13 Indexes for Multimedia Data

13.0 Indexes for Multimedia Data

• Multimedia databases
 – Images
 – Audio data
 – Video data

• Description of multimedia objects
 – Usually (multidimensional) real-valued feature vectors
 – But also: skeletons, chain codes, ...

• The sequential search for similar objects in databases is very inefficient
• How can we speed up the search?

13.0 Indexes for Multimedia Data

• Speed up search through indexing
 – Efficient management of multidimensional information
 • Pre-structuring of data for the subsequent search functionality
 • Efficient data structures, combined with search and comparison algorithms
 – Transition from set semantics to list semantics
 • To which degree does the object from the database satisfy the query?

13.0 Indexes for Multimedia Data

• Requirements for a multidimensional index structure
 – Correctness and completeness of the corresponding indexing algorithms
 – Scalability with dimension growth
 – Support objects which are not real-valued vectors
 – Search efficiency (sub-linear)
13.0 Indexes for Multimedia Data

- Different types of queries:
 - Exact search: point or area search
 - k-nearest-neighbor search (k-NN search)
 - Find the k objects that have the least distance to the object given as reference in the request
 - k-NN search is usually only calculated on approximation basis (with a specified error) due to the high cost
 - Efficient update operations
 - Support for various distance functions
 - Low memory requirements

13.0 Tree Structures

- Search in database systems
 - B-tree structures allow exact search with logarithmic costs

- Search in multimedia databases
 - The data is multidimensional, B-trees however, support only one-dimensional search
 - Are there any possibilities to extend tree functionality for multidimensional data?

13.0 Tree Structures

- The basic idea of multidimensional trees
 - Describe the sets of points through geometric regions, which comprise the points (clusters)
 - The clusters are considered for the actual search and not the individual points
 - Clusters can contain each other, resulting in a hierarchical structure

13.0 Tree Structures

- Differentiating criterions for tree structures:
 - Cluster construction:
 - Completely fragmenting the space or
 - Grouping data locally
 - Cluster overlap:
 - Overlapping or
 - Disjoint
 - Balance:
 - Balanced or
 - Unbalanced

- Object storage:
 - Objects in leaves and nodes, or
 - Objects only in the leaves

- Geometry:
 - Hyperspheres,
 - Hyper-cube,
 - ...
13.1 R-Trees

- The **R-tree** (Guttman, 1984) is the prototype of a multi-dimensional extension of the classical B-trees
- Frequently used for low-dimensional applications (used to about 10 dimensions), such as geographic information systems
- More scalable versions: R*-Trees, R*-Trees and X-Trees (each up to 20 dimensions for uniform distributed data)

13.1 R-Tree Structure

- **Dynamic Index Structure**
 (insert, update and delete are possible)
- **Data structure**
 - **Data pages** are leaf nodes and store clustered point data and data objects
 - **Directory pages** are the internal nodes and store directory entries
 - Multidimensional data are structured with the help of **Minimum Bounding Rectangles (MBRs)**

13.1 R-Tree Example

- **Local grouping** for clustering
- **Overlapping** clusters (the more the clusters overlap the more inefficient is the index)
- **Height balanced** tree structure
 (therefore all the children of a node in the tree have about the same number of successors)
- Objects are **stored**, only in the **leaves**
 - Internal nodes are used for navigation
- MBRs are used as a **geometry**

13.1 R-Tree Characteristics

- The root has at least two children
- Each internal node has between \(m \) and \(M \) children
- \(M \) and \(m \leq M / 2 \) are pre-defined parameters
- For each entry \((l, \text{child-pointer})\) in an internal node, \(l\) is the smallest rectangle that contains the rectangles of the child nodes

13.1 R-Tree Properties

- For each index entry \((l, \text{tuple-id})\) in a leaf, \(l\) is the smallest bounding rectangle that contains the data object (with the ID tuple-id)
- All the leaves in the tree are on the same level
- All leaves have between \(m \) and \(M \) index records
13.1 Operations of R-Trees

- The essential operations for the use and management of an R-tree are
 - Search
 - Insert
 - Updates
 - Delete
 - Splitting

13.1 Searching in R-Trees

- The tree is searched recursively from the root to the leaves
 - One path is selected
 - If the requested record has not been found in that sub-tree, the next path is traversed
 - The path selection is arbitrary

13.1 Searching in R-Trees

- **No guarantee** for good performance
- In the worst case, all paths must be traversed (due to overlaps of the MBRs)
- Search algorithms try to exclude as many irrelevant regions as possible (“pruning”)

13.1 Search Algorithm

- All the index entries which intersect with the search rectangle S are traversed
 - The search in internal nodes
 - Check each object for intersection with S
 - For all intersecting entries continue the search in their children
 - The search in leaf nodes
 - Check all the entries to determine whether they intersect S
 - Take all the correct objects in the result set

13.1 Example

- Check only 7 nodes instead of 12

13.1 Insert

- **Procedure**
 - The best leaf page is chosen considering the spatial criteria
 - Beast leaf: the leaf that needs the smallest volume growth to include the new object
 - The object will be inserted there if there is enough room (number of objects in the node < M)
13.1 Insert

- If there is no more place left in the node, it is considered a case for overflow and the node is divided
 - Goal of the split is to result in minimal overlap and as small dead space as possible
- Interval of the parent node must be adapted to the new object
- If the root is reached by division, then create a new root whose children are the two split nodes of the old root

13.1 Heuristics

- An object is always inserted in the nodes, to which it produces the smallest increase in volume
- If it falls in the interior of a MBR no enlargement is need
- If there are several possible nodes, then select the one with the smallest volume

13.1 Split Node

- If an object is inserted in a full node, then the M+1 objects will be divided among two new nodes
- The goal in splitting is that it should rarely be needed to traverse both resulting nodes on subsequent searches
 - Therefore use small MBRs. This leads to minimal overlapping with other MBRs

13.1 Split Example

- Calculate the minimum total area of two rectangles, and minimize the dead space

13.1 R-Tree Insert Example

- Inserting P either in R7 or R9
- In R7, it needs more space, but does not overlap

13.1 Insert with Overflow

- Objects are inserted into the node that produces the smallest increase in volume.
13.1 Overflow Problem

- Deciding on how exactly to perform the splits is **not trivial**
 - All objects of the old MBR can be divided in different ways on two new MBRs
 - The volume of both resulting MBRs should remain as small as possible
 - The naive approach of checking checks all splits and calculate the resulting volumes is not possible
- Two approaches
 - With **quadratic cost**
 - With **linear cost**

13.1 Example

- x-direction: select A and E, as \(d_x = \text{diff}_x / \text{max}_x = 5 / 14 \)
- y-direction: select C and D, as \(d_y = \text{diff}_y / \text{max}_y = 8 / 13 \)
- Since \(d_x < d_y \), C and D are chosen for the split
13.1 Delete

- **Procedure**
 - Search the leaf node with the object to delete
 - Delete the object
 - The tree is condensed if the resulting node has < m objects
 - When condensing, a node is completely erased and the objects of the node which should have remained are reinserted
 - If the root remains with just one child, the child will become the new root

13.1 Example

- An object from R9 is deleted
 (1 object remains in R9, but m = 2)
 - Due to few objects R9 is deleted, and R2 is reduced (condenseTree)

13.1 Update

- If a record is updated, its surrounding rectangle can change
- The index entry must then be deleted updated and then re-inserted

13.1 Block Access Cost

- The most efficient search in R-trees is performed when the overlap and the dead space are minimal

13.1 Improved Versions of R-Trees

- Where are R-trees inefficient?
 - They allow overlapping between neighboring MBRs
- R+-Trees (Sellis *et al.*, 1987)
 - Overlapping of neighboring MBRs are prohibited
 - This may lead to identical leafs occurring more than once in the tree
 - Improve search efficiency, but similar scalability as R-trees

13.1 R+-Trees

- Overlaps are not permitted (A and P)
- Data rectangles are divided and may be present (e.g., G) in several leafs
13.1 Operations in R+-Trees

- **Differences to the R-tree**
 - **Insert**
 - Data object can be inserted into several leafs
 - Splitting continues both upwards and downwards: downwards because no overlaps are allowed after the split
 - **Delete**
 - There is no more minimum number of children

13.1 Performance

- The **main advantage** of R+-trees is to improve the search performance
- Especially for point queries, this saves 50% of access time
- **Drawback** is the low occupancy of nodes resulting through many splits
- R+-trees often degenerate with the increasing number of changes

13.2 M-Trees

- **M-tree** (Ciaccia et al, 1997) allows the use of arbitrary metrics for comparison of objects ("metric trees")
 - R-trees only work with Euclidean metrics, but what about for example, the **editing distance**?
 - Use the **triangle inequality** to check sub-trees
 - Geometry is determined by the distance function

13.2 Metric Space

- A **metric space** is a pair of \(M = (U, d) \)
 - \(U \) is the universe of all possible values
 - \(d \) is a metric
- For all \(x, y, z \in U \):
 - \(d(x, y) \geq 0 \) (non-negative)
 - \(d(x, y) = 0 \) iff \(x = y \), (identity)
 - \(d(x, y) = d(y, x) \), (symmetry)
 - \(d(x, y) \leq d(x, z) + d(z, y) \) (triangle inequality)

13.2 Triangle Inequality

- Distances for all pairs of points are **pre-computed**
- **Goal**: Find the object with the smallest distance to \(Q \)
- Distance between \(Q \) and \(a \) is 2
- Distance between \(Q \) and \(b \) is 7.81
- Can \(c \) be the closest object?
 - \(d(Q, b) \leq d(Q, c) + d(b, c) \)
 - \(5.51 \leq d(Q, c) \)
 - \(a \) is closer. (no need to calculate \(d(Q, c) \))

13.2 Partitioning

- The M-tree partitions the objects in \(\epsilon \)-environments with certain radius

 A balanced partitioning is obtained by choosing
 \[P_1 = \{ p | d(p, v) \leq r \} \]
 \[P_2 = \{ p | d(p, v) > r \} \]
 so that \(|P_1| = |P_2| = |P| / 2 \)

 For a query \(q \) with \(d(q, x) < r \) only \(P_2 \) must be considered
13.2 M-Trees

- M-trees are similar to R-trees, but use the distance information

Each node \(N \) has a region \(\text{Reg}(N) \)
- \(\text{Reg}(N) = \{ p \mid p \in \mathbb{U}, d(p, v_N) \leq r_N \} \)
- With \(v_N \) as so called “routing object” and \(r_N \) as the radius of the area (“covering radius”)
- All the indexed points \(p \) have guaranteed distance of at most \(r_N \) from \(v_N \)

Queries \(q \) with \(d(q, v_N) > r_N + r_q \) don’t need to consider node \(N \)

- Pre-computed distances to the parent nodes allow fast searching (“fast pruning”)

Example: can we prune \(V_N \)?
- \(V_N \) can be pruned if \((1) \ d(q, v_N) > r_N + r_q \)
- Knowing \(d(q, v_N) \) and \(d(v_p, v_N) \)
 we can estimate \(d(q, v_p) \):
 \[\text{d}(q, v_p) \leq \text{d}(v_p, v_N) + \text{d}(q, v_N) \]
- From (1) and (2) \(V_N \) can be pruned if \(r_N + r_q < | \text{d}(q, v_p) - \text{d}(v_p, v_N) | \)

- Insert is performed as by R-trees with the smallest expansion of the region radius

At overflow, a split is performed
- No volumes are however calculated (as in MBRs in the R-tree)
- Delete the node and choose two new routing objects
- Heuristic: Minimize the maximum of the two resulting region radiuses
- Attribute then the routing objects to the new regions alternating between their nearest neighbors (Balanced Split)

- M-Trees overview
 - Allow a variety of distance functions
 - Use triangle inequality for pruning
 - The dimensionality is also very limited
Both R- and M-Trees work well up to 15-20 dimensions:
- The more dimensions, the more comparisons are needed
- There is currently no truly scalable indexing
- Cause: “Curse of Dimensionality” (Richard Bellman)
 - The volume of space grows exponentially with the number of its dimensions
- Can be tackled by performing dimension reduction
 - Principal Component Analysis, or Latent Semantic Indexing
 - Gemini Indexes
- Not discussed in the course of our lectures

Multi-dimensional Indexes
- R-Trees:
 - MBRs used as geometry
 - Allows for overlaps of rectangles
 - Inserts may lead to splits; avoid bad splits
- M-Trees:
 - Allow for indexing features in metric spaces (e.g., the editing distance)
 - Use triangle inequality

Next Semester

Lectures
- Data Warehousing and Data Mining (english)
- Distributed Database Systems and Peer-to-Peer Data Management (german)
- Spatial Databases and Geo Information Systems (german)
- Digital Libraries (german)