames from a video and put them in a sequence (with sentences extracted from the audio signal)
  – Video skimming (moving abstracts, summary sequence, highlights) the multimedia presentation form remains, but shortens its duration dramatically

12.0 Video Abstraction

• Automatic video abstraction
  – Simple determination of relevance for users
  – Saving transmission time and bandwidth
    • Videos are usually not on the local system of the user
    • Particularly in connection with access from mobile devices
  – Useful for advertising: e.g., movie trailers

12.1 Video Summary

• Video structure:
  - Story Unit
  - Structural Unit
  - Shot
  - Key Frame

• Summaries are usually based on shots

12.1 Video Summary

• The video summary should contain all the essential parts of the video
  – Sampling of the entire video
  – Key frames can be selected according to the shot detection
• Simplest approach: use the key frames of all shots in the correct order as a storyboard
  – Often still too many key frames
  – Especially in fast cut sequences

12.1 Example: Story Board

– The war in Irak has determined today the budget debate in the German parliament.
– An end of the war is not in sight.
– The ministry of finance has presented today the budget for 2012.
12.1 Key Frames

- Selection of **key frames** for each shot
  - First/middle/last frame of a shot
  - Frame, with average color, etc.
  - Randomly selected frame
  - ... 

- Which key frames should be included in the video summary?
  - **Important:** Keep the order of the frames (for better understanding)

12.1 Key Frames

- **Difference-based selection** of the key frames for the video summary
  - Always choose the key frame of the first shot
  - Compare (color, object motion, etc.) the key frame of the next shot with the last chosen key frame for the summary
  - If the differences are “large enough” then pick it as the new key frame in the summary

12.1 Audio Information

- Often, the storyboards are backed with **audio information**
  - Combine each key frame with the most important sentence of the corresponding shots
  - Extraction of the most important sentence from a text e.g., through Latent Semantic Analysis (LSA)
  - Consider each sentence of a shot as a document and perform term frequency
  - Choose a LSA segmentation and for each shot the sentence with the highest value in the LS space

12.1 Example

- **Term-sentence matrix**
  - $S_1$-$S_5$: topic “Health”
  - $S_6$: topic “Road transport”

- Sentences in the LS space
  - Choose sentence $S_6$ for the road transport shot and set $S_3$ for the health shot
12.2 Video Skimming

- **Summary sequences**: provides an overall impression of the entire video in significantly reduced time.
- **Simplest approach**: uniform temporal scaling of the video.
  - E.g., removal of every second frame.
  - What happens to the audio?

12.2 Video Skimming

- **Uniform scaling** is only partially useful:
  - Important vs. unimportant shots.
  - The meaning of some complex shots can only be grasped either as unchanged or by watching more shots.
  - It is better to drop whole shots than to make all shots incomprehensible.
  - Leads to video highlights.

12.2 Skimming vs. Highlights

- **Video skimming**

12.2 Skimming vs. Highlights

- **Video highlight**

12.2 Summary Sequences

- **Scenic structure** is important for understanding the sequence summary.

12.2 Summary Sequences

- **Two key questions**:
  - How long will the audience need to capture the contents of a scene?
    - Close-up of a face vs. detailed scene.
  - How does syntax affect the intelligibility of the whole video?
    - E.g., the order of scenes and type of each scene (dialogue, action, etc.).
12.2 Summary Sequences

- First **automatic video summaries**: Informedia project of the Carnegie-Mellon University
  - Analysis of the audio information, to find the important shots and omit the irrelevant ones
  - Automatic speech recognition and a few visual object detectors
  - Still relatively error-prone
  - www.informedia.cs.cmu.edu

12.2 Video Highlighting

- Highlighting doesn’t attempt to summarize the entire video, but selectively chooses from **important scenes**
- E.g., movie trailer
  - Scenes are not cut considering the minimum necessary cut to help the viewer understand
  - The atmosphere of the movie should be transmitted and the interest aroused
  - The end is usually not shown

12.2 Basic Procedure

- **Combining the clips** (editing)
  - Maintain order?
  - Type of cuts between individual shots?
  - Appropriate audio track?

12.2 Basic Procedure

- **Steps** to automatically derive a scenic sequence summary
  - Estimate the visual complexity of each shot
    - The minimum time period necessary to understand a shots (relates to the visual complexity) can be estimated by means of psychological experiments (e.g., Sundaram and Chang, 2002)
  - Using insights from film theory one can select scenic structures important in understanding the film
  - Compression ratios of about 80% are possible
    - More compressed results through video highlighting

12.2 Basic Procedure

- **Video segmentation and analysis**
  - Segmentation into shots and scenes
  - More detailed analysis of shots, which include text or effects e.g., explosions
  - Analysis of close-ups of faces

- **Clip selection**
  - Which shots should be included in the abstract?
  - Complete coverage of the whole video
  - Special effects

12.2 Basic Procedure

- **Schematic representation**

  Scene recognition → Identify interesting shots → Edit the shots as an abstract

  Video → Highlight
12.2 Basic Procedure

- High-quality abstracts according to the film theory contain the following components:
  - **Relevant entities and individuals**: mostly in scenes with high contrast
  - **Actions**: scenes with strong movement
  - **Mood**: scenes for which the color distribution varies slightly from the average color distribution of the film
  - **Dialogue**: scenes with close-ups of faces and corresponding audio

12.2 Video Analysis

- Shot detection leads to individual shots, which have to be **heuristically grouped into scenes**
  - E.g., grouping by **common background**
    - Sequential shots with similar color distributions
    - Background color doesn’t usually change too much with camera movements
    - Most significant change between scenes

---

12.2 Video Analysis

- **Alignment** of video and audio-cuts
  - A video cut without audio change is usually not a change of scene
- **Dialogues** are only present within a scene
  - If successive shots can be classified together with the audio as a dialogue, then they belong to a scene

---

12.2 Video Analysis

- Classification of effects within scenes (Pfeiffer et al, 2001)
  - **Faces of the actors** are often essential for a highlight
    - Algorithms for face recognition (e.g., Rowley and others, 1995) have detection rates of about 90% with very few false positives

---

12.2 Video Analysis

- The basic idea of most algorithms for face recognition is the training of neural networks with pictures on which the position of the eyes and nose are manually selected (salient points)
- Accelerate the recognition through **color filters**, which filter frames with dominant skin color
- **Visually similar faces** are grouped together (e.g., using the distance between the eyes)

---

12.2 Video Analysis

- Close-ups of faces are often associated with dialogs (remove shots where the face occupies less than 30% of the image)
- **Important people** appear often in the video (remove all the shots of faces, which occur rarely in the movie)
- **Alternating shots** of faces of different people represent a dialog
12.2 Face Recognition

12.2 Video Analysis

- **Text extraction** from the title should occur in the abstract
  - Segment text regions in frames at the beginning of the video (high contrast, contiguous region with low color variance, often moved linearly over several frames)
  - Clustering rows using vertical and horizontal size and distance
  - The title usually has the largest font size

12.2 Video Analysis

- Select the contents of the cluster with the largest surface area per row as a bitmap of the title and use OCR to convert it to text
- The procedure works reasonably well for **stationary** or **linearly moving text**

12.2 Abstract Generation

- Setting a **goal length** controls the selection criteria, otherwise **thresholds** must be set for the criterias
- Choose text sequences, dialogues, special effects as **potential scenes**
- Choose a **suitable shot** from each scene (usually too long)
  - For **text sequences** always pick the shot with the (probably) title text

12.2 Abstract Generation

- Recognition of **special effects** such as explosions, gunfire, etc.
  - Integrating such scenes in the trailer arouses interest
  - Detection especially in the **audio track**: calculate loudness, frequencies, pitch, etc., in small time windows, and recognize acoustic events

12.2 Video Analysis

- Choose the **action-rich shots** (determined from the motion vectors) from a scene, since they offer a lot of action in a short time
- Choose the shots whose **color distributions** best correspond to the average of the video
- **Automatic genre detection** can select appropriate shots using typical parameters for the genre
12.2 Abstract Generation

- Choose dialogues and special effects
  - Distribute the selection of shot for dialogue and special effects as evenly as possible over the whole video
  - For movies: avoid shots from the end
- Fill the highlight with shots belonging also to other types of scenes
  - Distribute the fill-up scenes for the highlight as well as possible on the video taking into account already chosen shots

12.2 Editing

- When editing the possible operations are establishing the order of frames and the type of a cut between the shots
  - The order of the frames greatly influenced the understanding of the audience
  - If one does not keep the original order, an order should at least be kept in the frames belonging to the same class e.g., dialog, special effects, fill-up scenes and text

12.2 Abstract Generation

- Choose dialogues and special effects
  - Distribute the selection of shot for dialogue and special effects as evenly as possible over the whole video
  - For movies: avoid shots from the end
- Fill the highlight with shots belonging also to other types of scenes
  - Distribute the fill-up scenes for the highlight as well as possible on the video taking into account already chosen shots

12.2 Editing

- Hard or soft cuts (transitions, etc.) can be used between shots
  - Special effects and action-rich scenes should always be separated from the environment through hard cuts
  - Text, dialogue and fill-up scenes can also be separated by smooth transitions

12.2 Editing

- Simple principles for scene transitions in highlights

<table>
<thead>
<tr>
<th>Event Clips</th>
<th>Dialog Clips</th>
<th>Other Clips</th>
</tr>
</thead>
<tbody>
<tr>
<td>hard cut</td>
<td>hard cut</td>
<td>hard cut</td>
</tr>
<tr>
<td>dissolves, wipe, fade</td>
<td>hard cut, dissolves, wipe, fade</td>
<td></td>
</tr>
<tr>
<td>hard cut, dissolves, wipe, fade</td>
<td>hard cut, dissolves, wipe, fade</td>
<td></td>
</tr>
</tbody>
</table>

12.2 Audio Editing

- Audio editing: more difficult, since the content of the audio track can’t be automatically abbreviated
  - It is impossible to copy the original sound of each selected frame and integrate it in the summary
  - Audio segments of the special effects should be kept if possible
  - In dialogues, audio cuts must have priority over shot boundaries

12.2 Audio Editing

- Audio editing: more difficult, since the content of the audio track can’t be automatically abbreviated
  - It is impossible to copy the original sound of each selected frame and integrate it in the summary
  - Audio segments of the special effects should be kept if possible
  - In dialogues, audio cuts must have priority over shot boundaries

- The audio tracks of the filler scenes are ignored
  - Fading transitions should be used between audio tracks
  - It helps to use a background audio track (e.g., the soundtrack, if available)
    - For dialogues and special effects, the music is reduced in volume
12.2 Example: Groundhog Day

The MoCA Project, University of Mannheim

12.2 Highlight: Groundhog Day

- Groundhog Day

12.2 Groundhog Day: Trailer

- Original trailer:

This Lecture

- Video Abstraction
  - Video Summary
  - Video Skimming & Highlighting

Next lecture

- Indexes for Multimedia Data
  - Tree Indexes: R-Trees, M-Trees