3.0 Introduction

3.0 Query Processing
3.1 Basic Distributed Query Processing
3.2 Data Localization
3.3 Response Time Models

Architectures

- There are 3 major architectures for DDBMS
 - Share-Everything Architecture
 - Nodes share main memory
 - Suitable for tightly coupled high performance highly parallel DDBMS
 - Weaknesses wrt. scalability and reliability
 - Shared-Disk Architecture
 - Nodes have access to same secondary storage (usually SAN)
 - Strengths wrt. complex data and transactions
 - Common in enterprise level DDBMS
 - Share-Nothing Architecture
 - Node share nothing and only communicate over network
 - Common for web-age DDBMS and the cloud
 - Strength wrt. scalability and elasticity

Fragmentation

- Data has to be distributed across nodes
- Main concepts:
 - Fragmentation: partition all data into smaller fragments / “chunks”
 - How to fragment? How big should fragments be? What should fragments contain?
 - Allocation: where should fragments be stored?
 - Distribution and replication
 - Where to put which fragment? Should fragments be replicated? If yes, how often and where?

Fragmentation

- In general, fragmentation and allocation are optimization problem which are closely depended on the actual application
 - Focus on high availability?
 - Focus on high degree of distribution?
 - Focus on low communication costs and locality?
 - Minimize or maximize geographic diversity?
 - How complex is the data?
 - Which queries are used how often?
- Many possibilities and decision!

3.0 Query Processing

- The task of DB query processing is to answer user queries
 - e.g. “How many students are at TU BS in 2009?”
 - Answer: 14,100
- However, some additional constraints must be satisfied
 - Low response times
 - High query throughput
 - Efficient hardware usage
 - …
 - Relational Databases 2!
The generic workflow for centralized query processing involves multiple steps and components.

Example:
- Database storing mythical creatures and heroes
 - Creature(cid, cname, type)
 - Hero(hid, hname)
 - Fights(cid, hid, location, duration)
- “Return the name of all creatures which fought at the Gates of Acheron”
 - SELECT cname FROM creature c, fights f
 WHERE c.cid = f.cid
 AND location = "Gates Of Acheron"

After the naïve query plan is found, the query rewriter performs simple transformations.

- **Example (cont.)**
 - Represent as operator tree

- **Example (cont.)**
 - Translate to relational algebra
 - $\pi_{\text{cname}} (\sigma_{\text{location} = \text{'Gates Of Acheron'}} \text{creature} \times \text{fights})$
 - In contrast to the SQL statement, the algebra statement already contains the required basic evaluation operators.

- **Example (cont.)**
 - System state
 - Size of tables
 - Existence or type of indexes
 - Speed of physical operations
 - etc.
3.0 Query Processing

- The most effort in query preprocessing is spent on query optimization
 - Algebraic Optimization
 - Find a better relational algebra operation tree
 - Heuristic query optimization
 - Cost-based query optimization
 - Statistical query optimization
 - Physical Optimization
 - Find suitable algorithms for implementing the operations

3.0 Query Processing

- Heuristic query optimization
 - Use simple heuristics which usually lead to better performance
 - Basic Credo: Not the optimal plan is needed, but the really crappy plans have to be avoided!
 - Heuristics
 - Break Selections
 - Complex selection criteria should be broken into multiple parts
 - Push Projection and Push Selection
 - Cheap selections and projections should be performed as early as possible to reduce intermediate result size
 - Force Joins
 - In most cases, using a join is much cheaper than using a Cartesian product and a selection

3.0 Query Processing

- Most non-distributed RDBMS rely strongly on cost-based optimizations
 - Aim for better optimized plan which respect system and data characteristics
 - Especially, join order optimization is a challenging problem
 - Idea
 - Establish a cost model for various operations
 - Enumerate all query plans
 - Pick best query plan
 - Usually, dynamic programming techniques are used to keep computational effort manageable

3.0 Query Processing

- Example (cont.)
 - Perform algebraic optimization heuristics
 - Push selection & Projection
 - Force Join

3.0 Query Processing

- Algebraic optimization results in an optimized query plan which is still represented by relational algebra
 - How is this plan finally executed?
 - > Physical Optimization
 - There are multiple algorithms for implementing a given relational algebra operation
 - Select: Scan? Index-lookup? Ad-hoc index generation & lookup? etc.
 - ...

3.0 Query Processing

- Physical optimization translates the query plan into an execution plan
 - Which algorithms will be used on which data and indexes?
 - Physical Relational Algebra
 - For each standard algebra operation, several physical implementations are offered
 - Should pipelining (iterator model) be used? How?
 - Physical and algebraic optimization are often tightly interleaved
 - Most physical optimization also relies on cost-models
 - Idea: perform cost-based optimization algorithm “in one sweep” for algebraic, join order, and physical optimization
3.0 Query Processing

• Example (cont.)

3.1 Basic DQP

• Distributed query processing (DQP) shares many properties of centralized query processing
 – Basically, the same problem…
 – But: objectives and constraints are different!
• Objectives for centralized query processing
 – Minimize number of disk accesses!
 – Minimize computational time

3.1 Basic DQP

• Objectives for distributed query processing are usually less clear…
 – Minimize resource consumption?
 – Minimize response time?
 – Maximize throughput?
• Additionally, costs are more difficult to predict
 – Hard to elicit meaningful statistics on network and remote node properties
 • Also, high variance in costs

3.1 Basic DQP

• Additional cost factors, constraints, and problems must be respected
 – Extension of physical relational algebra
 • Sending and receiving data
 – Data localization problems
 • Which node holds the required data?
 – Deal with replication and caching
 – Network models
 – Response-time models
 – Data and structural heterogeneity
 • Think federated database…

3.1 Basic DQP

• Often, static enumeration optimizations do are difficult in distributed setting
 – More difficult than non-distributed optimization
 – More conflicting optimization goals
 – Unpredictability of costs
 – More costs factors and constraints
 – Quality-of-Service agreements (QoS)
 – Thus, most successful queries optimization techniques are adaptive
 • Query is optimized on-the-fly using current, directly measured information of the system’s behavior and workload
 • Don’t target for the best plan, but for a good plan
Example distributed query processing:

- “Find the creatures involved in fights being decided in exactly one minute”

\[\pi_{\text{name}} (\sigma_{\text{duration}=1\text{min}} \text{Creature} \bowtie \text{fights}) \]

Problem:

- Relations are fragmented and distributed across five nodes
- The `creature` relation uses primary horizontal partitioning by creature type
 - One fragment of the relation is located at node 1, the other on node 2; no replication
- The `fights` relation uses derived horizontal partitioning
 - One fragment on node 3, one on node 4; no replication
- Query originates from node 5

Cost model and relation statistics

- Accessing a tuple (\(tupacc\)) costs 1 unit
- Transferring a tuple (\(tuptrans\)) costs 10 units
- There are 400 creatures and 1000 fights
 - 20 fights are one minute
 - All tuples are uniformly distributed
 - i.e. node 3 and 4 contain 10 short-fight-tuples each
- There are local indexes on attribute “duration”
 - Direct tuple access possible on a local sites, no scanning
- All nodes may directly communicate with each other

Two simple distributed query plans

- Version A: Transfer all data to node 5

\[\pi_{\text{name}} (\text{Creature}_{1} \cup \text{Creature}_{2}) \bowtie (\sigma_{\text{duration}=1\text{min}} \text{Fights}_{1} \cup \text{Fights}_{2}) \]

- Version B: ship intermediate results

\[\pi_{\text{name}} (\text{Creature}_{1} \cup \text{Creature}_{2}) \]

Node 5

- Receive `Creature_{1}`
- Receive `Creature_{2}`
- Receive `Fights_{1}`
- Receive `Fights_{2}`

Node 1

- Send `Creature_{1}`
- Send `Creature_{2}`
- Send `Fights_{1}`
- Send `Fights_{2}`

Node 2

- Send `Creature_{1}`
- Send `Creature_{2}`
- Send `Fights_{1}`
- Send `Fights_{2}`

Node 3

- Send `Fights_{1}`
- Receive `Creature_{1}`
- Receive `Fights_{1}`

Node 4

- Send `Fights_{2}`
- Receive `Creature_{2}`
- Receive `Fights_{2}`
3.1 Basic DQP

Detour

- Costs A: 23,000 Units
 - Partitioning schema
 - Prepared and parameterized SQL statements
 - Full compile time
 - Information on indexes, data statistics (basic statistics, histograms, etc.)
 - Con:
 - Prepared and parameterized SQL statements
 - In rare cases, the catalog may grow very large and may change often
 - What should be optimized when and where?
 - We assume that most applications use canned queries
 - i.e. prepared and parameterized SQL statements
 - Full compile time-optimization
 - Similar to centralized DBs, the full query execution plan is computed at compile time
 - Pro:
 - Queries can be directly executed
 - Con:
 - Complex to model
 - Many information unknown or too expensive to gather (collect statistics on all nodes?)
 - Statistics outdated
 - Especially machine load and network properties are very volatile

Defeat

- Cost B: 460 Units
 - Receive
 - Definitions of tables, views, UDFs & UDTs, constraints, keys, etc.
 - Send
 - Information on node connections
 - Information on network model
 - Information on indexes, data statistics (basic statistics, histograms, etc.), hardware resources (processing & storage), etc.
3.1 Basic DQP

• Fully dynamic optimization
 – Every query is optimized individually at runtime
 – Heavily relies on heuristics, learning algorithms, and luck
 – Pro
 • Might produce very good plans
 • Uses current network state
 • Also usable for ad-hoc queries
 – Con
 • Might be very unpredictable
 • Complex algorithms and heuristics

3.1 Basic DQP

• Semi-dynamic and hierarchical approaches
 – Most DDBMS optimizers use semi-dynamic or hierarchical optimization techniques (or both)
 – Semi-dynamic
 • Pre-optimize the query
 • During query execution, test if execution follows the plan
 – e.g. if tuples/fragments are delivered in time, if network has predicted properties, etc.
 • If execution shows severe plan deviations, compute a new query plan for all missing parts

3.1 Basic DQP

• Hierarchical Approaches
 – Plans are created in multiple stages
 – Global-Local Plans
 • Global query optimizer creates a global query plan
 – i.e. focus on data transfer: which intermediate results are to be computed by which node, how should intermediate results be shipped, etc.
 • Local query optimizers create local query plans
 – Decide on query plan layout, algorithms, indexes, etc. to deliver the requested intermediate result

3.1 Basic DQP

• Two-Step-Plans
 • During compile time, only stable parts of the plan are computed
 – Join order, join methods, access paths, etc.
 • During query execution, all missing plan elements are added
 – Node selection, transfer policies, …
 • Both steps can be performed using traditional query optimization techniques
 – Plan enumeration with dynamic programming
 – Complexity is manageable as each optimization problem is much easier than a full optimization
 – During runtime optimization, fresh statistics are available

3.2 Data Localization

• The first problem in distributed query processing is data localization
 – Problem: query transparency is needed
 • User queries the global schema
 • However, the relations of global schema are fragmented and distributed
 – Assumption
 • Fragmentation is given by partitioning rules
 – Selection predicates for horizontal partitioning
 – Attribute projection for vertical partitioning
 • Each fragment is allocated only at one node
 • No replication
 • Fragmentation rules and location of the fragments is stored in catalog

3.2 Data Localization

• Base Idea:
 – Query Rewriter is modified such that each query to global schema is replaced by a query on the distributed schema
 • i.e. each reference to a global relation is replaced by a localization program which reconstructs the table
 – If the localization program reconstructs the full relation, this is called a generic query
 – Often, the full relation is not necessary and by inspecting the query, simplifications can be performed
 • Reduction techniques for the localization program
3.2 Data Localization

• Example:
 – Relation Creature = (cid, cname, type)
 – Primary partitioning by id
 • Crt1 = σ cid=1σ creature
 • Crt2 = σ cid=2σ creature
 • Crt3 = σ cid=3σ creature
 – Allocate each fragment to its own node
 • Crt1 to node 1, ...
 – A generic localization program for Creature is given by
 • Creature = Crt1 U Crt2 U Crt3

• Often, when using generic queries, unnecessary fragments are transferred and accessed
 – We know the partitioning rules, so it is clear that the requested tuple is in fragment Crt1
 – Use this knowledge to reduce the query

• Join Reductions
 – Similar reductions can be performed with queries involving a join and relations partitioned along the join attributes
 – Base Idea: Larger joins are replaced by multiple partial joins of fragments
 • (R1 U R2) S \equiv (R1 S) U (R2 S)
 • Which might or might not be a good idea depending on the data or system
 • Reduction: Eliminate all those unioned fragments from evaluation which will return an empty result

• Global queries can now easily be transformed to generic queries by replacing table references
 – SELECT * FROM creatures WHERE cid = 9
 • Send and receive operations are implicitly assumed

• In general, the reduction rule for primary horizontal partitioning can be stated as
 – Given fragments of R as FR = {R1, ..., Rn} with Rj = σpj(R)
 – Reduction Rule 1:
 • All fragments Rj for which σpj(Rj) = ∅ can be omitted from localization program
 – pj is the query selection predicate
 – e.g. in previous example, cid = 9 contradicts 100 < cid < 200
 • σpj(Rj) = ∅ ⇔ ∀ x ∈ Rj: ¬(pj(x) ∧ pj(x))
 • “The selection with the query predicate pj on the fragment Rj will be empty if pj contradicts the partitioning predicate p_j of Rj”
 – i.e. pj and p_j are never true at the same time for all tuples in Rj

• i.e.: join according to the join graph
 – Join graph usually not known (full join graph assumed)
 • Discovering the non-empty partial joins will construct join graph
3.2 Data Localization

- We hope for
 - ...many partial joins which will definitely produce empty results and may be omitted
 - This is not true if partitioning conditions are suboptimal
 - ...many joins on small relations have lower resource costs than one large join
 - Also only true if “sensible” partitioning conditions used
 - Not always true, depends on used join algorithm and data distributions; still a good heuristic
 - ...smaller joins may be executed in parallel
 - Again, this is also not always a good thing
 - May potentially decrease response time...
 - ... Response time cost model!
 - ... but may also increase communication costs

- Obviously, the easiest join reduction case follows from derived horizontal fragmentation
 - For each fragment of the first relation, there is exactly one matching fragment of the second relation
 - The reduced query will always be more beneficial than the generic query due to small number of fragment joins
 - Derived horizontal fragmentation is especially effective to represent one-to-many relationships
 - Many-to-many relationships are only possible if tuples are replicated
 - No fragment disjunctivity!

3.2 Data Localization

- Example:
 - \(\text{Creature} = (\text{cid}, \text{cname}, \text{type}) \)
 - \(\text{Cri}_1 = \sigma_{\text{cid}=100}\text{Creature} \)
 - \(\text{Cri}_2 = \sigma_{\text{cid}<200}\text{Creature} \)
 - \(\text{Cri}_3 = \sigma_{\text{cid}=200}\text{Creature} \)
 - \(\text{Fights} = (\text{cid}, \text{hid}, \text{location}, \text{duration}) \)
 - \(\text{Fg}_1 = \sigma_{\text{cid}=200}\text{Fights} \)
 - \(\text{Fg}_2 = \sigma_{\text{cid}=100}\text{Fights} \)
 - \(\text{SELECT} * \text{FROM} \text{creature c, fight f WHERE} \text{c.cid=f.cid} \)

- Formally
 - \(\text{Join Fragmentation} \)
 - \((R_1 \cup R_2) \bowtie S \equiv (R_1 \bowtie S) \cup (R_2 \bowtie S) \)
 - \(\text{Reduction Rule 2:} \)
 - \(R_1 \bowtie R_2 = \emptyset \Rightarrow \forall x \in R_1, y \in R_2; - (p_1(x) \land p_2(y)) \)
 - “The join of the fragments \(R_1 \) and \(R_2 \) will be empty if their respective partition predicates (on the join attribute) contradict.”
 - i.e. there is no tuple combination \(x \) and \(y \) such that both partitioning predicates are fulfilled at the same time
 - Empty join fragments may be reduced

- Example:
 - \(\text{Creature} = (\text{cid}, \text{cname}, \text{type}) \)
 - \(\text{Cri}_1 = \sigma_{\text{cid}=100}\text{Creature} \)
 - ...
 - \(\text{Fights} = (\text{cid}, \text{hid}, \text{location}, \text{duration}) \)
 - \(\text{Fg}_1 = \text{Fights} \bowtie\text{Creature} \)
 - ...
 - \(\text{SELECT} * \text{FROM} \text{creature c, fight f WHERE} \text{c.cid=f.cid} \)
3.2 Data Localization

- **Reduction for vertical fragmentation** is very similar
 - **Localization program** for R is usually of the form
 - $R = R_1 \bowtie R_2$
 - When reducing generic vertically fragmented queries, avoid joining in fragments containing useless attributes
 - **Example:**
 - $Creatue = (cid, name, type)$ is fragmented to $Creatue_1 = (cid, name)$ and $Creatue_2 = (cid, type)$
 - For the query $\text{SELECT name FROM creature WHERE cid}=9$, no access to $Creatue_2$ is necessary

- **Hybrid Shipping**
 - Partially send query to server
 - Execute some query parts at the server, send intermediate results to client
 - Execute remaining query at the client

- Of course, these simple models can be extended to multiple nodes
 - Query optimizer has to decide which parts of the query have to be shipped to which node
 -**Cost model**
 - In heavily replicated scenarios, clever hybrid shipping can effectively be used for load balancing
 - Move expensive computations to lightly loaded nodes
 - Avoid expensive communications

- **Data Shipping**
 - Query remains at the client
 - Server ships all required data to the client
 - Client computes result

- **Data Localization**
 - Previously, we computed **reduced queries** from global queries
 - However, where should the query be executed?
 - Assumption: only two nodes involved
 - i.e. client-server setting
 - Server stores data, query originates on client
 - **Query shipping**
 - Common approach for centralized DBMS
 - Send query to the server node
 - Server computes the query result and ships result back

- **Reducing Queries w. Hybrid Fragmentation**
 - **Localization program** for R combines joins and unions
 - e.g. $R = (R_1 \cup R_2) \bowtie R_3$
 - **General guidelines are**
 - Remove empty relations generated by contradicting selections on horizontal fragments
 - Relations containing useless tuples
 - Remove useless relations generated by vertical fragments
 - Relations containing unused attributes
 - Break and distribute joins, eliminate empty fragment joins
 - Fragment joins with guaranteed empty results

- **Reducing Queries w. Hybrid Fragmentation**
 - **Localization program** for R combines joins and unions
 - e.g. $R = (R_1 \cup R_2) \bowtie R_3$
 - **General guidelines are**
 - Remove empty relations generated by contradicting selections on horizontal fragments
 - Relations containing useless tuples
 - Remove useless relations generated by vertical fragments
 - Relations containing unused attributes
 - Break and distribute joins, eliminate empty fragment joins
 - Fragment joins with guaranteed empty results
3.3 Response Time Models

- "Classic" DB cost models focus on total resource consumption of a query
 - Leads to good results for heavy computational load and slow network connections
 - If query saves resources, many queries can be executed in parallel on different machines
 - However, queries can also be optimized for short response times
 - "Waste" some resources to get query results earlier
 - Take advantage of lightly loaded machines and fast connections
 - Utilize intra-query parallelism
 - Parallelize one query instead of multiple queries

- Response time models are needed!
 - "When does the first result tuple arrive?"
 - "When have all tuples arrived?"

- Example
 - Assume relations or fragments A, B, C, and D
 - All relations/fragments are available on all nodes
 - Full replication
 - Compute \((A \bowtie B) \bowtie (C \bowtie D)\)

- Assumptions
 - Each join costs 20 time units (TU)
 - Transferring an intermediate result costs 10 TU
 - Accessing relations is free
 - Each node has one computation thread

- Two plans:
 - Plan 1: Execute all operations on one node
 - Total costs: 60
 - Plan 2: Join on different nodes, ship results
 - Total costs: 80

- With respect to total costs, plan 1 is better

- Example (cont.)
 - But: Plan 2 is better wrt. to response time as operations can be carried out in parallel

- Considerations:
 - How much speedup is possible due to parallelism?
 - Or: "Does kill-it-with-iron" work for parallel problems?
 - Performance speed-up of algorithms is limited by Amdahl's Law
 - Gene Amdahl, 1968
 - Algorithms are composed of parallel and sequential parts
 - Sequential code fragments severely limit potential speedup of parallelism!
3.3 Response Time Models

- Possible maximal speed-up:
 \[\text{maxspeedup} \leq \frac{p}{1 + s(p-1)} \]
 - \(p \) is number of parallel threads
 - \(s \) is percentage of single-threaded code
- e.g. if 10% of an algorithm is sequential, the maximum speed up regardless of parallelism is 10x
- For maximal efficient parallel systems, all sequential bottlenecks have to be identified and eliminated!

3.3 Response Time Models

- **Good First Tuple Response** benefits from queries executed in a pipelined fashion
 - Not pipelined:
 - Each operation is fully completed and an intermediate result is created
 - Next operation reads the intermediate result and is then fully completed
 - Reading and writing of intermediate results costs resources!
 - Pipelined:
 - Operations do not create intermediate results
 - Each finished tuple is fed directly into the next operation
 - Tuples “flow” through the operations

3.3 Response Time Models

- Usually, the tuple flow is controlled by **iterator interfaces** implemented by each operation
 - “Next tuple” command
 - If execution speed of operations in the pipeline differ, tuples are either cached or the pipeline blocks
- Some operations are more suitable than others for pipelining
 - **Good**: scan, select, project, union, ...
 - **Tricky**: join, intersect, ...
 - **Very Hard**: sort

3.3 Response Time Models

- Simple pipeline example:
 - **Non-pipelined** BNL join
 - Accessing one tuple during tablescan: 2 TU (time unit)
 - Selecting (testing) one tuple: 1 TU
 - Projecting one tuple: 1 TU
 - **Pipelined**
 - Operations do not create intermediate results
 - Each finished tuple is fed directly into the next operation
 - Tuples “flow” through the operations
 - **BNL Join**
 - Table scan, selection, projection
 - 1,000 tuples are scanned, selectivity is 0.1
 - Costs:
 - Accessing one tuple during tablescan: 2 TU (time unit)
 - Selecting (testing) one tuple: 1 TU
 - Projecting one tuple: 1 TU
 - **Response time** (non-pipelined BNL)
 - The first tuple can arrive at the end of any pipeline after 4 TU
 - Stored in intermediate result
 - All tuples have arrived at the end of the pipelines after 3,100 TU
 - Final result will be available after 13,100 TU
 - No benefit from pipelining w.r.t. response time
 - First tuple arrives at 3100 ≪ t ≤ 13100

3.3 Response Time Models

- Consider following example:
 - Joining two table subsets
 - Non-pipelined BNL join
 - Both pipelines work in parallel
 - Costs:
 - 1,000 tuples are scanned in each pipeline, selectivity 0.1
 - Joining 100 \(\bowtie \) 100 tuples: 10,000 TU (1 TU per tuple combination)
 - **Response time** (non-pipelined BNL)
 - The first tuple can arrive at the end of any pipeline after 4 TU
 - Stored in intermediate result
 - All tuples have arrived at the end of the pipelines after 3,100 TU
 - Final result will be available after 13,100 TU
 - No benefit from pipelining w.r.t. response time
 - First tuple arrives at 3100 ≪ t ≤ 13100
3.3 Response Time Models

- **The suboptimal result of the previous example is due to the unpipelined join**
 - Most traditional join algorithms are unsuitable for pipelining
 - Pipelining is not usually necessary feature in a strict single thread environment
 - Join is fed by two input pipelines
 - Only one pipeline can be executed at a time
 - Thus, at least one intermediate result has to be created
 - Join may be performed single / semi-pipelined
 - In parallel / distributed DBs, fully pipelined joins are beneficial

- **Single-Pipelined-Hash-Join**
 - One of the “classic” join algorithms
 - Base idea $A \bowtie B$
 - One input relation is read from an intermediate result (B), the other is pipelined though the join operation (A)
 - All tuples of B are stored in a hash table
 - Hash function is used on the join attribute
 - i.e. all tuples showing the same value for the join attribute are in one bucket
 - Careful: hash collisions! Tuple with different joint attribute value might end up in the same bucket!
 - Every incoming tuple x (via pipeline) of A is hashed by join attribute
 - Compare x to each tuple in the respective B bucket
 - Return those tuples which show matching join attributes
 - If a new tuple arrives, process it analogously

- **Double-Pipelined-Hash-Join**
 - Dynamically build a hashtable for A and B each
 - Memory intensive!
 - Process tuples on arrival
 - Cache tuples if necessary
 - Balances between A and B tuples for better performance
 - Rely on statistics for a good $A:B$ ratio
 - If a new A tuple arrives
 - Insert into the A table
 - Check in the B table if there are join partners for a
 - If yes, return all matching AB tuples
 - If a new B tuple arrives, process it analogously

- **In pipelines, tuples just “flow” through the operations**
 - No problem with that in one processing unit…
 - But how do tuples flow to other nodes?
- **Sending each tuple individually may be very ineffective**
 - Communication costs:
 - Setting up transfer & opening communication channel
 - Composing message
 - Transmitting message: header information & payload
 - Most protocols impose a minimum message size & larger headers
 - Tuplesize $= $ Minimal Message Size
 - Receiving & decoding message
 - Closing channel

- **Idea: Minimize Communication Overhead by Tuple Blocking**
 - Do not send single tuples, but larger blocks containing multiple tuples
 - “Burst-Transmission”
 - Pipeline-Iterators have to be able to cache packets
 - Block size should be at least the packet size of the underlying network protocol
 - Often, larger packets are more beneficial
 - …more cost factors for the model
Distributed Query Processing

- **Additional constraints and cost factors** compared to “classic” query optimization
 - Network costs, network model, shipping policies
 - Fragmentation & allocation schemes
 - Different optimization goals
 - Response time vs. resource consumption
- **Basic techniques try to prune unnecessary accesses**
 - Generic query reductions

Distributed Query Processing

- This lecture only covers very basic techniques
 - In general, distributed query processing is a very complex problem
 - Many and new optimization algorithms are researched
 - Adaptive and learning optimization
 - Eddies for dynamic join processing
 - Fully dynamic optimization
 - ...
- **Recommended literature**

Next Lecture

- **Distributed Transaction Management**
 - Transaction Synchronization
 - Distributed Two-Phase Commits
 - Byzantine Agreements