Distributed Data Management

Christoph Lofi
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
10.0 Towards the Cloud

10.0 Special Purpose Database
10.1 Trade-Offs
 – CAP Theorem
 – BASE transactions
10.2 Showcase: Amazon Dynamo
• Traditional databases are usually **all-purpose systems**
 – e.g. DB2, Oracle, MySQL, …
 – Theoretically, general purpose DB provide all features to develop any data driven application
 – **Powerful query languages**
 • SQL, can be used to **update** and **query** data; even very complex analytical queries possible
 – **Expressive data model**
 • Most data modeling needs can be served by the **relational model**
– **Full transaction support**
 * Transactions are guaranteed to be “safe”
 – i.e. ACID transaction properties

– **System durability and security**
 * Database servers are resilient to failures
 – **Log files** are continuously written
 » Transactions running during a failure can be recovered
 – Most databases have support for constant **backup**
 » Even severe failures can be recovered from backups
 – Most databases support “**hot-standby**”
 » 2nd database system running simultaneously which can take over in case of severe failure of the primary system

* Most databases offer basic **access control**
 – i.e. **authentication** and **authorization**
• In short, databases could be used as storage solutions in all kinds of applications
• Furthermore, we have shown distributed databases which also support all features known from classical all-purpose databases
 – In order to be distributed, additional mechanisms were needed
 • partitioning, fragmentation, allocation, distributed transactions, distributed query processor,....
• However, classical all-purpose databases may lead to problems in extreme conditions
 – Problems when being faced with massively high query loads
 • i.e. millions of transactions per second
 • Load to high for a single machine or even a traditional distrusted database
 – Limited scaling
 – Problems with fully global applications
 • Transactions originate from all over the globe
 • Latency matters!
 – Data should be geographically close to users
 • Claims:
 – Amazon: increasing the latency by 10% will decrease the sales by 1%
 – Google: increasing the latency by 500ms will decrease traffic by 20%
– Problems with extremely high **availability** constraints

 • Traditionally, databases can be recovered using logs or backups

 • Hot-Standbys may help during repair time

 • But for some applications, this is not enough:
 Extreme Availability (Amazon)
 – “… must be available even if disks are failing, network routes are flapping, and several data centers are destroyed by massive tornados”
 – Additional availability and durability concepts needed!
In extreme cases, specialized database-like systems may be beneficial

- Specialize on certain query types
- **Focus on a certain characteristic**
 - i.e. availability, scalability, expressiveness, etc…
- Allow weaknesses and limited features for other characteristics
• Typically, two types of queries can be identified in global businesses
• **OLTP queries**
 – **OnLine Transaction Processing**
 – Typical *business backend-data storage*
 • i.e. order processing, e-commerce, electronic banking, etc.
 – Focuses on **data entry** and **retrieval**
 – Usually, possible **transactions** are previously **known** and are only **parameterized** during runtime
 – The **transaction load is very high**
 • Represents daily business
 – Each **transaction is usually very simple** and local
 • Only few records are accessed in each transaction
 • Usually, only basic operations are performed
• OLAP queries
 – OnLine Analytical Processing
 – Business Intelligence Queries
 • i.e. complex and often multi-dimensional queries
 – Usually, only few OLAP queries are issued by business analysts
 • Not part of daily core business
 – Individual queries may need to access large amounts of data and uses complex aggregators and filters
 • Runtime of a query may be very high
In the recent years, discussing “NoSQL” databases have become very popular

– Careful: big misnomer!

 • Does not necessarily mean that no SQL is used
 – There are SQL-supporting NoSQL systems…
 • NoSQL usually refers to “non-standard” architectures for database or database-like systems
 – i.e. system not implemented as shown in RDB2
 • Not formally defined, more used as a “hype” word

– Popular base dogma: Keep It Stupid Simple!
• The NoSQL movement popularized the development of special purpose databases
 – In contrast to general purpose systems like e.g. DB2
• NoSQL usually means one or more of the following
 – Being massively scalable
 • Usually, the goal is unlimited linear scalability
 – Being massively distributed
 – Being extremly available
 – Showing extremely high OLTP performance
 • Usually, not suited for OLAP queries
Not being “all-purpose”
- Application-specific storage solutions showing some database characteristics

Not using the relational model
- Usually, much simpler data models are used

Not using strict ACID transactions
- No transactions at all or weaker transaction models

Not using SQL
- But using simpler query paradigms

Especially, not supporting “typical” query interfaces
- i.e. JDBC
- Offering direct access from application to storage system
10.0 Special Purpose Databases

• In short:
 – Most NoSQL focuses on building specialized high-performance data storage systems!
NoSQL and special databases have been popularized by different communities and driven by different design motivations.

Base motivations
- **Extreme Requirements**
 - Extremely high availability, extremely high performance, guaranteed low latency, etc.
 - e.g. global web platforms
- **Alternative data models**
 - Less complex data model suffices
 - Non-relational data model necessary
 - e.g. multi-media or scientific data
- **Alternative database implementation techniques**
 - Try to maintain most database features but lessen the drawbacks
 - e.g. “traditional” database applications, e.g. VoltDB
• Motivation: **Extreme Requirements**

 – **Extreme Availability**
 • No disaster or failure should ever block the availability of the database
 • Usually achieved by strong *global replication*
 – i.e. data is available in multiple sites with completely different location and connections

 – **Guaranteed low latency**
 • Distances from users to data matters in term of latency
 – e.g. crossing the Pacific from east-coast USA to Asia easily amounts for 500ms latency
 • Data should be close to users
 – e.g. global allocation considering the network layer’s performance

 – **Extremely high throughput**
 • Some systems need to handle extremely high loads
 – e.g. Amazon’s four million checkouts during holidays
 » Each checkout was preceded by hundreds of queries
Community: Alternative Data Models

- This is where the NoSQL originally came from
- **Base idea:**
 - Use a very simple data model to improve performance
 - No complex queries supported
- **e.g. Document stores**
 - Data consist of key-value pairs and additional document payload
 - e.g. payload represents text, video, music, etc.
 - Often supports IR-like queries on documents
 - e.g. ranked full text searches
 - Examples
 - CouchDB, MongoDB
-- Key-Value stores
 • Each record consist of just a key-value pair
 • Very simple data and query capabilities
 – Put and Get
 • Usually implemented on top of a Distributed Hash Table
 • Example:
 – MemcacheDB and Amazon Dynamo
-- Both document and key-value stores offer low-level, one-record-at-a-time data interfaces
-- XML stores, RDF stores, Object-Oriented Databases, etc.
 • Not important in current context as most implementations have neither high performance nor are scalable
 – Those use the opposite philosophy of “classic” NoSQL: do it more complex!
• Community: Alternative Database Implementation

• OLTP Overhead Reduction
 – Base observation: most time in traditional OLTP processing is spent in overhead tasks
 • Four major overhead sources equally attribute to most of the used time
 – Base idea
 • Avoid overhead all those sources of unnecessary overhead
Logging
- “Traditional” databases write everything twice
 - Once to tables, once to log
 - Log is also forced to disk ⇒ performance issues

Locking
- For ensuring transactional consistency, usually locks are used
- Locks force other transaction to wait for lock-release
- Strongly decreases maximum number of transactions!

Latching
- Updates to shared data structures (e.g. B-tree indexes) are difficult for multiple threads
- Latches are used (a kind of short-term lock for shared data structures)
– **Buffer Management**

- Disk-based systems have problems randomly accessing small bits of data.
- Buffer management locates the required data on disk and caches the whole block in memory.
- While increasing the performance of disk-based systems, it still is a considerable overhead by itself.
Current trend for overhead avoidance

- **Distributed single-thread** minimum-overhead **shared-nothing** parallel **main-memory** databases (OLTP)
 - e.g. VoltDB (Stonebraker et al.),

- **Sharded row stores** (mostly **OLAP**)
 - e.g. Greenplum, MySQL Cluster, Vertica, etc.
In the following, we will examine some *trade-offs* involved when designing high performance *distributed and replicated* databases.

CAP Theorem

- “You can’t have a highly available partition-tolerant and consistent system”

BASE Transactions

- Weaker than ACID transaction model following from the CAP theorem
10.1 CAP-Theorem

• The **CAP theorem** was made popular by **Eric Brewer** at the ACM Symposium of Distributed Computing (PODC)

 – Started as a conjecture, was later proven by Gilbert and Lynch

 • Seth Gilbert, Nancy Lynch. “**Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services**”. ACM SIGACT News, 2002

 – CAP theorem limits the design space for highly-available distributed systems
10.1 CAP-Theorem

• Assumption:
 – High-performance distributed storage system with replicated data fragments

• **CAP**: Consistency, Availability, Partition Tolerance

• **Consistency**
 – Not to be confused with ACID consistency
 • CAP is not about transactions, but about the design space of highly available data storage
 – Consistent means that all replicas of a fragment are always equal
 • Thus, CAP consistency is similar to ACID atomicity: an update to the system atomically updates all replicas
 – At a given time, all nodes see the same data
10.1 CAP-Theorem

• **Availability**
 – The data service is **available and fully operational**
 – Any node failure will allow the survivors to continue operation without any restrictions
 – Common problem with availability:
 Availability most often fails when you need it most
 • i.e. failures during busy periods because the system is busy
• **Partition Tolerance**
 – No set of *network failures* less than total network crash is allowed to cause the system to respond incorrectly

 – **Partition**
 • Set of nodes which can communicate with each other
 • The whole node set should always be one big partition

 – However, often multiple *partitions* may form
 • Assumption: short-term network partitions form very frequently
 • Thus, not all nodes can communicate with each other
 • Partition tolerant system must either
 – prevent this case of ever happening
 – or tolerate forming and merging of partitions without producing failures
Finally: The CAP theorem

- “Any highly-scalable distributed storage system using replication can only achieve a maximum of two properties out of consistency, availability and partition tolerance”
 - Thus, only compromises are possible
- In most cases, consistency is sacrificed
 - Availability and partition tolerance keeps your business (and money) running
 - Many application can live with minor inconsistencies
10.1 CAP-Theorem

• “Proof” of CAP Theorem

• Assume
 – Two nodes N_1 and N_2
 – Both share a piece of data V with value V_0
 – Both nodes run some algorithm A or B which are safe, bug free, predictable and reliable
 • In this scenario:
 – A writes new values of V
 – B reads values of V
10.1 CAP-Theorem

• “Good” case:
 – A writes new value V_1 of V
 – An update message m is sent to N_2
 – V is updated on N_2
 – B reads correct value V_1 from V
10.1 CAP-Theorem

• Assume that the network **partitions**
 – No messages between N_1 and N_2 possible anymore
 – V on N_2 is not updated, B reads stale value V_0 from V
 • **Consistency** violated
10.1 CAP-Theorem

• How to deal with the situation?
• **Ensure consistency, drop availability**
 – Use **synchronous messages to update all replicas**
 • Treat updating all replicas as an transaction
 • e.g. as soon as V is updated, send update messages to all replicas
 – Wait for confirmation; lock V at all nodes until all replicas have confirmed
 – What if no confirmation is received? Short time partitioning event and wait? Node failure and waiting is futile?
 – This approach does definitely not scale
 – During synchronization, V is **not available**
 • Clients have to wait
 • Network partitions even increase synchronization time and thus decrease availability further

– **Example**
 • Most traditional distributed databases
10.1 CAP-Theorem

• **Ensure consistency, drop availability** (alternative)

 – Just use one single master copy of the value V
 • Naturally **consistent**, no locking needed

 – **But**: **No high availability**
 • As soon as the node storing V fails or cannot be reached, it is unavailable

 – **Additionally**:
 • Possibly bad scalability, possibly bad latency

 – **Examples**
 • Non-replicating distributed database
 • Traditional Client-Server database
 – Is also partition tolerant as there is just one node
• **Drop consistency**, keep partition tolerance and availability

 – **Base idea for partition tolerance**
 • Each likely partition should have an own copy of any needed value

 – **Base idea for availability**
 • Partitions or failing nodes should not stop availability of the service
 – Ensure “always write, always read”
 – No locking!
 • Use asynchronous update messages to synchronize replicas
 • So-called “**eventual consistency**”
 – After a while, all replicas will be consistent; until then stale reads are possible and must be accepted
 – No guaranteed consistency
 – Deal with versioning conflicts! (Compensation? Merge Versions? Ignore?)

 – **Examples**
 • Most storage backend services in internet-scale business
 – e.g. Amazon (Dynamo), Google (BigTable), Yahoo (PNUTS), Facebook (Cassandra), etc.
10.1 CAP-Theorem

• Accepting **eventual consistency** leads to new application and transaction paradigms

• **BASE transactions**
 – Directly follows from the CAP theorem
 – **Basic Availability**
 • Focus on availability – even if data is outdated, it should be available
 – **Soft-State**
 • Allow inconsistent states
 – **Eventual Consistent**
 • Sooner or later, all data will be consistent and in-sync
 • In the meantime, data is **stale** and queries return just approximate answers
10.1 BASE Transactions

• “Buy-A-Book” transaction
 – Assume a store like Amazon
 – Availability counter for every book in store
 – User puts book with availability ≥ 1 into the shopping cart
 • Decrease availability by one
 – Continue shopping
 – Two options
 • User finally **buys**
 – Send invoice and get user’s money
 – **Commit**
 • User does not buy
 – **Rollback** (reset availability)
10.1 BASE Transactions

• Obviously, this transaction won’t work in Amazon when locks are used
 – But even shorter transactions will unavoidably lead to problems assuming million concurrent users
 – Lock contention thrashing
10.1 BASE Transactions

• **Consideration:**
 Maybe full ACID properties are not always necessary?
 – Allow the availability counter to be out-of-sync?
 • Use a cached availability which is updated eventually
 – Allow rare cases where a user buys a book while unfortunately the last copy was already sold?
 • Cancel the order and say you are very sorry…

• These consideration lead to the **BASE** transaction model!
 – Sacrifice transactional consistency for scalability and features!
The transition between **ACID** and **BASE** is a continuum

- You may place your application wherever you need it to between ACID and BASE

ACID

- Guaranteed Transactional Consistency
- Severe Scalability issues

BASE

- High scalability and performance
- Eventually consistent, approximate query results
10.2 Dynamo

• Example System: Amazon Dynamo

– Amazon is one of the specialized storage solutions used at Amazon
 • Among S3, SimpleDB, Elastic Block Storage, and others
 • In contrast to the other service, it is only used internally
10.2 Dynamo

• Amazon infrastructure
 – Amazon uses a fully service oriented architecture
 • Each function used in any Amazon system is encapsulated in a service
 – i.e. shopping cart service, session management service, render service, catalog service, etc.
 • Each service is described by a service level agreement
 – Describes exactly what the service does
 – Describes what input is needed
 – Gives quality guarantees
• Services usually use other services
 – e.g. the page render service rendering the Amazon personalized start accesses roughly 150 simpler services
 – Services may be **stateful** or **stateless**
 • **Stateless**: Transformation, Aggregation, etc.
 • **Stateful**: Shopping cart, session management, etc.
 – **Dynamo** is a data storage service which mainly drives stateful services
 • Notably: shopping cart and session management
 • There are also other storage services
Service Level Agreements (SLA) are very important for Amazon

- Most important: **latency requirements**
- Goal: 99.9% of all users must have an internal page render response times below 300ms
 - Not average response times, but guaranteed maximum latency for nearly all customers!
 - It should not matter what the user does, how complex his history is, what time of day it is, etc.

- Most lower-tier services have very strict (and even tighter) SLA requirements
 - Final response is generated by aggregating all service responses
 - e.g. often, response times below 1ms for deep core services
Furthermore, Amazon is a very big company

- **Up to 6 million sales per day**
 - For each sale, there are hundreds of page renders, data accesses, etc.
 - Even more customers who just browse without buying!

- **Globally accessible and operating**
 - Customers are from all over the world

- **Highly scalable** and distributed systems necessary
 - Amazon Shopping uses several 10,000s servers

- **Amazon services must always be available**
• Hard learned lessons in early 2000: **RDBMS are not up for the job**
 – Most features not needed
 – Bad scalability
 – Can’t guarantee extremely low latency under load
 – High costs
 – Availability problems
10.2 Dynamo

• **Dynamo** is a low-level distributed storage system in the Amazon service infrastructure.

• Requirements:

 – Very strict 99.9th percentile **latency**
 - No query should ever need longer than guaranteed in the SLA

 – Must be “**always writable**”
 - At no point in time, write access to the system is to be denied

 – Should support **user-perceived consistency**
 - i.e. technically allows for inconsistencies, but will eventually lead to an consistent state again
 - User should in most cases not notice that the system was in an inconsistent state
10.2 Dynamo

- **Low cost of ownership**
 - Best run on commodity hardware

- **Incremental scalability**
 - It should be easy to incrementally add nodes to the system to increase performance

- **Tunable**
 - During operation, trade-offs between costs, durability, latency, or consistency should be tunable
• Observation

– Most services can efficiently be implemented only using **key-value stores**
 • e.g. shopping cart
 – key: session ID; value: blob containing cart contents
 • e.g. session management
 – key: session ID; value: meta-data context

– No complex data model or queries needed!
10.2 Dynamo - Design

• **Further assumptions**

 – All nodes in a Dynamo cluster are **non-malicious**
 • No fraud detection or malicious node removal necessary

 – All nodes are **altruistic**
 • No personal agenda; will participate in the system as long as able

 – Each service can set up its own **dynamo cluster**
 • Scalability necessary, but cluster don’t need to scale infinitely
• **Dynamo Implementation Basics**

 – Overall, strong similarities to typical DHT implementations (e.g. Chord)

 – Build a distributed storage system on top of a **DHT**

 • Just provide `put()` and `get()` interfaces

 – Hashes **nodes** and **data** onto a **128-Bit address space ring** using MD5

 • **Consistent hashing** similar to Chord

 • Nodes take responsibility of their respective anti-clockwise arc
Assumption: usually, nodes don’t leave or join
 - Only in case of hardware extension or node failure

Assumption: ring will stay manageable in size
 - e.g. 10,000 nodes, not millions or billions

Requirement: each query must be answered as fast as possible (low latency)

Conclusion: For routing, each node uses a full finger table
 - Ring is fully connected
 - Maintenance overhead low due to ring’s stability
 - Each request can be routed within one single hop
 - No varying response time as in multi-hop systems like Chord!
– For **load-balancing**, each node may create additional **virtual server** instances

 • Virtual servers may be created, merged, and transferred among nodes
 – Virtual servers are transferred using a large file binary transfer
 » Transfer not on record level

 • Multiple **central controllers** manage virtual server creation and transfers (Many-to-Many)
For **durability**, replicas are maintained for each key-value entry

- Replicas are stored at the clockwise successor nodes
- Each node maintains a so-called **preference list** of nodes which may store replicas
 - More or less a renamed **successor list**
 - Preference list is usually longer than number of desired replicas

Both techniques combined allow for **flexible, balanced, and durable** storage of data
Eventual Consistency

- After a `put()` operation, updates are propagated asynchronously
 - Eventually, all replicas will be consistent
 - Under normal operation, there is a hard upper bound until constancy is reached
- However, certain failure scenarios may lead to extended periods of inconsistency
 - e.g. network partitions, severe server outages, etc.
- To track inconsistencies, each data entry is tagged with a version number
10.2 Dynamo – Requests

• Clients can send any `put()` or `get()` request to any Dynamo node
 – Typically, each client chooses a Dynamo node which is used for the whole user session
 – Responsible node is determined by either
 • Routing requests through a set of *generic load balancers*, which reroute it to a Dynamo node to balance the load
 – Very simple for clients, additional latency overhead due to additional intermediate routing steps
 • Or the **client** uses a partition-aware client library
 – i.e. Client determines independently which node to contact by e.g. hashing
 – Less communication overhead and lower latency; programming clients is more complex
10.2 Dynamo – Requests

• Request Execution
 – **Read / Write request on a key**
 • Arrives at a node (coordinator)
 – Ideally the node responsible for the particular key
 – Else forwards request to the node responsible for that key and that node will become the coordinator
 • The first N healthy and distinct nodes following the key position are considered for the request
 – Nodes selected from preference lists of coordinating node
 • Quorums are used to find correct versions
 – R: Read Quorum
 – W: Write Quorum
 – $R + W > N$
10.2 Dynamo – Requests

– **Writes**
 - Requires generation of a *new data entry version* by coordinator
 - Coordinator writes locally
 - Forwards to \(N \) healthy nodes, if \(W - 1 \) respond then the write was successful
 - Called *sloppy quorum* as only healthy nodes are considered, failed nodes are skipped
 - Not all contacted nodes must confirm
 - Writes may be buffered in memory and later written to disk
 - Additional risks for durability and consistency in favor for performance

– **Reads**
 - Forwards to \(N \) healthy nodes, as soon as \(R - 1 \) nodes responded, results are forwarded to user
 - Only unique responses are forwarded
 - Client handles merging if multiple versions are returned
 - Client notifies Dynamo later of the merge, old versions are freed for later Garbage Collection
10.2 Dynamo - Requests

• Tuning dynamo
 – Dynamo can be tuned using three major parameters
 • N: Number of contacted nodes per request
 • R: Number of Read quorums
 • W: Number of Write quorums

<table>
<thead>
<tr>
<th>N</th>
<th>R</th>
<th>W</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>Consistent durable, interactive user state (typical)</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>n</td>
<td>High performance read engine</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Distributed web cache (not durable, not consistent, very high performance)</td>
</tr>
</tbody>
</table>
• Theoretically, the same data can reside in **multiple versions** within the system

 – Multiple causes

 • **No failure**, asynchronous update in progress
 – Replicas will be eventual consistent
 – In rare case, branches may evolve

 • **Failure**: ring partitioned or massive node failure
 – Branches will likely evolve

 – In any case, a client just continues operation as usual
 • As soon as the system detects conflicting version from different branches, **conflict resolution** kicks in
• **Version Conflict Resolution**

 – Multiple possibilities

 • Depends on application! Each instance of Dynamo may use a different resolution strategy

 – **Last-write-wins**

 • The newest version will always be dominant
 • Changes to older branches are discarded

 – **Merging**

 • Changes of conflicting branches are optimistically merged
• **Example Merging**

 – User browses Amazon’s web catalog and adds a **book** to the shopping cart

 • Page renderer service stores new cart to Dynamo

 – Current session has a preferred Dynamo node

 • Shopping cart is replicated in the cart-service Dynamo instance

 – **Dynamo partitions** due to large-scale network outages

 – User adds a **CD** to his cart

 • Updated cart is replicated within the current partition
– Page renderer service *looses connection* to the whole partition containing preferred Dynamo node
 • Switches to another node from the other partition
 – That partition contains only stale replicas of the cart, missing the CD
– User adds a *watering can* to his cart
 • Dynamo is “always write”
 • Watering can is just added to an old copy of the cart (only book)
– Partitioning event ends
 • Both partitions can contact each other again
 • Conflict detected
 • Both carts are simply merged
 • In the best case, the user did not even notice that something was wrong
10.2 Dynamo – Vector Clocks

• Version numbers are stored using vector clocks
 – Addressed problem: Detect conflicts using version numbers without central authority
 – Vector clocks are used to generate partially ordered labels for events in distributed systems
 • Designed to detect causality violations (e.g. conflicting branches)
 • Developed in 1988 independently by Colin Fridge and Friedmann Mattern
• Base idea vector clocks
 - Each node / process maintains an individual logical clock
 • Initially, all clocks are 0
 • A global clock can be constructed by concatenating all logical clocks in an array
 - Every node stores a local “smallest possible values” copy of the global clock
 • Contains the last-known logical clock values of all related other nodes
Every time a node raises an **event**, it **increases its own logical clock by one** within the vector.

Each time a **message is to be sent**, a node increases its own clock in the vector and attaches the whole vector to the message.

Each time a node **receives a message**, it increments its own logical clock in the vector.

- Additionally, each element of the own vector is updated with the maximum of the own vector and the received vector.
- **Conflicts** can be detected if messages are received with clocks which are not in total order in each component.
10.2 Dynamo – Vector Clocks

- Vector clock
• Example problem to be solved
 – Alice, Ben, Cathy, and Dave are planning to meet next week for dinner
 – The planning starts with Alice suggesting they meet on Wednesday
 – Later, Dave discuss alternatives with Cathy, and they decide on Thursday instead
 – Dave also exchanges email with Ben, and they decide on Tuesday.
 – When Alice pings everyone again to find out whether they still agree with her Wednesday suggestion, she gets mixed messages
 • Cathy claims to have settled on Thursday with Dave
 • Ben claims to have settled on Tuesday with Dave
 • Dave can't be reached - no one is able to determine the order in which these communications happened
 – Neither Alice, Ben, nor Cathy know whether Tuesday or Thursday is the correct choice
• Problem can be solved by tagging each choice with a vector clock

 – **Alice** says, "Let's meet **Wednesday,**"
 • Message 1: date = Wednesday; vclock = \{A: 1\}
 – Now **Dave** and **Ben** start talking. **Ben** suggests **Tuesday**
 • Message 2: date = Tuesday; vclock = \{A: 1, B: 1\}
 – **Dave** replies, confirming **Tuesday**
 • Message 3: date = Tuesday; vclock = \{A: 1, B: 1, D: 1\}
 – Now **Cathy** gets into the act, suggesting **Thursday** (independently of Ben or Dave, in response to initial message)
 • Message 4: date = Thursday; vclock = \{A: 1, C: 1\}
– **Dave** now received **two conflicting messages**
 - Message 3: date = Tuesday; vclock = \{A: 1, B: 1, D: 1\}
 - Message 4: date = Thursday; vclock = \{A: 1, C: 1\}
 - **Dave** should resolve this conflict somehow
 - **Dave** agrees with **Thursday** and confirms only to **Cathy**
 – Message 5: date = Thursday; vclock = \{A: 1, B: 1, C: 1, D: 2\}

– **Alice** asks all her friends for their latest decision and receives
 - **Ben**: date = Tuesday; vclock = \{A: 1, B: 1, D: 1\}
 - **Cathy**: date = Thursday; vclock = \{A: 1, B: 1, C: 1, D: 2\}
 - **No response** from **Dave**
 - But still, **Alice** knows by using the vector clocks **that Dave intended to overrule Ben**
 – She also knows that **Dave** is a moron and did not inform **Ben** of this decision (> “application decision” required)
• Dynamo (continued)
 – **Eventual Consistency** through asynchronous replica updates
 – To detect diverging branches and inconsistencies, **vector clocks** are used
 • Each data entry is tagged with a minimal vector clock
 – i.e. array has length one if only one node performs updates
 – For each additional node performing updates, the length of the vector increases
 • After a vector grows larger than 10 entries, the oldest ones are removed
 – Keeps the vector clock size capped
 – Some inconsistencies cannot be detected anymore
 – Has usually no practical impact as very strange (and unlikely) network failures are needed to generate vector clocks of size ≥ 10
Version branches may evolve (due to partitioning)
- Version graph is only partially ordered in the worst case

As soon as conflicting versions are detected (usually during replication update or client read), a **reconciliation process** is started
- e.g. merge, discard old ones, etc.
Test results for response requirement is 300ms for any request (read or write)
10.2 Dynamo - Evaluation

• Load distribution

Figure 6: Fraction of nodes that are out-of-balance (i.e., nodes whose request load is above a certain threshold from the average system load) and their corresponding request load. The interval between ticks in x-axis corresponds to a time period of 30 minutes.
• **Consistency vs. Availability**
 – 99.94% of values have one version
 – 0.00057% of values have two versions
 – 0.00047% of values have three versions
 – 0.00009% of values have four versions

• **Server-driven or Client-driven coordination**
 – **Server-driven**
 • uses load balancers
 • forwards requests to desired set of nodes
 – **Client-driven 50% faster**
 • requires polling of Dynamo membership updates
 • the client is responsible for determining the appropriate nodes to send the request to

• **Successful responses (without time-out) 99.9995%**
 – Configurable \((N, R, W)\)
Dynamo is not the Holy Grail of Data Storage

Strength
- Highly available
- Guaranteed low latencies
- Incrementally scalable
- Trade-offs between properties can be tuned dynamically

Limitations
- No infinite scaling
 - Due to fully meshed routing and heavy load on new node arrival (virtual server transfer)
- Does not support real OLTP queries
- Each application using dynamo must provide conflict resolution strategies
Next Lecture

- Wonderful Cloudy Future
 - What is the Cloud?
 - Software as a Service?
 - IT as utility?

- More cloud technology
 - Towards more complex cloud data models
 - Google BigTable
 - Facebook Cassandra